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Classifying space for proper actions

Let G be an infinite discrete group.

Definition
A model for the classifying space EG is a G–CW–complex X such
that:

I G y X is proper (finite cell stabilisers)

I for every finite subgroup F ⊂ G the fixed point set X F is
contractible ( 6= ∅)

Remark

I EG always exists

I any two models for EG are G–homotopy equivalent
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Classifying space for proper actions

Examples

1.

Rs t

D∞ = 〈s, t〉 ⊂ Isom(R)

D∞ y R properly, R〈s〉 ≈ ∗, R ' ED∞

2. Let G act properly on a tree T . Then T ' EG .

I every finite F ⊂ G has a fixed point (Fixed Point Theorem)
I every fixed set is contractible.

3. G y X properly, X - CAT(0) space. Then X ' EG .

4. G is δ–hyperbolic. Then the Rips complex Pr (G ) ' EG .
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Classifying space for proper actions

Goal

Construct possibly simple models for EG of small dimension =

vcdG - virtual cohomological dimension

cdG - Bredon cohomological dimension

Homology HG
∗ (EG )

I Baum-Connes conjecture

KG
∗ (EG )

∼=−→ K∗(C
∗
r (G ))

I Atiyah-Segal Completion theorem (Lück-Oliver ’01)

Example

SL(2,Z) y properly by isometries on H2 ⇒ H2 ' ESL(2,Z)

SL(2,Z) ∼= Z/4 ∗Z/2 Z/6 yproperly on a tree⇒ Tree ' ESL(2,Z)
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Davis complex for a Coxeter group

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

W = WL = 〈si ∈ V (L) | s2i = e, si sj = sjsi iff {si , sj} ∈ E (L)〉

Examples

L

∆n (∆n)(0) L1 t L2 L1 ∗ L2

WL

(Z/2)n+1 (Z/2)∗(n+1) WL1 ∗WL2 WL1 ×WL2

EW = ΣW = Σ - Davis complex
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ΣWL
= WL × CL′/ ∼

Action of W on ΣW

I W y ΣW by w · [w ′, x ] = [ww ′, x ]

I ΣW /W = [e,CL′] = CL′ - strict fundamental domain

I Stabilisers =

conjugates of subgroups 〈s1, . . . , sn〉 ⊂W where
{s1, . . . , sn} spans a simplex of L

⇒ proper action
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Davis complex for a Coxeter group

Theorem (Moussong)

ΣW supports a W –invariant CAT(0) metric.

Therefore ΣW = EW .

dim(ΣWL
) = dim(CL′) = dim(L) + 1

Example

if L = ∆n then dim(ΣWL
) = n + 1

but WL
∼= (Z/2)n+1 is finite, so EWL ' {pt}.
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Main theorem

Theorem (Petrosyan-P.)

There exists a WL–complex B̃WL
(‘Bestvina complex’) such that:

1. B̃WL
and ΣWL

are WL–homotopy equivalent

Therefore B̃WL
' EWL

2. dim(B̃WL
) = vcdWL = cdWL

(except it could be that cdWL = 2 but dim(B̃WL
) = 3)

+ B̃WL
‘often’ has a simple cell structure.

Idea

ΣW = W × CL′/ ∼

Replace CL′ with a simpler fundamental domain BW and define

B̃W = W × BW / ∼
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