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A well-known theorem of Albert states that if a tensor product of two
quaternion division algebras Q1, Q2 over a field F of characteristic different
from 2 is not a division algebra, then there exists a quadratic extension L
of F that embeds as a subfield in Q1 and in Q2; see [6, (16.29)]. The same
property holds in characteristic 2, with the additional condition that L/F
is separable: this was proved by Draxl [2], and several proofs have been
proposed: see [3, Th. 98.19], and [7] for a list of earlier references.

Our purpose in this note is to extend the Albert–Draxl Theorem by sub-
stituting for the tensor product of two quaternion algebras the corestriction
of a single quaternion algebra over a quadratic extension. Our main result
is the following:

0.1. Theorem. Let F be an arbitrary field and let K be a quadratic étale

F -algebra.1 For every quaternion K-algebra Q, the following conditions are

equivalent:

(i) Q contains a quadratic F -algebra linearly disjoint from K;

(ii) Q contains a quadratic étale F -algebra linearly disjoint from K;

(iii) CorK/F Q is not a division algebra.

Note that when K = F × F the quaternion K-algebra Q has the form
Q1×Q2 for some quaternion F -algebras Q1, Q2, and CorK/F Q = Q1⊗FQ2.
Thus, in this particular case Theorem 0.1 is equivalent to the Albert–Draxl
Theorem. The more general case is needed for the proof of the main result
in [1].

If the characteristic charF is different from 2, Theorem 0.1 is proved in
[6, (16.28)]. The proof below is close to that in [6], but it does not require
any restriction on the characteristic. The idea is to use a transfer of the
norm form nQ of Q to obtain an Albert form of CorK/F Q, which allows us
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to substitute for (iii) the condition that the transfer of nQ has Witt index
at least 2. To complete the argument, we need to relate totally isotropic
subspaces of the transfer to subforms of nQ defined over F . This is slightly
more delicate in characteristic 2. Therefore, we first discuss the transfer
of quadratic forms in §1, and give the proof of Theorem 0.1 in §2. In
the last section, we sketch an alternative proof of Theorem 0.1 based on a
proof of the Albert–Draxl Theorem due to Knus [5]. This alternative proof
relies on an explicit construction of an Albert form for the corestriction of
a quaternion algebra.

Notations and Terminology. Quaternion algebras over an arbitrary field
F are F -algebras obtained from an étale quadratic F -algebra E and an el-
ement a ∈ F× by the following construction:

(E/F, a) = E ⊕ Ez

with multiplication defined by the equations

z2 = a and zℓ = ι(ℓ)z for ℓ ∈ L,

where ι is the nontrivial automorphism of L.
For quadratic and bilinear forms, we generally follow the notation and

terminology of [3]. Thus, if ϕ : V → F is a quadratic form on a (finite-
dimensional) vector space V over an arbitrary field F , we let bϕ : V ×V → F
denote the polar form of ϕ, defined by

bϕ(x, y) = ϕ(x+ y)− ϕ(x) − ϕ(y) for x, y ∈ V .

We set

rad bϕ = {x ∈ V | bϕ(x, y) = 0 for all y ∈ V }

radϕ = {x ∈ rad bϕ | ϕ(x) = 0}

and observe that these sets are F -subspaces of V with radϕ ⊆ rad bϕ.
Moreover, if charF 6= 2 then ϕ(x) = 1

2
bϕ(x, x) for all x ∈ V and thus

radϕ = rad bϕ. We call the quadratic form ϕ nonsingular2 if rad bϕ = {0},
regular if radϕ = {0} and nondegenerate if ϕK is regular for every field
extension K/F or equivalently (by [3, Lemma 7.16]) if ϕ is regular and
dimF rad bϕ ≤ 1. Thus, every nonsingular form is nondegenerate and every
nondegenerate form is regular; moreover, all three conditions are equivalent
in the case where charF 6= 2.

The Witt index of a quadratic form ϕ on a vector space V is the di-
mension of the maximal totally isotropic subspaces of V , i.e., the maximal
subspaces U ⊆ V such that ϕ(u) = 0 for all u ∈ U ; see [3, Prop. 8.11]. We
write i0(ϕ) for the Witt index of ϕ.

We will need the following easy observation:

2Nonsingular quadratic forms are not defined in [3].
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0.2. Lemma. Let ϕ be a regular quadratic form on a vector space V . If ϕ
is isotropic, the isotropic vectors span V .

Proof. Let V0 ⊆ V be the subspace spanned by the isotropic vectors of V ,
and let v ∈ V \ {0} be an isotropic vector. Since rad(ϕ) = {0} there exists
w ∈ V such that bϕ(v,w) = 1. If x ∈ V is such that bϕ(v, x) 6= 0, then the
vector x − ϕ(x)bϕ(v, x)

−1v is isotropic, hence it belongs to V0. It follows
that x ∈ V0 since v ∈ V0. Thus, V0 contains all the vectors that are not
orthogonal to v. In particular, it contains w. If x ∈ V is orthogonal to v,
then bϕ(v, x+w) = 1, hence x+w ∈ V0, and therefore x ∈ V0 since w ∈ V0.
Thus, V0 = V . �

1. Isotropic transfers

Let F be an arbitrary field and let K be a quadratic field extension of
F . Fix a nonzero F -linear functional s : K → F such that s(1) = 0. For
every quadratic form ϕ : V → K on a K-vector space, the transfer s∗ϕ is
the quadratic form on V (viewed as an F -vector space) defined by

s∗ϕ(x) = s
(

ϕ(x)
)

for x ∈ V .

If ϕ is nonsingular, then s∗ϕ is nonsingular: see [3, Lemma 20.4]. For every
quadratic form ψ over F , we let ψK denote the quadratic form over K
obtained from ψ by extending scalars to K.

The following result is well-known in characteristic different from 2, but
it appears to be new in characteristic 2.

1.1. Theorem. Let ϕ be a nonsingular quadratic form over K. Then there

exists a nondegenerate quadratic form ψ over F with dimψ = i0(s∗ϕ) such
that ψK is a subform of ϕ.

Proof. Substituting for ϕ its anisotropic part, we may assume ϕ is anisotropic.
We may also assume i0(s∗ϕ) ≥ 1, for otherwise there is nothing to show.
Pick an isotropic vector u ∈ V for the form s∗ϕ; we thus have ϕ(u) ∈ F
and ϕ(u) 6= 0 since ϕ is anisotropic. If i0(s∗ϕ) = 1, then we may choose
ψ = ϕ|Fv. For the rest of the proof, we assume i0(s∗ϕ) ≥ 2, and we argue
by induction on i0(s∗ϕ).

Since ϕ is nonsingular, we may find v ∈ V such that bϕ(u, v) = 1. Let
λ ∈ K be such that s(λ) = 1. We have s∗ϕ(u) = 0 and

bs∗ϕ(u, λv) = s
(

bϕ(u, λv)
)

= s(λ) = 1,

hence the restriction of s∗ϕ to the F -subspace U ⊆ V spanned by u and
λv is nonsingular and isotropic. Therefore, s∗ϕ|U is hyperbolic. Let W =
U⊥ ⊆ V be the orthogonal complement of U in V for the form s∗ϕ. Since
i0(s∗ϕ) ≥ 2, the form s∗ϕ|W is isotropic. By Lemma 0.2 we may find an
isotropic vector w ∈ W such that bϕ(u,w) 6= 0. However, bs∗ϕ(u,w) = 0
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since w ∈ W = U⊥; therefore bϕ(u,w) ∈ F×. Moreover ϕ(w) ∈ F since w
is isotropic for s∗ϕ. Therefore, the restriction of ϕ to the F -subspace of V
spanned by u and w is a quadratic form ψ1 over F .

Observe that u and w areK-linearly independent: if w = αu with α ∈ K,
then

bϕ(u,w) = αbϕ(u, u) = 2αϕ(u).

Since bϕ(u,w) ∈ F× and ϕ(u) ∈ F , it follows that α ∈ F , which is impossi-
ble. Therefore, ψ1K is a 2-dimensional subform of ϕ, and ψ1 is nonsingular
because ϕ is anisotropic. Since s∗(ψ1K) is hyperbolic, for the orthogonal
complement ϕ′ of ψ1K in ϕ we obtain i0(s∗ϕ

′) = i0(s∗ϕ)− 2. The theorem
follows by induction. �

Remarks. 1. If s∗ϕ is hyperbolic, then i0(s∗ϕ) = dimϕ, hence Theo-
rem 1.1 shows that ϕ = ψK for some quadratic form ψ over F . This
particular case of Theorem 1.1 is established in [3, Th. 34.9].

2. If charF = 2 and i0(s∗ϕ) is odd, then the quadratic form ψ in
Theorem 1.1 cannot be nonsingular, since nonsingular quadratic forms in
characteristic 2 are even-dimensional; in particular, ψK is not an orthogonal
direct summand of ϕ.

3. If the extension K/F is purely inseparable, then i0(s∗ϕ) is necessarily
even. This follows because theK-subspace spanned by each isotropic vector
for s∗ϕ is a 2-dimensional F -subspace that is totally isotropic for s∗ϕ.

4. The analogue of Theorem 1.1 for symmetric bilinear forms is proved
in [3, Prop. 34.1].

2. Proof of Theorem 0.1

Let F be an arbitrary field. As in [3], we write Iq(F ) for the Witt group
of nonsingular quadratic forms of even dimension over F , and I(F ) for the
ideal of even-dimensional forms in the Witt ring W (F ) of nondegenerate
symmetric bilinear forms over F , and we let Inq (F ) = In−1(F )Iq(F ) for
n ≥ 2. Let also Br2(F ) denote the 2-torsion subgroup of the Brauer group
of F . Recall from [3, Th. 14.3] the group homomorphism

e2 : I
2
q (F ) → Br2(F )

defined by mapping the Witt class of a quadratic form ϕ to the Brauer
class of its Clifford algebra.

2.1. Lemma. Let K be a quadratic field extension of an arbitrary field F ,
and let s : K → F be a nonzero F -linear functional such that s(1) = 0. The
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following diagram is commutative:

I2q (K)
s∗−−−−→ I2q (F )

e2





y





y

e2

Br2(K)
CorK/F
−−−−−→ Br2(F ).

Following the definition in [4, Rem. 6.9.2], CorK/F : Br2(K) → Br2(F )
is the zero map if K is a purely inseparable extension of F .

Proof. We have I2q (K) = I(F )Iq(K) + I(K)Iq(F ) by [3, Lemma 34.16],

hence I2q (K) is generated by Witt classes of 2-fold Pfister forms that have a
slot in F . Commutativity of the diagram follows by Frobenius reciprocity
[3, Prop. 20.2], the computation of transfers of 1-fold Pfister forms in [3,
Lemma 34.14] and [3, Cor. 34.19], and the projection formula in cohomology
[4, Prop. 3.4.10]. �

Proof of Theorem 0.1. Since (ii) ⇒ (i) is clear, it suffices to prove (i) ⇒ (iii)
and (iii) ⇒ (ii).

If (i) holds, then we may represent Q in the form (LK/K, b) where L is
a quadratic étale F -algebra linearly disjoint from K and b ∈ K×, or in the
form (M/K, b) where M is a quadratic étale K-algebra and b ∈ F×. In
each case the projection formula [4, Prop. 3.4.10] shows that CorK/F Q is
Brauer-equivalent to a quaternion algebra, hence (iii) holds.

Now, assume (iii) holds. If Q is split, then it contains an F -algebra
isomorphic to F × F , so (ii) holds. For the rest of the proof, we assume
Q is a division algebra. Let nQ be the norm form of Q, which is a 2-fold
Pfister quadratic form in I2q (K) such that e2(nQ) = Q in Br(K). Since nQ
represents 1, the transfer s∗(nQ) is isotropic, hence Witt-equivalent to a
6-dimensional nonsingular quadratic form ϕ in I2q (F ). This form satisfies
e2(ϕ) = CorK/F (Q) in Br(F ), hence ϕ is an Albert form of CorK/F (Q) as
per the definition in [6, (16.3)]. In particular, since CorK/F (Q) is not a

division algebra, ϕ is isotropic by [6, (16.5)], and therefore i0

(

s∗(nQ)
)

≥ 2.
By Theorem 1.1 there exists a nonsingular quadratic form ψ over F with
dimψ = 2 such that ψK is a subform of nQ. Since Q is a division algebra,
we have that ψK is anisotropic, hence ψ is similar to the norm form of
a unique separable quadratic field extension L/F . The field L is linearly
disjoint from K over F because ψK is anisotropic. On the other hand, ψKL

is hyperbolic, hence KL splits the form nQ, and it follows that there exists
a K-algebra embedding of KL in Q. Therefore, (ii) holds. �

If K is a purely inseparable quadratic extension of F , all the statements
of Theorem 0.1 hold for every quaternion algebra over K. To see this, recall
from the definition of CorK/F in [4, Rem. 6.9.2] that the corestriction of
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every quaternion K-algebra is split. Moreover, if Q = (M/K, b) with M a
separable quadratic extension of K, then the separable closure of F in M
is a separable quadratic extension of F contained in Q and linearly disjoint
from K.

3. The Albert form of a corestriction

Let Q be a quaternion algebra over a separable quadratic field extension
K of an arbitrary field F . By definition (see [6, (16.3)]), the Albert forms of
CorK/F Q are the 6-dimensional nonsingular quadratic forms in I2q (F ) such
that e2(ϕ) = CorK/F Q in Br2(F ); they are all similar. As observed in the
proof of Theorem 0.1, an Albert form of CorK/F Q may be obtained from
the Witt class of the (8-dimensional) transfer s∗(nQ) of the norm form of Q
for an arbitrary nonzero F -linear functional s : K → F such that s(1) = 0.
In this section, we sketch a more explicit construction of an Albert form
of CorK/F Q, inspired by Knus’s proof of the Albert–Draxl Theorem in [5],
and we use it to give an alternative proof of Theorem 0.1.

We first recall the construction of the corestriction CorK/F Q. Let γ
be the nontrivial F -automorphism of K and let γQ denote the conjugate
quaternion algebra γQ = {γx | x ∈ Q} with the operations

γx+ γy = γ(x+ y), γx · γy = γ(xy), λ · γx = γ(γ(λ)x)

for x, y ∈ Q and λ ∈ K. The algebra γQ ⊗K Q carries a γ-semilinear
automorphism s defined by

s(γx⊗ y) = γy ⊗ x for x, y ∈ Q.

By definition, the corestriction (or norm) CorK/F (Q) is the F -algebra of
fixed points (see [6, (3.12)]):

CorK/F (Q) =
(

γQ⊗K Q)s.

Let Trd and Nrd denote the reduced trace and the reduced norm on Q.
Let also σ be the canonical (conjugation) involution on Q. Consider the
following K-subspace of γQ⊗K Q:

V = {γx1 ⊗ 1− 1⊗ x2 | x1, x2 ∈ Q and γ
(

Trd(x1)
)

= Trd(x2)}.

This K-vector space has dimension 6 and is preserved by s, and one can
show that the F -space of s-invariant elements has the following description,
where TK/F : K → F is the trace form:

V s = {γy ⊗ 1 + 1⊗ y | y ∈ Q and TK/F (Trd(y)) = 0}.

Now, pick an element κ ∈ K× such that γ(κ) = −κ. (If charF = 2 we may
pick κ = 1.) The following formula defines a quadratic form ϕ : V s → F :
for y ∈ Q such that TK/F (Trd(y)) = 0, let

ϕ(γy ⊗ 1 + 1⊗ y) = κ ·
(

γ(Nrd(y))−Nrd(y)
)

.
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Nonsingularity of the form ϕ is easily checked after scalar extension to an
algebraic closure of F , and computation shows that the linear map

f : V s →M2

(

CorK/F (Q)
)

given by ξ 7→

(

0 κ · (σ ⊗ id)(ξ)
ξ 0

)

satisfies f(ξ)2 = ϕ(ξ) for all ξ ∈ V s. Therefore, f induces an F -algebra
homomorphism f∗ defined on the Clifford algebra C(V s, ϕ). Dimension
count shows that f∗ is an isomorphism

(3.1) f∗ : C(V s, ϕ)
∼
−→M2(CorK/F Q).

The restriction to the even Clifford algebra is an isomorphism C0(V
s, ϕ) ≃

(CorK/F Q) × (CorK/F Q), hence the discriminant (or Arf invariant) of ϕ

is trivial. This means ϕ ∈ I2q (F ), and (3.1) shows that e2(ϕ) = CorK/F Q
in Br2(F ), so ϕ is an Albert form of CorK/F Q.

We use the Albert form ϕ to sketch an alternative proof of Theorem 0.1.
Since all the conditions in Theorem 0.1 trivially hold if Q is split, we may
assume Q is a division algebra. In particular, the base field F is infinite.

Suppose condition (i) of Theorem 0.1 holds. If x ∈ Q generates a qua-
dratic F -algebra disjoint from K, then Trd(x) ∈ F and Nrd(x) ∈ F (and
x /∈ K), hence γ(κx)⊗ 1 + 1⊗ (κx) ∈ V s is an isotropic vector of ϕ. Since
ϕ is an Albert form of CorK/F Q, it follows that CorK/F Q is not a division
algebra. Therefore, (i) implies (iii).

For the converse, suppose (iii) holds, and let γy ⊗ 1 + 1 ⊗ y ∈ V s be an
isotropic vector for ϕ. Then γ(Nrd(y)) − Nrd(y) = 0, hence Nrd(y) ∈ F ,
and TK/F (Trd(y)) = 0. Assuming y ∈ K quickly leads to a contradiction,
and a density argument shows that we may find such an element y with
Trd(y) 6= 0. Then κy ∈ Q satisfies

Trd(κy) ∈ F, Trd(κy) 6= 0, and Nrd(κy) = κ2 Nrd(y) ∈ F.

Therefore, κy generates a quadratic étale F -subalgebra ofQ linearly disjoint
from K, proving that (ii) (hence also (i)) holds.
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