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These notes follow the proof of Margulis Superrigidity given in Zimmer’s
book “Ergodic theory and semisimple groups”. In this sketch we omit some
technical details, for which the reader is referred to Zimmer’s book.

Important concepts

In these talks, most groups are algebraic groups with the Zariski topology. IfG is
such a group and G is an R-group (i.e. its defining polynomials have coefficients
in R), then GR is the group of R-points G ∩ GLn(R), a Lie group with the
Hausdorff topology. Given a subgroup H ≤ G we let H\G denote the set (or
space) of right cosets of H.

A variety is locally a Zariski-closed subset of some finite-dimensional com-
plex vector space. A map between varieties is called a morphism if it is given
locally by polynomials in the coordinates (also called a ‘regular map’ in Zim-
mer). Similarly, a map is rational if it is locally given by rational functions.
A rational function is defined only on some Zariski-open subset, where the de-
nominators are all non-zero. A morphism or rational map is called R-defined
(or an R-morphism, resp. R-rational map) if these polynomials (resp. rational
functions) can be taken to have real coefficients.

An algebraic group is simple if it has no (Zariski-)closed, connected normal
subgroups. Equivalently, its only normal subgroups are finite and central (thus
SLn(C) is simple). An algebraic group is semisimple if it is connected and
has no unipotent normal subgroups; equivalently, it is an almost-direct product
of simple algebraic groups. If G is semisimple and R-defined, the Lie group
GR need not be connected in the Hausdorff topology; the notation G◦R always
denotes the connected component in the Hausdorff topology.

If G is an R-defined algebraic group, then the R-rank of G is the maximal
dimension of an R-split torus of G, i.e. the maximal dimension of a connected
subgroup of G which can be diagonalised over R.
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Finally, if V and W are varieties such that V is defined over R, if A ⊆ VR is a
subset of positive Lebesgue measure, and if f is a measurable function A→W ,
then f is called essentially rational if there is a rational map V → W which
coincides with f almost everywhere on A. If W is defined over R, then we define
an essentially R-rational map similarly.

Prerequisite results

The following is Borel’s density theorem in the form we need.

Theorem (3.2.5 in Zimmer). If G is a semisimple R-group such that G◦R has
no compact factors and if Γ ≤ G◦R is a lattice, then Γ is Zariski-dense in G.

Lemma (Facts regarding varieties and algebraic groups).

(a) If G and H are algebraic groups, and f : G → H is a group homomor-
phism and a morphism of varieties, then f(G) is a Zariski-closed subgroup
of H [Corollary 3.1.2 in Zimmer].

(b) If f : G → H is a bijective group homomorphism which is a morphism
of varieties (defined over R), then f is an (R-)isomorphism of algebraic
groups, i.e. f−1 is also a morphism of varieties (defined over R). [Corollary
3.1.11 in Zimmer, and preceding discussion]. Note: This fails for algebraic
groups over fields of positive characteristic.

(c) Suppose that G acts on varieties X and Y , and thus on the space of
rational maps from X → Y . Then the stabiliser of a point StabG(φ) is a
Zariski-closed subgroup [sketched in Proposition 3.3.2 in Zimmer].

(d) If f : V → W is a morphism of varieties and if f(A) ⊆ WR for some
Zariski-dense subset A ⊆ VR, then f is R-defined [3.1.10 in Zimmer].

In the next four lemmas, G is a locally compact second-countable topological
group.

Lemma (Moore’s Ergodicity Theorem). If G =
∏
Gi, where each Gi is a non-

compact connected Lie group with finite centre, and if H is a non-compact
closed subgroup, then each irreducible lattice in G is ergodic on H\G.

Lemma (“Ergodic action + measurable G-map =⇒ essentially constant”). If
X is an ergodic G-space and f : X → Y is G-invariant and measurable (where
Y is second-countable), then f is constant on a co-null set.

Lemma (Fürstenberg). If G acts amenably on a measure space S, and if X is
a compact metric G-space, then there is a measurable, G-equivariant map from
a co-null subset of S into the space M(X) of probability measures on X.

Lemma (Lemma 4.3.7 in Zimmer). If B is a closed subgroup of G, and if Γ ≤ G
is a lattice, then the action of Γ on B\G is amenable if and only if B is amenable.
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Some reminders:

Lemma (Page 47 of Zimmer). Let G be a split semisimple R-group. The
real points of its parabolic subgroups are non-compact and cocompact. Given
a cocompact R-subgroup H of G, the group GR acts smoothly on the space
M(HR\GR) of probability measures on HR\GR, and the stabiliser of a measure
is the set of real points of an algebraic R-subgroup. Such a stabiliser is either
compact or is contained in an algebraic R-subgroup of dimension less than that
of G.

Lemma (Margulis; Theorem 3.4.4 in Zimmer). If f : Rk×Rn → V is measur-
able function such that

1. for almost every x ∈ Rk, the map fx : Rn → V given by fx(y) = f(x, y)
is essentially rational, and

2. for almost every y ∈ Rn, the map fy : Rk → V given by fy(x) = f(x, y)
is essentially rational,

then f is essentially rational. If moreover each fx and fy is essentially R-defined,
then f is essentially R-defined.

1 Lecture I: Outline and first steps in proving
Margulis Superrigidity

Our goal for the two lectures is the following result.

Theorem (Margulis). Let G and H be connected algebraic R-groups, such
that:

• G is semisimple of R- rank at least 2 and G◦R has no compact factors, and

• H is simple and centre-free, and HR is not compact.

If Γ ≤ G◦R is an irreducible lattice, and if π is a homomorphism Γ → HR with
Zariski-dense image, then π extends to an R-rational homomorphism G → H
(hence defines a continuous homomorphism GR → HR).

Remark. Analogous results to the above also hold when we replace HR with
the complex Lie group HC, or with Hk where k is a totally disconnected local
field of characteristic zero. This more general result is the full statement of
Margulis Superrigidity.

Zimmer’s statement of this result assumes H to be ‘almost simple over R’ and
‘R-simple’, although these terms are never defined in his book. Our assumptions
that H is simple and centre-free, are equivalent to the fact that H is simple as
an abstract group, which is the statement given elsewhere in the literature.
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1.1 Outline of proof

The proof proceeds in a series of steps, as follows.

Step A: Γ acts on G by right multiplication, and also on H (via π), hence on
the coset varieties P\G and L\H whenever P and L are Zariski-closed
subgroups. In this step, we prove that if we have a Γ-equivariant, R-
rational map P\G→ L\H for some choice of P and L, then π extends as
required. This step makes use of Borel’s density theorem.

Step B: By careful choice of P and L, we can construct a measurable Γ-equivariant
map from (PR∩G◦R)\G◦R to LR\HR, defined almost everywhere. This step
makes use of Fürstenberg’s Lemma and Moore’s Ergodicity Theorem.

Step C: In this step, the hardest, we show that such a measurable map is essentially
R-rational. Thus there exists an R-rational function P\G → L\H which
agrees with the measurable map almost everywhere on the real points,
and hence is Γ-equivariant. This also uses Moore’s Ergodicity Theorem.

1.2 Step A

Lemma A. Let P ≤ G and L ≤ H be proper, Zariski-closed R-subgroups, and
suppose there exists a Γ-equivariant, R-rational map φ : P\G → L\H. Then
π extends to an R-rational homomorphism G→ H.

Proof. Consider the graph

∆
def
= {(γ, π(γ)) | γ ∈ Γ} ≤ G×H

of the homomorphism π, and let ∆ be its Zariski closure in G × H (so ∆ is
an algebraic group with the inherited Zariski topology). We claim that ∆ is
the graph of an R-rational homomorphism G → H, that is, each g ∈ G occurs
in exactly one pair (g, h) ∈ ∆, and the assignment g 7→ h gives an R-rational
homomorphism.

Firstly, note that the image of the projection ∆ → G contains Γ, and is
therefore Zariski-dense in G by the Borel density theorem (recall that G◦R has no
compact factors). But also, the image is Zariski-closed (Fact (a) above), hence
the image of ∆ is all of G. Thus every g ∈ G occurs in some pair (g, h) ∈ ∆.

Next, suppose (g, h1) and (g, h2) are elements of ∆. We wish to show that
h1 = h2. Let R be the space of all rational maps from P\G to L\H. Then

G×H acts on R on the left1 by [(g, h) ·φ](x)
def
= φ(xg)h−1. By hypothesis, there

exists a Γ-equivariant map φ ∈ R, which means that φ(xγ) = φ(x)π(γ) for all
x ∈ P\G and all γ ∈ Γ, or in other words [(γ, π(γ)) · φ] (x) = φ(x) for all x and
γ, so φ is a fixed point of R under ∆.

1Check: [(g1g2, h1h2)·φ](x) = φ(xg1g2)·h−1
2 h−1

1 = φ′(xg1)h−1
1 = (g1, h1)·[(g2, h2)·φ](x),

where φ′(x)
def
= φ(xg2)g−1

2 , as required. This differs from the (incorrect) action given in
Zimmer’s book.
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By Fact (c) above, the stabiliser StabG×H(φ) is a Zariski-closed subgroup,
and it contains ∆, hence also contains ∆. Thus if (g, h1) and (g, h2) ∈ ∆ as
above, we have

φ(xg)h−11 = φ(xg)h−12 for all x ∈ P\G,

in particular φ(xg)h−11 h2 = φ(xg) for all x ∈ P\G, so h−11 h2 fixes φ(P\G)
pointwise. However, since φ(xγ) = φ(x)π(γ) for all γ ∈ Γ, π(Γ) stabilises
φ(P\G), hence it stabilises the Zariski closure φ(P\G). Since π(Γ) is Zariski-
dense in H, H also stabilises φ(P\G), which implies that φ(P\G) = L\H as the
latter has no proper, non-empty H-stable subsets. Therefore h−11 h2 pointwise
fixes all of L\H, and therefore lies in the intersection

⋂
h∈H hLh

−1, a normal
subgroup of H, which is proper as L is proper, hence trivial as H is abstractly
simple. Thus h−11 h2 = e, as required.

Thus ∆ is the graph of a map G → H. Now, the projection ∆ → G is
bijective, and is the restriction of the projection homomorphism G × H → G,
hence is a morphism of varieties. By Fact (b) above, this is an isomorphism of
algebraic groups, so its inverse is a morphism G→ ∆. Composing this with the
projection map onto H, we get a morphism G→ H, which extends π.

Finally, since π sends the Zariski-dense real set Γ ≤ GR into the real set HR,
by Fact (d) above we deduce that π is defined over R.

2 Lecture II: Finding a measuarable map and
proving it is essentially R-rational

Since we are now concerned with finding a rational map, we shall often replace
the given domain by some Zariski-dense subset without further comments.

2.1 Step B

Lemma B. Let P
def
= B ≤ G be a Borel subgroup and write B◦ = G◦R ∩ B.

There exist a proper R-subgroup L ≤ H and a measurable Γ-equivariant map
φ : B◦\G◦R → LR\HR.

Proof. Recall that soluble groups are amenable, whence so is B◦. Thus, Γ
acts amenably on B◦\G◦R. Let now Q ≤ H be an arbitrary, but fixed, proper
parabolic subgroup of H. Since QR is cocompact, it follows from Fürstenberg’s
Lemma that there exists a measurable Γ-equivariant map φ0 : B◦\G◦R →
M(QR\HR). Technical fact: HR acts (smoothly, on the right) on M(QR\HR)
and the orbit space (M(QR\HR))/HR is second countable.

Let φ1 be the composition B◦\G◦R
φ0−→ M(QR\HR) � (M(QR\HR))/HR.

Notice that φ1 is a Γ-invariant map since φ0(xγ) = φ0(x)π(γ) for all x ∈
B◦\G◦R, γ ∈ Γ. This implies that φ1 is (essentially) constant, because B◦\G◦R is
an ergodic Γ-space by Moore’s theorem. In other words, there exists a measure
µ ∈M(QR\HR) such that φ1 (essentially) takes values on the HR-orbit of µ.
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Now, let LR = StabHR(µ) be the stabiliser of this chosen measure µ—this
is the set of real points of a (proper) R-subgroup L ≤ H by our reminder
(Lemmata of p. 47). So µ ·HR = (µ ·LR) ·HR and, for almost every x ∈ B◦\G◦R,
we can find hx ∈ HR such that φ1(x) = (µ ·LR) ·hx = µ · (LRhx). The map φ2 :
B◦\G◦R → LR\HR defined almost everywhere by x 7→ LRhx, is Γ-equivariant,
and we thus obtain a measurable Γ-equivariant map φ : B◦\G◦R → LR\HR
which coincides with φ2 almost everywhere.

2.2 Step C

Lemma C. If L ≤ H is a proper R-subgroup and φ : B◦\G◦R → LR\HR is a
measurable Γ-equivariant map, then φ is essentially rational.

We proceed by reducing to a “small” case:

1. In the statement, we shall replace “map from B◦\G◦R” by “map from UR”
for some unipotent (R-subgroup) U ≤ G;

2. Instead of considering the whole unipotent subgroup UR, it suffices to look
at one-parameter subgroups UαR ;

3. One obtains (essential) rationality for the induced map UαR → LR\HR by
studying the action of Γ on the space of measurable functions from UαR to
LR\HR.

2.2.1 Part 1

Let us look at G as a split, semisimple, linear algebraic R-group. The chosen
B ≤ G is a Borel subgroup, i.e. a maximal, connected, soluble R-subgroup.
It contains a maximal R-split torus T ≤ G. We take the “opposite” Borel
subgroup, i.e. the conjugate of B whose intersection with B is exactly T , and
let U be its unipotent radical. The point now is that, by multiplying U and
B we recover G in some sense. As an example, one can verify this for SL5 by
matrix computations for the groups

B =


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

 and U =


1 0 0 0 0
∗ 1 0 0 0
∗ ∗ 1 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ 1


of upper triangular and lower unitriangular matrices, respectively. Summarising,
we have the following.

Lemma 1. There exists a unipotent R-subgroup U ≤ G such that the product
map

p : B × U → G,

(b, u) 7→ bu
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gives an isomorphism of varieties B × U ∼= Im(p), with the image Im(p) being
(Zariski) open and dense in G. Moreover, the induced map UR → B◦\G◦R is
(essentially) an isomorphism of measure spaces.

Thus, lifting φ back to G◦R and then restricting it to UR, the above lemma
allows us to replace B◦\G◦R by UR when trying to check rationality of φ.

2.2.2 Part 2

Having (roughly) replaced the cosets B◦\G◦R by elements of the unipotent sub-
group UR, we now turn to the structure of UR in order to reduce the problem
even further.

In our previous example, with U the subgroup of lower unitriangular matrices
of SL5, we can identify many one-parameter subgroups. Namely, the subgroups
generated by elementary matrices in a single position, for instance the (2, 1) or
the (4, 2) entries. Pictorially:

1 0 0 0 0
∗ 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 or


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 ∗ 0 1 0
0 0 0 0 1

 .

Moreover, these (finitely many) such one-parameter subgroups can be ordered
in such a way that each subgroup normalises the subgroup generated by all the
previous ones. For example, consider the index set Φ = {α1, . . . , α10} and define

Uα1
def
=


1 0 0 0 0
∗ 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Uα2
def
=


1 0 0 0 0
0 1 0 0 0
0 ∗ 1 0 0
0 0 0 1 0
0 0 0 0 1

 , . . . ,

Uα5
def
=


1 0 0 0 0
0 1 0 0 0
∗ 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , . . . , and so on.

We see that the last subgroup, Uα10 , is central, so 〈Uα10 ,Uα9〉 is abelian. By ma-
trix computations, Uα8 commutes with Uα9 , so 〈Uα10 ,Uα9 ,Uα8〉 is still abelian.
We proceed like this, step-by-step, until we find that [Uα5 ,Uα7 ] ⊆ Uα10 , thus
〈Uα10 , . . . ,Uα6〉 / 〈Uα10 , . . . ,Uα5〉. It is also not hard to obtain the lower central
series of U using the Uαi ’s.

The groups in the example above have one further property. Since there is
“enough space” on the diagonal (i.e. the torus of SL5(R)) then, given any UαiR ,
one can easily find a non-trivial diagonal matrix which is centralised by UαiR .
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For instance,

for Uα6

R =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 ∗ 0 1 0
0 0 0 0 1

 , pick t =


1 0 0 0 0
0 1 0 0 0
0 0 r 0 0
0 0 0 1 0
0 0 0 0 r−1

 with r /∈ {0, 1}.

All of the above hold, of course, in the more general set-up of the structure
theory of split, semisimple, linear algebraic groups. In that context, we view U
as the unipotent part of some Borel subgroup of the split, semisimple group G
and the index set Φ will be the set of (negative) roots with respect to the fixed
maximal split torus contained in the chosen Borel subgroup B ≤ G. For our
purposes, we get the following.

Lemma 2. There exist a finite set Φ = {α1, . . . , αn}, whose cardinality n = |Φ|
depends on R- rank(G), and abelian R-subgroups Uαi ≤ U such that

1. The product map
∏n
i=1 Uαi → U , (u1, u2, . . . , un) 7→ u1u2 · · ·un is an

isomorphism of varieties;

2. The Uαi ’s ‘generate’ the lower central series of U and each Uk+1
def
=

〈Uαk+1 , . . . ,Uαn〉 is normal in Uk;

3. If R- rank(G) ≥ 2, then every UαiR centralises some (non-trivial) torus
element.

Therefore, one can verify by induction (and using Margulis’ Lemma) that if
a map φ : UR → LR\HR restricts to an essentially R-rational map UαR → LR\HR
for each α ∈ Φ, then in fact φ itself is essentially R-rational.

2.2.3 Part 3

Let F
def
= F (UαR , LR\HR)/∼ be the space of measurable functions from UαR to

LR\HR, where f ∼ g ⇐⇒ f = g almost everywhere. We remark that HR acts
on F via f · h : x 7→ f(x) · h, thus so does Γ via our original homomorphism π.

Now, for each g ∈ G◦R, set φg : x 7→ φ(xg).

Claim 3. Almost every map φg ∈ F as above lies in the same HR-orbit.

Proof. Consider the measurable map Ψ : G◦R → F, g 7→ φg. By Lemma 2,
there exists t 6= 1 a torus element such that UαR centralises the (non-compact!)
cyclic subgroup 〈t〉 ≤ G◦R. Furthermore, looking back at our original map φ :
B◦\G◦R → LR\HR and because t ∈ B◦, we obtain that φ(tg) = φ(g) for all
g ∈ G◦R. Thus, for every c ∈ Uα, we get

φtg(c) = φ(ctg) = φ(tcg) = φ(cg) = φg(c).

In other words, we can look at Ψ as a (still measurable) map from 〈t〉\G◦R to
F . Since φ is originally a Γ-equivariant map, we have for all c ∈ UαR , γ ∈ Γ and
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almost every g ∈ G◦R that

φgγ(c) = φ(cgγ) = φ(cg) · π(γ) = φg(c) · π(γ),

i.e. Ψ(gγ) = Ψ(g) · π(γ). Therefore the induced map Ψ : 〈t〉\G◦R → F\HR is
essentially Γ-invariant. Since Γ acts ergodically on 〈t〉\G◦R by Moore’s theorem,
the map Ψ is (essentially) constant, that is, almost every φg lies in the same
HR-orbit.

Finally, using the claim, we can for almost every c ∈ UαR obtain a formula
for φ(c) which makes explicit its rationality.

Lemma 4. There exist a subvariety W ⊆ L\H, a regular action W x Uα such
that the induced action WR x UαR is measurable, and a point x ∈W such that
φ(c) = x · c for almost every c ∈ UαR .

(Here, a ‘regular action’ means that the induced map W × Uα → W is a
morphism of varieties).

Proof. Consider the R-subgroup K ≤ H fixing the (essential) range of φ|UαR and
let N(K) ≤ H be its normaliser, which is also an R-subgroup. Define W to be
the R-subvariety of L\H of fixed points of K. So N(K) is the group leaving W

invariant and then the quotient Q
def
= K\N(K) acts R-regularly on W .

Since almost every φg lies in a single HR-orbit by Claim 3, we have that
φag lies in the same orbit of φg under the HR-action for all a ∈ UαR and almost
every g ∈ G◦R. Thus, given a ∈ UαR we can, for almost every u ∈ UαR , choose an
element h(u, a) ∈ HR for which

φau = φu · h(u, a).

But with φau we are just translating the elements of UαR by an element of UαR be-
fore applying φu, whence the (essential) ranges of φau and φu coincide. It follows
that the elements h(u, a) chosen above leave W invariant, i.e. h(u, a) ∈ N(K).
Now, for all a, b ∈ UαR and almost all c, u ∈ UαR ,

φu(c) · h(u, ab) = φabu(c) = φ(cabu) = φbu(ca) = φu(ca) · h(u, b)

= φ(cau) · h(u, b) = φau(c) · h(u, b) = (φu(c) · h(u, a)) · h(u, b)

= φu(c) · (h(u, a)h(u, b)).

This means that for almost every u the element h(u, ab)h(u, b)−1h(u, a)−1 ∈ HR
(essentially) fixes Im(φu), i.e. it belongs to K by definition. Thus we get a map

hu : UαR → K\N(K)

a 7→ h(u, a)

which is essentially a homomorphism of R-groups. Now, by definition, one has
φ(cau) = φ(cu) · h(u, a). Pick c, u ∈ UαR for which this equality holds for almost
every a and such that φ(cu) lies in the (essential) range of φu. By our definition
of h(u,−) we obtain

φ(a) = φ(cc−1au−1u) = φ(cu) · h(u, c−1au−1) = φ(cu) · h(u, c−1u−1uau−1)

= (φ(cu) · h(u, c−1u−1)) · h(u, uau−1).
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So the point x
def
= (φ(cu) · h(u, c−1u−1)) ∈ W is the same for almost every a,

whence the lemma.

3 Finishing off the proof of Superrigidity

We verified in the previous section that Claim 3 together with Lemma 4 imply
(essential) rationality for each restriction φ : UαR → LR\HR, so from Lemma 2
combined with Margulis’ Lemma we recover (essential) rationality for the whole
φ : UR → LR\HR, by induction. Applying Lemma 1 gives (essential) rationality
for the original measurable Γ-equivariant map φ : B◦\G◦R → LR\HR, which
exists in the first place by Lemma B. Since B◦\G◦R is Zariski-dense in B\G we
get a Γ-equivariant rational map ϕ : B\G → L\H. The theorem now follows
from Lemma A.
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