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Abstract. LetX be the variety of Borel subgroups of a split semisimple algebraic group
G over a field, twisted by a genericG-torsor. Conjecturally, the canonical epimorphism of
the Chow ring CHX onto the associated graded ring GK(X) of the topological filtration
on the Grothendieck ringK(X) is an isomorphism. We prove the new casesG = Spin(11)
and G = Spin(12) of this conjecture. On an equivalent note, we compute the Chow ring
CHY of the highest orthogonal grassmannian Y for the generic 11- and 12-dimensional
quadratic forms of trivial discriminant and Clifford invariant. In particular, we describe
the torsion subgroup of the Chow group CHY and determine its order which is equal to
16 777 216. On the other hand, we show that the Chow group CH0 Y of 0-cycles on Y

is torsion-free.
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1. Introduction

Let G be a split semisimple algebraic group over a field k. A (standard) generic G-
torsor E is defined as the generic fiber of the quotient map π : GL(N) → GL(N)/G for
an integer N ≥ 1 and an embedding of G into the general linear group GL(N). Thus
E is a G-torsor over the function field F := k(GL(N)/G). The above quotient map π
is a G-torsor with the (called versal) property that every G-torsor over a field extension
of k is isomorphic to a fiber of π, [11, §5.3]. This explains the interest to E as to the
“most generic” G-torsor over a field. More specifically, we are interested in the variety
X := E/B, where B ⊂ G is a Borel subgroup, which is a twisted (by the generic torsor
E) form of the flag variety G/B.
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Conjecture 1.1 ([6]). For the above variety X = E/B, the canonical epimorphism

CHX →→ GK(X)

of the Chow ring CHX onto the associated graded ring GK(X) of the topological filtration
on the Grothendieck ring K(X) is an isomorphism.

We recall the the above epimorphism is an edge effect of the Brown-Gersten-Quillen
spectral sequence; its kernel consists of torsion elements (but is not necessarily the whole
torsion subgroup of CHX).
Conjecture 1.1, being already proven for simple G of type A and of type C, for special

orthogonal groups as well as for some exceptional groups (see [6] for the references and
some proofs), is still widely open in the remaining cases, especially in the case of the
spinor groups G = Spin(n). For n ≤ 6 the statement is trivial since the group Spin(n)
is special for such n meaning that every Spin(n)-torsor over a field is trivial. Therefore
X is isomorphic to G/B for n ≤ 6. In particular, X is cellular and the group CHX is
torsion-free forcing the epimorphism in question to be an isomorphism.
Up to now, the only known nontrivial cases were n = 7, 8, 9, 10, where the proof was

based on a decomposition of the Chow motive of X in a direct sum of shifts of the Rost
motive associated to a 3-fold quadratic Pfister forms. The Rost motive in question is a
direct summand of the motive of a 3-dimensional quadric Y , the epimorphism CHY →→
GK(Y ) is easily seen to be an isomorphism, and this gives the similar statement for X .
Note that the above argument goes through in the more general case where X is given
by an arbitrary Spin(n)-torsor, not necessarily the generic one.
The main result of this paper is Theorem 3.1 which settles the cases of n = 11 and

n = 12. Although a generalization of the above motivic decomposition is available for any
n (see [9]), the summands are shifts of a so-called generalized Rost motive; for n ≥ 11
it is not related to quadrics anymore and is not a direct summand of any variety of
dimension < 8. As a matter of fact, in this paper we do not use motives at all. Our
method for treating n = 11, 12 actually works for n = 7, 8 as well, delivering a new and
“motivically-free” proof.
Note that in general the destination ring GK(X) of the epimorphism in Conjecture 1.1

is explicit at least in the sense that in each concrete case it can, in principle, be calculated
by computer. The reason for that is, first of all, that the Grothendieck ring K(X) is
computed for an arbitrary projective homogeneous variety X ([8]). This computation
alone is not enough, because the topological filtration on K(X) is still quite mysterious
for general X . However, for X as in Conjecture 1.1, it coincides with the explicit gamma
filtration (see [3, Corollary 7.4]).
As to the Chow ring CHX in the situation of Conjecture 1.1, it comes with a finite

system of generators given by Chern classes of certain (linear) bundles on X . Conjecture
1.1 simply means that all relations between the images of these very explicit generators
in the explicit ring GK(X) hold already in CHX .
It is worthy to mention that although the construction of the generic torsor E depends

on the choice of the embedding G →֒ GL(N), each of the rings CHX and GK(X) is
canonically the same for whatever choice of it (see [6, Lemma 2.1]).
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2. Preliminaries

We recall that any Spin(n)-torsor over a field gives rise to an n-dimensional non-
degenerate quadratic form over the field with the property that its discriminant and
Clifford invariant are trivial. A generic Spin(n)-torsor E gives rise to a generic quadratic
form q with the above property. Note that we can avoid quadratic forms over fields of
characteristic 2, because by [6, Proposition 3.2] we may work over fields of characteristic
0 when proving Conjecture 1.1.

For any given split semisimple G and any special parabolic P ⊂ G, Conjecture 1.1 for G
has an equivalent version, where the Borel subgroup B is replaced by P , [7, Lemma 4.2].
For G = Spin(n), we may choose P the way that the variety X = E/P becomes a con-
nected component of the highest orthogonal grassmannian of q. (For odd n, the highest
orthogonal grassmannian is connected, but for even n it consists of two connected compo-
nents isomorphic to each other.) Namely, P is a maximal parabolic subgroup whose conju-
gacy class is given by the subset of vertices of the Dynkin diagram of Spin(n) obtained by
throwing away the very last vertex. We prove Conjecture 1.1 for G = Spin(11), Spin(12)
by showing that the epimorphism CHX →→ GK(X) is an isomorphism for this new
choice of X .

The input of the proof consists only of the following two properties of q and X . The
first property is specific for n ≤ 12 but does not require q to be generic: by Pfister’s
theorem [10], any non-degenerate quadratic form of dimension at most 12 with trivial
discriminant and Clifford invariant completely splits over some quadratic field extension
of the base field. In contrast, the second property holds for arbitrary n = 2m+ 1, 2m+ 2
and generic q:

Proposition 2.1. For X as above, the Chow ring CHX is generated by the Chern classes
ci ∈ CHi X, i = 1, . . . , m of the tautological (rank-m) vector bundle on X together with
an additional generator e ∈ CH1X satisfying the relation 2e = c1.

Proof. We recall that X = E/P , where E is a generic Spin(n)-torsor and P ⊂ Spin(n) is
a maximal parabolic subgroup whose conjugacy class is given by the subset of vertices of
the Dynkin diagram of Spin(n) obtained by throwing away the very last vertex. For the
variety Y := E/B, the ring CHY is generated by CH1 Y , [5, Example 2.4]. The variety
Y , considered over X via the projection Y → X , is the variety of complete flags of the
tautological vector bundle on X . It follows by [7, Lemma 4.3] that the ring CHX is
generated by CH1X together with c1, . . . , cm. Finally, the group CH1X is infinite cyclic
and its subgroup generated by c1 is of index 2. �

3. Main result

Theorem 3.1. Let q be the quadratic form over a field F corresponding to a generic
Spin(n)-torsor with n = 11 or n = 12 and let X be a connected component of its highest
orthogonal grassmannian. Then the epimorphism CHX →→ GK(X) is an isomorphism.

Remark 3.2. Since the Grothendieck group K(X) is torsion-free, Theorem 3.1 implies
that the Chow group of 0-cycles CH0 X is torsion-free. In fact, a proof of this statement
will appear already on an earlier stage of the proof of Theorem 3.1 (see Corollary 3.4).
For every n ≥ 13, the similar statement is open. On the other hand, no example is known



4 NIKITA A. KARPENKO

to the author, where the highest orthogonal grassmannian of a quadratic form possesses
nontrivial torsion in its Chow group of 0-cycles.

By Proposition 2.1, the ring CHX is generated by the Chern classes ci ∈ CHi X ,
i = 1, . . . , 5 of the tautological (rank-5) vector bundle on X and an additional element
e ∈ CH1X satisfying the relation 2e = c1. The complete list of relations for the elements
c1, . . . , c5 is as follows (see [2]):

c2i − 2ci−1ci+1 + 2ci−2ci+2 − · · ·+ (−1)i2c0c2i = 0 for all i ≥ 1.

Therefore, in order to compute the ring CHX , we only need to find the relations involving
the remaining generator e.
The group CHX is (additively) generated by the products of powers of the generators

e, c2, . . . , c5, where the exponent of the power of each of c2, . . . , c5 is at most 1. In order to
eliminate higher powers of c2, . . . , c5 one uses the above relations and the argument like
in [2, proof of Theorem 2.1].
Let us fix a quadratic field extension L/F such that the quadratic form qL is split. The

abelian group CHXL is free and the ring CHXL is generated by the elements ei ∈ CHi XL,
i = 1, . . . , 5 satisfying 2ei = ci, where ci ∈ CHi XL is the ith Chern class of the tautological
vector bundle onXL and therefore is the image of ci ∈ CHiX , considered previously, under
the change of field homomorphism CHi X → CHi XL. (Our elements ei coincide up to
their signs with the elements ei of [1, §86].) In particular, e1 ∈ CH1XL is the image of
e ∈ CH1X .
The above relations on ci imply (via division by 4) that

e2i − 2ei−1ei+1 + 2ei−2ei+2 − · · ·+ (−1)i−12e1e2i−1 + (−1)ie2i = 0,

where ei is defined to be 0 for i > 5, and this is a complete list of relations (see [12] –
the original proof – or [1, Proposition 86.16]). An additive basis of CHXL consists of the
25 products

∏

i∈I ei, where I runs over the subsets of {1, . . . , 5}, [1, Theorem 86.12]. In

particular, the product e1 . . . e5 ∈ CH15XL = CH0XL is the class of a rational point (and
15 is the dimension of the variety X).
Let us consider the norm homomorphism N = NL/F : CHXL → CHX . This is a group

(and not a ring) homomorphism satisfying the projection formula N(res(x)y) = xN(y)
with respect to the change of field (ring) homomorphism res = resL/F : CHX → CHXL,
[1, Proposition 56.9]. In particular, the image of N is an ideal of the ring CHX . Since
the composition

N ◦ res : CHX → CHX

is the multiplication by 2, the ideal N CHXL ⊂ CHX contains 2CHX . Besides, the
restriction of the inverse order composition

res ◦N : CHXL → CHXL

to the subgroup resCHX ⊂ CHXL is also the multiplication by 2. Since 25CHXL ⊂
res CHX and the group CHXL is torsion-free, the composition res ◦N itself (on the
whole CHXL) is the multiplication by 2. In particular, we have the stronger inclusion
2CHXL ⊂ res CHX , which can also be checked directly.
Here comes the starting observation which is crucial to the whole computation:
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Lemma 3.3. The quotient ring CHX/N CHXL is

(1) generated by the classes of e, c2, and c4;
(2) additively generated by the products ei, eic2, e

ic4, e
ic2c4 with i = 0, . . . , 7;

(3) a vector space over F2 of dimension at most 25.

We will see later (in Corollary 3.5) that the upper bound in (3) is the precise value of
the dimension so that the generators in (2) form a basis.

Proof of Lemma 3.3. (1): We need to exclude the generators c3 and c5. In order to exclude
c3, let us consider the element x := N(e3) ∈ CH3X . As the group CH3X is generated
by e3, ec2, c3, we have x = αe3 + βec2 + γc3 for some integers α, β, γ. It follows that
res(x) = (α + 2β)e1e2 + 2γe3. On the other hand, res(x) = (res ◦N)(e3) = 2e3 so that
γ = 1 and α = −2β. We get that

N(e3) = c3 + βe(c2 − 2e2)

showing that the class of c3 in the quotient ring CHX/N CHXL is a multiple of ec2. This
excludes the generator c3.

To exclude c5, we consider x := N(e5) ∈ CH5X . As the group CH5X is generated by
e5, e3c2, e

2c3, ec4, c2c3, c5, we have

x = α5e
5 + α3e

3c2 + α2e
2c3 + α1ec4 + α0c2c3 + αc5

for some integers α5, α3, α2, α1, α0, α. It follows that

res(x) ≡ α5(2e2e3 − e1e4) + 2α3(e1e4) + 2α2(e2e3) + 2α1(e1e4) + 2αe5 (mod 4).

On the other hand, res(x) = (res ◦N)(e5) = 2e5 so that α ≡ 1 (mod 2). It follows that the
class of c5 in the quotient ring is a polynomial in e, c2, c3, c4. This excludes the generator
c5 and finishes the proof of (1).

(2): Clearly, the quotient ring is generated by the indicated elements if we allow all i ≥ 0.
We only need to exclude i ≥ 8. Let x := N(e3e5) ∈ CH8X . The group CH8X is generated
by the products

e8, e6c2, e
5c3, e

4c4, e
3c2c3, e

3c5, e
2c2c4, ec2c5, ec3c4.

Looking at the coordinates of the images of the generators in CH8XL (with respect to
the basis {

∏

i∈I ei}I⊂{1,...,5}), we see that the e3e5-coordinate is nonzero modulo 4 for the
generator e8 only (the e3e5-coordinate for the image of e8 is 2). It follows that the class
of e8 in the quotient ring CHX/N CHXL is a linear combination of the other generators,
finishing the proof of (2).

(3): Just count the number of the generators in (2). �

Note that the norm map N : CHXL → CHX is injective, its image N CHXL is a free
subgroup of rank 25 in CHX .

Corollary 3.4. The group CH0X is torsion-free.

Proof. It follows by by Lemma 3.3 that CH0X = N CH0XL ≃ Z. �
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Proof of Theorem 3.1. Besides of the norm homomorphism N : CHXL → CHX , we
have the norm homomorphisms N : K(XL) → K(X), inducing the norm homomorphism
N : GK(XL) → GK(X). The square

CHXL −−−→ GK(XL)

N





y

N





y

CHX −−−→ GK(X)

commutes, inducing an epimorphism

f : CHX/N CHXL →→ GK(X)/NGK(XL).

Since the group CHXL is torsion-free, the epimorphism CHXL →→ GK(XL) is an iso-
morphism. Since the group GK(XL) is torsion-free, the norm homomorphism GK(XL) →
GK(X) is injective. It follows from the commutative diagram

CHXL
isomorphism
−−−−−−−→ GK(XL)

N





y

N





y

monomorphism

CHX −−−→ GK(X)




y





y

CHX/N CHXL
f

−−−→ GK(X)/NGK(XL)

that CHX → GK(X) is an isomorphism provided that the lower map f is an isomor-
phism.
The map f is an epimorphism of finite-dimensional F2-vector spaces. We prove that it

is an isomorphism comparing the dimensions of the spaces. By Lemma 3.3(3), we already
have the upper bound 25 on the dimension of the space on the left. The F2-vector space
GK(X)/NGK(XL) on the right is the associated graded space for some filtration on the
F2-vector space K(X)/NK(XL) and therefore has the same dimension as K(X)/NK(X).
By [8], the change of field homomorphism K(X) → K(XL) is an isomorphism so that
NK(X) = 2K(X). The abelian group K(X) = K(XL) is free of the same rank as CHXL,
i.e. of the rank 25. Thus dimF2

GK(X)/NGK(XL) = dimF2
K(X)/2K(X) = 25. �

As a byproduct, we made the statement of Lemma 3.3 more precise:

Corollary 3.5. The F2-vector space CHX/N CHXL has dimension 25 and the products
ei, eic2, e

ic4, e
ic2c4 with i = 0, . . . , 7 form its basis. �

This corollary is used in the next section for determination of the torsion subgroup.

4. Torsion

For X as in Theorem 3.1, we can now describe the torsion subgroup of CHX :

Proposition 4.1. The torsion subgroup of CHX is an F2-vector space of dimension 24;
its (homogeneous) basis is given by the elements

ei(c2 − 2e2), ei(c4 − 2ec3 + 2e4), ei(c2 − 2e2)(c4 − 2ec3 + 2e4) with i = 0, . . . , 7.
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Proof. The torsion subgroup of CHX vanishes over L and therefore has exponent 2.
The indicated elements, vanishing in CHXL, are of exponent 2 in CHX as well. They

are linearly independent over F2 because their images in the quotient CHX/N CHXL are
the classes of eic2, e

ic4, e
ic2c4 (i = 0, . . . , 7) which are linearly independent by Corollary

3.5. Thus we have constructed a torsion subgroup in CHX of dimension 24. We finish the
proof of Proposition 4.1 by showing that 24 is the dimension of the total torsion subgroup
of CHX .

The total torsion subgroup of CHX coincides with the kernel of the change of field
homomorphism CHX → CHXL. Using the isomorphism CHX → GK(X), we identify
it with the kernel of GK(X) → GK(XL). By [4, Proposition 2], the order of the kernel
of the latter map coincides with the order of its cokernel divided by the order of the
cokernel of K(X) → K(XL). Since K(X) → K(XL) is an isomorphism and replacing
GK(X) back to CHX , it remains to compute the order of the cokernel of the change of
field homomorphism res : CHX → CHXL.

To simplify the computation, we first recall that the image of res contains 2CHXL.
The quotient CHXL/2CHXL is an F2-vector space with the basis {eI :=

∏

i∈I ei}I⊂{1,...,5}.
For any i, the image of ci in CHXL/2CHXL is trivial and the image of ei is eI for the
set I of the 2-powers with the sum i. It follows that the image of res in CHXL/2CHXL

is generated by the part of the basis with I ⊂ {1, 2, 4}. Therefore the dimension we want
to compute is 25 − 23 = 24. �

Remark 4.2. Let X be the highest orthogonal grassmannian of an arbitrary non-degene-
rate 11-dimensional quadratic form q of trivial Clifford invariant with the property that
the ring CHX is generated by CH1X and Chern classes of the tautological vector bundle.
Then all results of this and the previous sections hold for X because their proofs do not
involve any other condition on X . This observation is exploited in the next (and last)
section.

5. Some other generic quadratic forms

We fix an odd integer n ≥ 3. Let k be a field and let F be the rational function field
over k in variables tij, 1 ≤ i ≤ j ≤ n. Let q : F n → F be the quadratic form on the
vector space F n given by the formula

q(x1, . . . , xn) =
∑

1≤i≤j≤n

tijxixj .

Let X be the highest orthogonal grassmannian of q and let Y be the Severi-Brauer variety
of the even Clifford algebra of q.

Proposition 5.1. The ring CHXF (Y ) is generated by CH1XF (Y ) together with the Chern
classes of the tautological vector bundle.

Proof. By [2], the ring CHX is generated by the Chern classes of the tautological vector
bundle. The projection X × Y → X is a projective bundle so that the CHX-algebra
CH(X × Y ) is generated by CH1(X × Y ). And the pull-back CH(X × Y ) → CHXF (Y )

with respect to the generic point of Y is an epimorphism of graded CHX-algebras. �

Corollary 5.2. For n ≤ 11, the epimorphism CHXF (Y ) →→ GK(XF (Y )) is an isomor-
phism.
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Proof. For n < 11, the statement is known (see also §1). For n = 11 it is new and follows
by Remark 4.2. �

Remark 5.3. For k of characteristic 6= 2, one may replace q by the diagonal quadratic
form as in [2, §8]. For k of characteristic 2, one may replace q by the quadratic form as
in [2, §9].

Remark 5.4. The quadratic form q is a subform of a unique (up to an isomorphism)
non-degenerate (n+1)-dimensional quadratic form q′ of trivial discriminant. The Clifford
invariants of q and q′ coincide and the connected component X ′ of the highest grassman-
nian of q′ is isomorphic to X (see [1, Proposition 85.2]). Therefore Proposition 5.1 and
Corollary 5.2 also hold for X ′ in place of X .
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