Higher Teichmüller theory and geodesic currents

Alessandra lozzi

ETH Zürich, Switzerland

Topological and Homological Methods in Group Theory Bielefeld, April 5th, 2018

Overview

Ongoing program to extend features of Teichmüller space to more general situations.

In this talk:

- Some aspects of the classical Teichmüller theory
- A structure theorem for geodesic currents
- Higher Teichmülller theory and applications

Joint with M.Burger, A.Parreau and B.Pozzetti (in progress)

<u>Why Teichmüller theory</u>: relations with complex analysis, hyperbolic geometry, the theory of discrete groups, algebraic geometry, low-dimensional topology, differerential geometry, Lie group theory, symplectic geometry, dynamical systems, number theory, TQFT, string theory,...

Teichmüller space

 Σ_g closed orientable surface of genus $g \ge 0$ (for simplicity for the moment with p = 0 punctures)

$$\mathcal{T}_g \cong \{\text{complete hyperbolic metrics}\}/\mathrm{Diff}_0^+(\Sigma)$$

Characterizations:

2 One connected component in Hom $(\pi_1(\Sigma_g), \mathsf{PSL}(2, \mathbb{R}));$

Solution Maximal level set of eu(Σ_g, ·): Hom (π₁(Σ_g), PSL(2, ℝ)) / PSL(2, ℝ) → ℝ, such that | eu(Σ_g, ρ)| ≤ |χ(Σ_g)|. Thurston compactification: what to look for and why

$$\mathcal{MCG}(\Sigma_g) := \operatorname{Aut}\left(\pi_1(\Sigma_g)
ight) / \operatorname{Inn}\left(\pi_1(\Sigma_g)
ight) \curvearrowright \mathcal{T}_g \cong \mathbb{R}^{6g-6}$$

Wanted a compactification $\overline{\Theta(\mathcal{T}_g)}$ such that:

$$\textbf{ Ihe boundary } \partial \Theta(\mathcal{T}_g) = \overline{\Theta(\mathcal{T}_g)} \smallsetminus \Theta(\mathcal{T}_g) \cong S^{6g-7} \Rightarrow$$

$$\overline{\Theta(\mathcal{T}_g)} \cong$$
 closed ball in \mathbb{R}^{6g-6} ;

② The action of $\mathcal{MCG}(\Sigma_g)$ extends continuously to $\partial \Theta(\mathcal{T}_g)$. Then (1)+(2)⇒ $\mathcal{MCG}(\Sigma_g)$ acts continuously on $\overline{\Theta(\mathcal{T}_g)} \rightsquigarrow$ classify mapping classes (Brower fixed point theorem).

[If g = 1, $\mathcal{MCG}(\Sigma_1) \cong SL(2, \mathbb{Z})$, $\mathcal{T}_1 \cong \mathbb{H}$, and \exists a classification of isometries and their dynamics by looking at the fixed points in $\overline{\mathbb{H}}$.]

Thurston-Bonahon compactification

 $\mathcal{C}{=}\mathsf{homotopy}$ classes of closed curves in $\Sigma_g.\mathsf{lf}\left[\rho\right]\in\mathcal{T}_g$, define

$$\ell_{[
ho]} \colon \mathcal{C} \longrightarrow \mathbb{R}_{\geq 0} \ [\gamma] \mapsto \ell(
ho(c))$$

where $\ell(\rho(c)) =$ hyperbolic length of the unique ρ -geodesic in $[\gamma]$. Thus can define

$$\Theta \colon \mathcal{T}_{g} \to \mathbb{P}(\mathbb{R}^{\mathcal{C}}_{\geq 0}) \\ [\rho] \longmapsto [\ell_{[\rho]}]$$

with properties:

- Θ is an embedding;
- $\overline{\Theta(\mathcal{T}_g)}$ is compact;
- (1)+(2) from before;
- Θ(*T_g*) and ∂Θ(*T_g*) can be described geometrically in terms of geodesic currents, measured laminations and intersection numbers.

Geodesic currents $Curr(\Sigma)$

 Σ oriented surface with a complete finite area hyperbolization, $\Gamma = \pi_1(\Sigma)$ and

$$\mathcal{G}(\widetilde{\Sigma}) =$$
 the set of geodesics in $\widetilde{\Sigma} = \mathbb{H}$

Definition

A geodesic current on Σ is a positive Radon measure on $\mathcal{G}(\overline{\Sigma})$ that is Γ -invariant.

Convenient: Identify $\mathcal{G}(\widetilde{\Sigma}) \cong (\partial \mathbb{H})^{(2)} = \{ \text{pairs of distinct points in } \partial \mathbb{H} \}.$

Example

 $c\subset\Sigma$ closed geodesic, $\gamma\simeq(\gamma_-,\gamma_+)\in(\partial\mathbb{H})^{(2)}$ lift of c.If

$$\delta_{\boldsymbol{c}} := \sum_{\eta \in \Gamma / \langle \gamma
angle} \delta_{\eta(\gamma_{-}, \gamma_{+})},$$

supp $\delta_c = \text{lifts of } c \text{ to } \mathbb{H}.$

Geodesic currents $Curr(\Sigma)$

Example

<u>Liouville current</u> \mathcal{L} = the unique PSL(2, \mathbb{R})-invariant measure on $(\partial \mathbb{H})^{(2)}$. Let $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\}$, so [x, y] is well defined. If $a, b, c, d \in \partial \mathbb{H}$ are positively oriented,

$$\mathcal{L}([d,a] imes [b,c]) := \ln[a,b,c,d],$$

where

$$[a, b, c, d] := \frac{(a - c)(b - d)}{(a - b)(c - d)} > 1.$$

Higher Teichmüller & geodesic currents

Geodesic currents $Curr(\Sigma)$

Example

Measure geodesic lamination (Λ, m)

- $\Lambda \subset \Sigma = \mbox{closed}$ subset of Σ that is the union of disjoint simple geodesics;
- m = homotopy invariant transverse measure to Λ .

Lift to a $\Gamma\text{-invariant}$ measure geodesic lamination on $\mathbb H.$ The associated geodesic current is

$$m([a,b]\times [c,d]):=\tilde{m}(\sigma),$$

where σ is a (geodesic) arc crossing precisely once all leaves connecting [a, b] to [c, d].

Intersection number of two currents

Know: If $\alpha, \beta \in C$, then $i(\alpha, \beta) = \inf_{\alpha' \in \alpha, \beta' \in \beta} |\alpha' \cap \beta'|$ Want: If $\mu, \nu \in \text{Curr}(\Sigma)$, define $i(\mu, \nu)$ so that $i(\delta_c, \delta_{c'}) = i(c, c')$.

Definition

Let $\mathcal{G}^2_{\pitchfork} := \{(g_1,g_2) \in (\partial \mathbb{H})^{(2)} \times (\partial \mathbb{H})^{(2)} : |g_1 \cap g_2| = 1\}$ on which PSL $(2,\mathbb{R})$ acts properly.Then

$$i(\mu,
u) := (\mu imes
u)(\Gamma ackslash \mathcal{G}^2_{\pitchfork})$$

Properties

- If $\delta_c, \delta_{c'} \in \text{Curr}(\Sigma) \Rightarrow i(\delta_c, \delta_{c'}) = i(c, c')$ and $i(\delta_c, \delta_c) = 0$ if and only if c is simple.
- $i(\mathcal{L}, \delta_c) = \ell(c) = hyperbolic length of c.$

Thurston-Bonahon compactification

Theorem (Bonahon, '88)

There is a continuous embedding

whose image contains the Thurston compactification

$$\overline{\Theta(\mathcal{T}_g)} \subset I\big(\mathbb{P}(\mathsf{Curr}(\Sigma_g))\big).$$

Moreover $\partial \Theta(T_g)$ corresponds to the geodesic currents coming from measured laminations.

A structure theorem for geodesic currents

Want to generalize to higher rank.

Few observations:

- Intersection can be thought of as length, although more general;
- Geodesic currents can be thought of as some kind of degenerate hyperbolic structure with geodesics of zero length;
- Given μ ∈ Curr(Σ), geodesics of zero μ-intersection arrange themselves "nicely" in Σ ([Burger–Pozzetti, '15] for μ-lengths)

A structure theorem for geodesic currents

Definition

Let $\mu \in Curr(\Sigma)$. A closed geodesic is μ -special if

- $i(\mu, \delta_c) = 0;$
- 2 $i(\mu, \delta_{c'}) > 0$ for all closed geodesic c' with $c \pitchfork c'$.

In particular:

- A closed geodesic is simple
- Special geodesics are pairwise non-intersecting.

Thus if $\mathcal{E}_{\mu} = \{\text{special geodesics on } \Sigma\}$, $|\mathcal{E}_{\mu}| \leq \infty$ and one can decompose

$$\Sigma = igcup_{m{v}\inm{V}_{\mu}} \Sigma_{m{v}},$$

where $\partial \Sigma_{v} \subset \mathcal{E}_{\mu}$.

A structure theorem for geodesic currents

Theorem (Burger–I.–Parreau–Pozzetti, '17) Let $\mu \in Curr(\Sigma)$. Then

$$\mu = \sum_{\mathbf{v}\in \mathbf{V}_{\mu}} \mu_{\mathbf{v}} + \sum_{\boldsymbol{c}\in \mathcal{E}_{\mu}} \lambda_{\boldsymbol{c}} \delta_{\boldsymbol{c}},$$

where μ_{ν} is supported on geodesics contained in $\mathring{\Sigma}_{\nu}$. Moreover either

•
$$i(\mu, \delta_c) = 0$$
 for all $c \in \mathring{\Sigma}_v$, hence $\mu_v = 0$, or

2 $i(\mu, \delta_c) > 0$ for all $c \in \mathring{\Sigma}_v$. In this case either:

• $\inf_{c} i(\mu, \delta_{c}) = 0$ and $\operatorname{supp} \mu$ is a $\pi_{1}(\Sigma_{\nu})$ -invariant lamination that is surface filling and compactly supported, or

$$inf_c i(\mu, \delta_c) > 0.$$

$$\operatorname{Syst}_{\Sigma_{\nu}}(\mu) := \inf_{c} i(\mu, \delta_{c}).$$

A. lozzi (ETH Zürich)

Higher Teichmüller & geodesic currents

Higher Teichmüller theory

Consider representations into a "larger" Lie group.

- real adjoint Lie groups \rightsquigarrow Hitchin component e.g. $SL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$. [Techniques: Higgs bundles, hyperbolic dynamics, harmonic maps, cluster algebras (Hitchin, Labourie, Fock-Goncharov)]
- Hermitian Lie groups → maximal representations
 Examples: SU(p, q) (orthogonal group of a Hermitian form of signature (p, q)), Sp(2n, ℝ)
 [Techniques: Bounded cohomology, Higgs bundles, harmonic maps

(Toledo, Hernández, Burger–I.–Wienhard, Bradlow–García Prada–Gothen, Koziarz–Maubon)

- semisimple real algebraic of non-compact type → positively ratioed representations (Martone–Zhang)
 Examples: maximal representations and Hitchin components
- *G* real adjoint & Hermitian $\Rightarrow G = \text{Sp}(2n, \mathbb{R})$ and

 $\operatorname{Hom}_{\operatorname{Hitchin}}(\pi_1(\Sigma), \operatorname{Sp}(2n, \mathbb{R})) \subsetneq \operatorname{Hom}_{\max}(\pi_1(\Sigma), \operatorname{Sp}(2n, \mathbb{R}))$

Maximal representations

Remark

Margulis' superrigidity does not hold.

Can define the Toledo invariant

$$\mathsf{T}(\Sigma, \cdot) : \operatorname{Hom}(\pi_1(\Sigma), \mathsf{PSp}(2n, \mathbb{R})) / \operatorname{PSp}(2n, \mathbb{R}) \to \mathbb{R}$$

that is uniformly bounded

 $|\mathsf{T}(\Sigma, \cdot)| \leq |\chi(\Sigma)| \operatorname{rank} G$

Definition

ho is maximal if T(Σ , \cdot) achieves the maximum value

The Thurston-Parreau compactification

If $g \in \text{Sp}(2n, \mathbb{R})$, it has complex eigenvalues $\lambda_i, \lambda_i^{-1}$, i = 1, ..., n, that we can arrange so that $|\lambda_1| \ge \cdots \ge |\lambda_n| \ge 1 \ge |\lambda_n|^{-1} \ge \cdots \ge |\lambda_1|^{-1}$. Then we set the *length of g* to be

$$L(g) := \sum_{i=1}^n \log |\lambda_i|.$$

Theorem (Martone–Zhang '16, Burger–I.–Parreau–Pozzetti '17)

If $\rho : \pi_1(\Sigma) \to \text{Sp}(2n, \mathbb{R})$ is maximal, there exists a geodesic current μ_ρ on Σ such that for every $\gamma \in \pi + 1(\Sigma)$ hyperbolic

$$L(\rho(\gamma)) = i(\mu_{\rho}, \delta_{c}),$$

where c is the unique geodesic in the homotopy class of γ .

The Thurston–Parreau compactification

Theorem (Parreau, '14)

The map

$$\Theta \colon \underbrace{\mathsf{Hom}_{\mathsf{max}}(\pi_1(\Sigma), \mathsf{PSp}(2n, \mathbb{R}))/\mathsf{PSp}(2n, \mathbb{R})}_{[\rho]} \to \mathbb{P}(\mathbb{R}^{\mathcal{C}}_{\geq 0}) \xrightarrow{[\rho]} \mapsto [L_{[\rho]}]$$

is continuous, proper and has relatively compact image (inj. if n = 1) $\overline{\Theta(Max(\Sigma, n))}$.

Recall from before that there is a continuous embedding

$$\mathcal{U}: \mathbb{P}(\mathsf{Curr}(\Sigma_g)) o \quad \mathbb{P}(\mathbb{R}^{\mathcal{C}}_{\geq 0}) \ [\mu] \quad \mapsto \{c \mapsto i(\mu, c)\}$$

whose image contains the Thurston compactification $\overline{\Theta(\mathcal{T}_g)}$ [Bonahon, '88].We have also:

A. lozzi (ETH Zürich)

Length compactification of $Max(\Sigma, n)$

```
Theorem (Burger-I.-Parreau-Pozzetti, '17)
```

 $\overline{\Theta(\mathsf{Max}(\Sigma,n))} \subset I\big(\mathbb{P}(\mathsf{Curr}(\Sigma))\big)$.

Corollary (Burger–I.–Parreau–Pozzetti, '17)

If $[L] \in \partial \operatorname{Max}(\Sigma, n)$, there is a decomposition of Σ into subsurfaces, where [L] is either the length function associated to a minimal surface filling lamination or it has positive systole.

Example

If $n \geq 2$ positive systole does occur. Can construct $\rho : \pi_1(\Sigma_{0,3}) \to \mathsf{PSp}(4,\mathbb{R})$ maximal. Since \nexists compactly supported laminations on $\Sigma_{0,3} \Rightarrow \mathsf{Syst}_{\Sigma_{0,3}}(\mu_\rho) > 0$.

If $\mathsf{Syst}_{\Sigma}(\mu) > 0$

Let us assume $Syst_{\Sigma}(\mu) > 0$ throughout Σ .

Theorem (Burger-I.-Parreau-Pozzetti, '17)

The set

$$\Omega:=\big\{[\mu]\in\mathbb{P}(\mathsf{Curr}\Sigma):\,\mathsf{Syst}_{\Sigma}(\mu)>0\big\}$$

is open and $\mathcal{MCG}(\Sigma)$ acts properly discontinuously on it.

Corollary (Burger-I.-Parreau-Pozzetti, '17)

$$\Omega(\Sigma, n) := \left\{ [L \in \overline{\Theta(\mathsf{Max}(\Sigma, n))} : \mathsf{Syst}_{\Sigma} > 0
ight\}$$

is an open set of discontinuity for $\mathcal{MCG}(\Sigma)$.

Remark

•
$$\Omega(\Sigma_g, 1) = \mathcal{T}_g;$$

• $\omega(\Sigma_{0,3},2)$ contains boundary points.

If $Syst_{\Sigma} > 0$

A geodesic current with $Syst_{\Sigma} > 0$ behaves like a Liouville current, that is a current whose intersection computes the length in a hyperbolic structure.

Theorem (Burger-I.-Parreau-Pozzetti, '17)

Assume $Syst_{\Sigma}(\mu) > 0$ and let $K \subset \Sigma$ be compact. Then there are constants $0 < c_1 \le c_2 < \infty$ such that

$$c_1\ell(c) \le i(\mu,\delta_c) \le c_2\ell(c) \tag{(*)}$$

for all $c \subset K \subset \Sigma$. In particular (*) holds for all simple closed geodesics.

Thank you!