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Abstract. Let F be a field of characteristic p > 0 and G be a smooth finite algebraic
group over F . We compute the essential dimension edF (G; p) of G at p. That is, we
show that

edF (G; p) =

{

1, if p divides |G|, and

0, otherwise.

1. Introduction

Let F be a field and G be an algebraic group over F . We begin by recalling the
definition of the essential dimension of G.

Let K be a field containing F and τ : T → Spec(K) be a G-torsor. We will say that τ
descends to an intermediate subfield F ⊂ K0 ⊂ K if τ is the pull-back of some G-torsor
τ0 : T0 → Spec(K0), i.e., if there exists a Cartesian diagram of the form

T //

τ

��

T0

τ0

��

Spec(K) // Spec(K0) // Spec(F ).

The essential dimension of τ , denoted by edF (τ), is the smallest value of the transcendence
degree trdeg(K0/F ) such that τ descends to K0. The essential dimension of G, denoted
by edF (G), is the maximal value of edF (τ), as K ranges over all fields containing F and
τ ranges over all G-torsors T → Spec(K).

Now let p be a prime integer. A field K is called p-closed if the degree of every finite
extension L/K is a power of p. Equivalently, Gal(Ks/K) is a pro-p-group, where Ks

is a separable closure of K. For example, the field of real numbers is 2-closed. The
essential dimension edF (G; p) of G at p is the maximal value of edF (τ), where K ranges
over p-closed fields K containing F , and τ ranges over the G-torsors T → Spec(K).

It is easy to see that if τ is a versal torsor in the sense of [Se03, Section 5], then
edF (τ) = edF (G). In fact, edF (G) is the minimal value of trdeg(K/F ) such that there
exists a versal G-torsor over K. Similarly, edF (G; p) is the minimal value of trdeg(K/F )
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such that there exists a p-versal G-torsor over K; see [DR15, Section 8]. For an overview
of the theory of essential dimension, we refer the reader to the surveys [Rei10] and [Me13].

The case where G is a finite group (viewed as a constant group over F ) is of particular
interest. A theorem of N. A. Karpenko and A. S. Merkurjev [KM08] asserts that in this
case

(1) edF (G; p) = edF (Gp; p) = edF (Gp) = rdimF (Gp) ,

provided that F contains a primitive p-th root of unity ζp. Here Gp is any Sylow p-
subgroup of G, and rdimF (Gp) denotes the minimal dimension of a faithful representation
of Gp defined over F . For example, assuming that ζp ∈ F , edF (G) = ed(G; p) = r, if
G = (Z/pZ)r and ed(G) = ed(G; p) = p, if G is a non-abelian group of order p3. Further
examples can be found in [MR10].

Little is known about essential dimension of finite groups over a field F of characteristic
p > 0. A. Ledet [Led04] conjectured that

(2) edF (Z/p
r
Z) = r

for every r > 1. This conjecture remains open for every r > 3. In this paper we will prove
the following surprising result.

Theorem 1. Let F be a field of characteristic p > 0 and G be a smooth finite algebraic
group over F . Then

edF (G; p) =

{

1, if p divides |G|, and

0, otherwise.

In particular, Ledet’s conjecture (2) fails dramatically if essential dimension is replaced
by essential dimension at p.

Before proceeding with the proof of Theorem 1, we remark that the condition that G
is smooth cannot be dropped. Indeed, it is well known that edF (µ

r
p; p) = r for any r > 0.

More generally, if G is a group scheme of finite type over a field F of characteristic p
(not necessarily finite or smooth), then edF (G; p) > dim(G)− dim(G), where G is the Lie
algebra of G; see [TV13, Theorem 1.2].

2. Proof of Theorem 1

By [MR10, Lemma 4.1], if the index [G : G′] of a subgroup of G′ ⊂ G is prime to p,
then

(3) edF (G; p) = edF (G
′; p).

In particular, if p does not divide |G|, then taking G′ = {1}, we conclude that edF (G; p) =
0. On the other hand, if p divides |G|, then edF (G; p) > 1; see [Me09, Proposition 4.4] or
[LMMR13, Lemma 10.1].

Our goal is thus to show that edF (G; p) 6 1. First let us consider the case where G is
a finite group, viewed as a constant algebraic group over F . By (3), we may replace G by
a Sylow subgroup Gp. In other words, we may assume without loss of generality that G
is a p-group. Moreover, since Fp ⊂ F , edF (G; p) 6 edFp

(G; p). Thus, for the purpose of
proving the inequality edF (G; p) 6 1, we may assume that F = Fp.
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Recall that the Nottingham group Aut0(F [[t]]) is the group of automorphisms σ of
the algebra F [[t]] of formal power series such that σ(t) = t + a2t

2 + a2t
3 + . . ., for some

a2, a3, . . . ∈ F . By a theorem of of Leedham-Green and Weiss [C97, Theorem 3], every
finite p-group G embeds into Aut0(F [[t]]). Fix an embedding φ : G →֒ Aut0(F [[t]]). By a
theorem of D. Harbater [Ha80, Section 2], there exists a smooth curve X with a G-action
defined over F , and an F -point x ∈ X fixed by G, such that the G-action in the formal
neighborhood of x is given by φ; see also [Ka86, Theorem 1.4.1] and [BCPS17, Theorem
4.8]. Since φ is injective, the G-action on X is faithful. By [DR15, Corollary 8.6(b)], the
G-action on X is p-versal. Since edF (G; p) is the minimal dimension of an F -variety Y
with a faithful p-versal G-action, we conclude that edF (G; p) 6 1. This completes the
proof of Theorem 1 in the case where G is a constant group.

Now consider the general case, where G is a smooth finite algebraic group over F . In
other words, G = τΓ, where Γ is a constant finite group, A = Autgrp(Γ) is the group of
automorphisms of Γ and τ is a cocycle representing a class in H1(F,A).

Lemma 2. (a) edF (G) 6 edF (Γ⋊ A), (b) edF (G; p) 6 ed(Γ⋊ A; p).

The semidirect product Γ⋊ A is a constant finite group. Hence, as we showed above,
edF (Γ ⋊ A; p) 6 1. Theorem 1 now follows from Lemma 2(b). It thus remains to prove
Lemma 2.

3. Proof of Lemma 2

We will make use of the following description of edF (G) and edF (G; p) in the case,
where G is a finite algebraic group over F . Let G → GL(V ) be a faitful representation.
A compression (respectively, a p-compression) of V is a dominant G-equivariant rational
map V 99K X (respectively, a dominant G-equivariant correspondence V  X of degree
prime to p), where G acts faithfully on X. Recall that edF (G) (respectively, edF (G; p))
equals the minimal value of dim(X) taken over all compressions V 99K X (respectively
all p-compressions V  X). In particular, these numbers depend only on G and F and
not on the choice of the generically free representation V . For details, see [Rei10].

We are now ready to proceed with the proof of Lemma 2. To prove part (a), let V be a
generically free representation of Γ⋊A and let f : V 99K X be a Γ⋊A-compression, with
X of minimal possible dimension. That is, dimF (X) = edF (Γ ⋊ A). Twisting by τ , we
obtain a G = τΓ-equivariant map τf : τV 99K τX; see e.g., [FR17, Proposition 2.6(a)].
Now observe that by Hilbert’s Theorem 90, τV is a vector space with a linear action of
G = τΓ and τf : τV 99K τX is a compression. (To see that the G-action on τV and
τX are faithful, we may pass to the algebraic closure F of F . Over F , τ is split, so that
G = Γ, τV = V , τX = X and τf = f , and it becomes obvious that the G-actions on τV
and τX are faithful.) We conclude that edF (G) 6 dimF (

τX) = dimF (X) = edF (Γ⋊ A),
as desired.

The proof of part (b) proceeds along the same lines. The starting point is a p-
compression f : V  X with X of minimal possible dimension, dimF (X) = edF (Γ⋊A; p).
We twist f by τ to obtain a p-compression τf : τV  τX of the linear action of G = τΓ
on τV . The rest of the argument is the same as in part (a). This completes the proof of
Lemma 2 and thus of Theorem 1. ♠
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4. An application

In this section G will denote a connected reductive linear algebraic group over a field
F . It is shown in [CGR06, Theorem 1.1(c)] that there exists a finite F -subgroup S ⊂ G
such that every Γ-torsor over every field K/F admits reduction of structure to S; see
also [CGR08, Corollary 1.4]. In other words, the map H1(K,S) → H1(K,G) is surjective
for every field K containing F . If this happens, we will say that “G admits reduction of
structure to S ”.

We will now use Theorem 1 to show that if char(F ) = p > 0 and p is a torsion prime
for G, then S cannot be smooth. For the definition of torsion primes, a discussion of
their properties and further references, see [Se00]. Note, in particular, that by a theorem
of A. Grothendieck [Gr58], if G is not special (i.e., if H1(K,G) 6= {1} for some field K
containing F ), then G has at least one torsion prime; see also [Se00, 1.5.1].

Corollary 3. Let G be a connected linear algebraic group over an algebraically closed field
F of characteristic p > 0.

(a) If S is a smooth finite subgroup of G defined over F , then the natural map

fK : H1(K,S) → H1(K,G)

is trivial for any p-closed field K containing F . In other words, fK sends every α ∈
H1(K,S) to 1 ∈ H1(K,G).

(b) If p is a torsion prime for G, then G does not admit reduction of structure to any
smooth finite subgroup.

Proof. (a) Let α ∈ H1(K,S) and β = fK(α) ∈ H1(K,G). By Theorem 1, α descents to
α0 ∈ H1(K0, S) for some intermediate field F ⊂ K0 ⊂ K, where trdeg(K0/F ) 6 1. It
now suffices to show that H1(K0, G) = {1}. If we can do this, then the diagram

H1(K0, S)
fK0

//

��

H1(K0, G)

��

α0
❴

��

✤ // 1
❴

��

α ✤ // β

H1(K,S)
fK

// H1(K,G)

shows that β = 1. Since F is algebraically closed and trdeg(K0/F ) 6 1, the cohomological
dimension of K0 is 6 1; see [Se97, §II.3.2]. By Serre’s Conjecture I,

(4) H1(K0, G) = {1},

as desired. Note that (4) was proved by R. Steinberg [St65] in the case where K0 is
perfect, and by A. Borel and T. A. Springer [BS68, §8.6] for general K.
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(b) If p is a torsion prime for G, then H1(K,G) 6= {1} for some p-closed field K
containing F ; see [Me09, Proposition 4.4]. In view of part (a), this implies that fK is not
surjective. ♠
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