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Let G be an infinite discrete group.

Definition
A model for the classifying space EG is a G-CW-complex X such

that:
» G ~ X is proper (finite cell stabilisers)
» for every finite subgroup F C G the fixed point set XF is
contractible (# )

Remark

» EG always exists
» any two models for EG are G—homotopy equivalent
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Goal

Construct possibly simple models for EG of small dimension =
vedG - virtual cohomological dimension
¢dG - Bredon cohomological dimension
Homology HE(EG)
» Baum-Connes conjecture
KE(EG) = Ku(C(G))

» Atiyah-Segal Completion theorem (Liick-Oliver '01)

Example
SL(2,7) ~ properly by isometries on H2 = H? ~ ESL(2,7)
SL(2,Z) = Z/4%7,> /6 ~ properly on a tree = Tree =~ ESL(2,7)
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Examples
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Therefore éWL ~EW,
2. dim(Bw,) = vedW, = cdW,
(except it could be that cdW; = 2 but dim(By,) = 3)

+ éWL ‘often’ has a simple cell structure.
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