Classifying space for proper actions for groups admitting a strict fundamental domain

Tomasz Prytuła

04.04.2018

Outline

1~ Classifying space for proper actions $\underline{E}\,G$

- 1~ Classifying space for proper actions $\underline{\textit{E}}\textit{G}$
- 2 Davis complex for a Coxeter group

- 1~ Classifying space for proper actions $\underline{E}\,G$
- 2 Davis complex for a Coxeter group
- 3 Our construction

- 1~ Classifying space for proper actions $\underline{\textit{E}}\textit{G}$
- 2 Davis complex for a Coxeter group
- 3 Our construction
- 4 Applications

Let G be an infinite discrete group.

Let G be an infinite discrete group.

Definition A model for the classifying space $\underline{E}G$ is a *G*-CW-complex *X* such that:

Let G be an infinite discrete group.

Definition

A model for the classifying space $\underline{E}G$ is a G-CW-complex X such that:

• $G \curvearrowright X$ is proper (finite cell stabilisers)

Let G be an infinite discrete group.

Definition

A model for the classifying space $\underline{E}G$ is a G-CW-complex X such that:

- $G \curvearrowright X$ is proper (finite cell stabilisers)
- For every finite subgroup F ⊂ G the fixed point set X^F is contractible (≠ Ø)

Let G be an infinite discrete group.

Definition

A model for the classifying space $\underline{E}G$ is a G-CW-complex X such that:

- $G \curvearrowright X$ is proper (finite cell stabilisers)
- For every finite subgroup F ⊂ G the fixed point set X^F is contractible (≠ Ø)

Remark

Let G be an infinite discrete group.

Definition

A model for the classifying space $\underline{E}G$ is a G-CW-complex X such that:

- $G \curvearrowright X$ is proper (finite cell stabilisers)
- For every finite subgroup F ⊂ G the fixed point set X^F is contractible (≠ Ø)

Remark

<u>E</u>G always exists

Let G be an infinite discrete group.

Definition

A model for the classifying space $\underline{E}G$ is a G-CW-complex X such that:

- $G \curvearrowright X$ is proper (finite cell stabilisers)
- For every finite subgroup F ⊂ G the fixed point set X^F is contractible (≠ Ø)

Remark

- <u>E</u>G always exists
- ► any two models for <u>E</u>G are G-homotopy equivalent

Examples

Examples

1. R

Examples

 $D_{\infty} = \langle s, t \rangle \subset \operatorname{Isom}(\mathbb{R})$

Examples

 $D_{\infty} = \langle s, t \rangle \subset \operatorname{Isom}(\mathbb{R})$

 $\mathit{D}_\infty \curvearrowright \mathbb{R}$ properly,

Examples

 $egin{aligned} D_\infty &= \langle s,t
angle \subset \mathrm{Isom}(\mathbb{R}) \ D_\infty &\curvearrowright \mathbb{R} ext{ properly, } \mathbb{R}^{\langle s
angle} pprox *, \end{aligned}$

Examples

$$egin{aligned} D_\infty &= \langle s,t
angle \subset \mathrm{Isom}(\mathbb{R}) \ D_\infty &\curvearrowright \mathbb{R} ext{ properly, } \mathbb{R}^{\langle s
angle} &pprox *, \, \mathbb{R} \simeq \underline{E} D_\infty \end{aligned}$$

Examples

 $egin{aligned} D_\infty &= \langle s,t
angle \subset \mathrm{Isom}(\mathbb{R}) \ D_\infty &\curvearrowright \mathbb{R} ext{ properly, } \mathbb{R}^{\langle s
angle} pprox *, \, \mathbb{R} \simeq \underline{E} D_\infty \end{aligned}$

2. Let G act properly on a tree T.

Examples

 $egin{aligned} D_\infty &= \langle s,t
angle \subset \mathrm{Isom}(\mathbb{R}) \ D_\infty &\curvearrowright \mathbb{R} ext{ properly, } \mathbb{R}^{\langle s
angle} pprox *, \, \mathbb{R} \simeq \underline{E} D_\infty \end{aligned}$

2. Let G act properly on a tree T. Then $T \simeq \underline{E}G$.

Examples

 $egin{aligned} D_\infty &= \langle s,t
angle \subset \mathrm{Isom}(\mathbb{R}) \ D_\infty &\curvearrowright \mathbb{R} ext{ properly, } \mathbb{R}^{\langle s
angle} &pprox *, \, \mathbb{R} \simeq \underline{E} D_\infty \end{aligned}$

- 2. Let G act properly on a tree T. Then $T \simeq \underline{E}G$.
 - every finite $F \subset G$ has a fixed point (Fixed Point Theorem)

Examples

 $egin{aligned} D_\infty &= \langle s,t
angle \subset \mathrm{Isom}(\mathbb{R}) \ D_\infty &\curvearrowright \mathbb{R} ext{ properly, } \mathbb{R}^{\langle s
angle} &pprox *, \ \mathbb{R} \simeq \mathsf{E} D_\infty \end{aligned}$

- 2. Let G act properly on a tree T. Then $T \simeq \underline{E}G$.
 - every finite $F \subset G$ has a fixed point (Fixed Point Theorem)
 - every fixed set is contractible.

Examples

 $D_{\infty} = \langle s, t
angle \subset \operatorname{Isom}(\mathbb{R})$

- 2. Let G act properly on a tree T. Then $T \simeq \underline{E}G$.
 - every finite $F \subset G$ has a fixed point (Fixed Point Theorem)
 - every fixed set is contractible.
- 3. $G \curvearrowright X$ properly, X CAT(0) space.

Examples

 $D_{\infty} = \langle s, t
angle \subset \operatorname{Isom}(\mathbb{R})$

- 2. Let G act properly on a tree T. Then $T \simeq \underline{E}G$.
 - every finite $F \subset G$ has a fixed point (Fixed Point Theorem)
 - every fixed set is contractible.
- 3. $G \curvearrowright X$ properly, X CAT(0) space. Then $X \simeq \underline{E}G$.

Examples

 $D_{\infty} = \langle s, t \rangle \subset \operatorname{Isom}(\mathbb{R})$

- 2. Let G act properly on a tree T. Then $T \simeq \underline{E}G$.
 - every finite $F \subset G$ has a fixed point (Fixed Point Theorem)
 - every fixed set is contractible.
- 3. $G \curvearrowright X$ properly, X CAT(0) space. Then $X \simeq \underline{E}G$.
- 4. *G* is δ -hyperbolic.

Examples

 $D_{\infty} = \langle s, t \rangle \subset \operatorname{Isom}(\mathbb{R})$

- 2. Let G act properly on a tree T. Then $T \simeq \underline{E}G$.
 - every finite $F \subset G$ has a fixed point (Fixed Point Theorem)
 - every fixed set is contractible.
- 3. $G \curvearrowright X$ properly, X CAT(0) space. Then $X \simeq \underline{E}G$.
- 4. *G* is δ -hyperbolic. Then the Rips complex $P_r(G) \simeq \underline{E}G$.

Examples

 $D_{\infty} = \langle s, t \rangle \subset \operatorname{Isom}(\mathbb{R})$

- 2. Let G act properly on a tree T. Then $T \simeq \underline{E}G$.
 - every finite $F \subset G$ has a fixed point (Fixed Point Theorem)
 - every fixed set is contractible.
- 3. $G \curvearrowright X$ properly, X CAT(0) space. Then $X \simeq \underline{E}G$.
- 4. *G* is δ -hyperbolic. Then the Rips complex $P_r(G) \simeq \underline{E}G$.

Goal

Goal

Construct possibly simple models for $\underline{E}G$

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =
Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} G$ - Bredon cohomological dimension

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{G}_{*}(\underline{E}G) \xrightarrow{\cong} K_{*}(C^{*}_{r}(G))$$

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{G}_{*}(\underline{E}G) \xrightarrow{\cong} K_{*}(C^{*}_{r}(G))$$

Atiyah-Segal Completion theorem (Lück-Oliver '01)

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{G}_{*}(\underline{E}G) \xrightarrow{\cong} K_{*}(C^{*}_{r}(G))$$

Atiyah-Segal Completion theorem (Lück-Oliver '01)

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{G}_{*}(\underline{E}G) \xrightarrow{\cong} K_{*}(C^{*}_{r}(G))$$

Atiyah-Segal Completion theorem (Lück-Oliver '01)

Example $SL(2,\mathbb{Z})$

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{G}_{*}(\underline{E}G) \xrightarrow{\cong} K_{*}(C^{*}_{r}(G))$$

Atiyah-Segal Completion theorem (Lück-Oliver '01)

Example $SL(2,\mathbb{Z}) \curvearrowright$ properly by isometries on \mathbb{H}^2

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{\mathsf{G}}_*(\underline{E}_{\mathsf{G}}) \xrightarrow{\cong} K_*(C^*_r(G))$$

Atiyah-Segal Completion theorem (Lück-Oliver '01)

Example

 $SL(2,\mathbb{Z}) \curvearrowright$ properly by isometries on $\mathbb{H}^2 \Rightarrow \mathbb{H}^2 \simeq \underline{E}SL(2,\mathbb{Z})$

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{\mathsf{G}}_*(\underline{E}_{\mathsf{G}}) \xrightarrow{\cong} K_*(C^*_r(G))$$

Atiyah-Segal Completion theorem (Lück-Oliver '01)

Example $SL(2,\mathbb{Z}) \curvearrowright \text{ properly by isometries on } \mathbb{H}^2 \Rightarrow \mathbb{H}^2 \simeq \underline{E}SL(2,\mathbb{Z})$ $SL(2,\mathbb{Z}) \cong \mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{\mathsf{G}}_*(\underline{E}_{\mathsf{G}}) \xrightarrow{\cong} K_*(C^*_r(G))$$

Atiyah-Segal Completion theorem (Lück-Oliver '01)

Example $SL(2,\mathbb{Z}) \curvearrowright \text{properly by isometries on } \mathbb{H}^2 \Rightarrow \mathbb{H}^2 \simeq \underline{E}SL(2,\mathbb{Z})$ $SL(2,\mathbb{Z}) \cong \mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6 \curvearrowright \text{properly on a tree}$

Goal

Construct possibly simple models for $\underline{E}G$ of small dimension =

 $\operatorname{vcd} {\boldsymbol{\mathcal{G}}}$ - virtual cohomological dimension

 $\underline{\operatorname{cd}} {\boldsymbol{\mathcal{G}}}$ - Bredon cohomological dimension

Homology $\mathcal{H}^{G}_{*}(\underline{E}G)$

Baum-Connes conjecture

$$K^{\mathsf{G}}_*(\underline{E}_{\mathsf{G}}) \xrightarrow{\cong} K_*(C^*_r(G))$$

Atiyah-Segal Completion theorem (Lück-Oliver '01)

Example $SL(2,\mathbb{Z}) \curvearrowright \text{properly by isometries on } \mathbb{H}^2 \Rightarrow \mathbb{H}^2 \simeq \underline{E}SL(2,\mathbb{Z})$ $SL(2,\mathbb{Z}) \cong \mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6 \curvearrowright \text{properly on a tree} \Rightarrow \text{Tree} \simeq \underline{E}SL(2,\mathbb{Z})$

Right-Angled Coxeter groups

Right-Angled Coxeter groups

Right-Angled Coxeter groups

Right-Angled Coxeter groups

Right-Angled Coxeter groups

$$W = W_L = \langle s_i \in V(L) \mid s_i^2 = e, s_i s_j = s_j s_i \text{ iff } \{s_i, s_j\} \in E(L)
angle$$

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$W = W_L = \langle s_i \in V(L) \mid s_i^2 = e, s_i s_j = s_j s_i ext{ iff } \{s_i, s_j\} \in E(L)
angle$$

L		
WL		

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$\mathcal{W} = \mathcal{W}_L = \langle s_i \in \mathcal{V}(L) \mid s_i^2 = e, s_i s_j = s_j s_i ext{ iff } \{s_i, s_j\} \in \mathcal{E}(L)
angle$$

L	Δ^n		
WL			

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$\mathcal{W} = \mathcal{W}_L = \langle s_i \in \mathcal{V}(L) \mid s_i^2 = e, s_i s_j = s_j s_i ext{ iff } \{s_i, s_j\} \in E(L)
angle$$

L	Δ^n		
W_L	$(\mathbb{Z}/2)^{n+1}$		

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$W = W_L = \langle s_i \in V(L) \mid s_i^2 = e, s_i s_j = s_j s_i \text{ iff } \{s_i, s_j\} \in E(L)
angle$$

L	Δ^n	$(\Delta^n)^{(0)}$	
WL	$(\mathbb{Z}/2)^{n+1}$		

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$W = W_L = \langle s_i \in V(L) \mid s_i^2 = e, s_i s_j = s_j s_i \text{ iff } \{s_i, s_j\} \in E(L)
angle$$

L	Δ^n	$(\Delta^n)^{(0)}$	
WL	$(\mathbb{Z}/2)^{n+1}$	$(\mathbb{Z}/2)^{*(n+1)}$	

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$W = W_L = \langle s_i \in V(L) \mid s_i^2 = e, s_i s_j = s_j s_i ext{ iff } \{s_i, s_j\} \in E(L)
angle$$

L	Δ^n	$(\Delta^n)^{(0)}$	$L_1 \sqcup L_2$	
WL	$(\mathbb{Z}/2)^{n+1}$	$(\mathbb{Z}/2)^{*(n+1)}$		

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$W = W_L = \langle s_i \in V(L) \mid s_i^2 = e, s_i s_j = s_j s_i ext{ iff } \{s_i, s_j\} \in E(L)
angle$$

L	Δ^n	$(\Delta^n)^{(0)}$	$L_1 \sqcup L_2$	
WL	$(\mathbb{Z}/2)^{n+1}$	$(\mathbb{Z}/2)^{*(n+1)}$	$W_{L_1} * W_{L_2}$	

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$\mathcal{W} = \mathcal{W}_L = \langle s_i \in \mathcal{V}(L) \mid s_i^2 = e, s_i s_j = s_j s_i ext{ iff } \{s_i, s_j\} \in \mathcal{E}(L)
angle$$

L	Δ^n	$(\Delta^n)^{(0)}$	$L_1 \sqcup L_2$	$L_1 * L_2$
WL	$(\mathbb{Z}/2)^{n+1}$	$(\mathbb{Z}/2)^{*(n+1)}$	$W_{L_1} * W_{L_2}$	

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$W = W_L = \langle s_i \in V(L) \mid s_i^2 = e, s_i s_j = s_j s_i \text{ iff } \{s_i, s_j\} \in E(L)
angle$$

L	Δ^n	$(\Delta^n)^{(0)}$	$L_1 \sqcup L_2$	$L_1 * L_2$
WL	$(\mathbb{Z}/2)^{n+1}$	$(\mathbb{Z}/2)^{*(n+1)}$	$W_{L_1} * W_{L_2}$	$W_{L_1} imes W_{L_2}$

Right-Angled Coxeter groups

Let L be a finite, flag simplicial complex.

$$W = W_L = \langle s_i \in V(L) \mid s_i^2 = e, s_i s_j = s_j s_i \text{ iff } \{s_i, s_j\} \in E(L)
angle$$

Examples

L	Δ^n	$(\Delta^n)^{(0)}$	$L_1 \sqcup L_2$	$L_1 * L_2$
WL	$(\mathbb{Z}/2)^{n+1}$	$(\mathbb{Z}/2)^{*(n+1)}$	$W_{L_1} * W_{L_2}$	$W_{L_1} imes W_{L_2}$

 $\underline{E}W = \Sigma_W = \Sigma$ - Davis complex

Example

 $D_{\infty} = W_L$ where

Example

 $D_{\infty} = W_L$ where $L = \stackrel{s}{\bullet} \stackrel{t}{\bullet}$

Example

 $D_{\infty} = W_L$ where $L' = \stackrel{s}{\bullet} \stackrel{t}{\bullet}$

Example

 $D_{\infty} = W_L$ where $L' = \overset{s}{\bullet} \overset{t}{\bullet} CL' = \overset{s}{\bullet} \overset{e}{\bullet} \overset{t}{\bullet}$

Example

 $D_{\infty} = W_L$ where $L' = {\stackrel{s}{\bullet}} {\stackrel{t}{\bullet}} CL' = {\stackrel{s}{\bullet}} {\stackrel{t}{\bullet}} CL' = {\stackrel{s}{\bullet}} {\stackrel{t}{\bullet}} {\stackrel{t}{\bullet}}$

 $\Sigma_{D_\infty}\cong \mathbb{R}$

 $\Sigma_{W_L} = W_L \times CL' / \sim$

$$\Sigma_{W_L} = W_L \times CL' / \sim$$

•
$$W \curvearrowright \Sigma_W$$
 by $w \cdot [w', x] = [ww', x]$

$$\Sigma_{W_L} = W_L \times CL' / \sim$$

Action of W on Σ_W

•
$$W \curvearrowright \Sigma_W$$
 by $w \cdot [w', x] = [ww', x]$

• $\Sigma_W/W = [e, CL'] = CL'$ - strict fundamental domain

$$\Sigma_{W_L} = W_L \times CL' / \sim$$

- $W \curvearrowright \Sigma_W$ by $w \cdot [w', x] = [ww', x]$
- $\Sigma_W/W = [e, CL'] = CL'$ strict fundamental domain
- Stabilisers =

$$\Sigma_{W_L} = W_L \times CL' / \sim$$

- $W \curvearrowright \Sigma_W$ by $w \cdot [w', x] = [ww', x]$
- $\Sigma_W/W = [e, CL'] = CL'$ strict fundamental domain
- Stabilisers = conjugates of subgroups $(s_1, \ldots, s_n) \subset W$ where $\{s_1, \ldots, s_n\}$ spans a simplex of L

$$\Sigma_{W_L} = W_L imes CL' / \sim$$

- $W \curvearrowright \Sigma_W$ by $w \cdot [w', x] = [ww', x]$
- $\Sigma_W/W = [e, CL'] = CL'$ strict fundamental domain
- ▶ Stabilisers = conjugates of subgroups $(s_1, ..., s_n) \subset W$ where $\{s_1, ..., s_n\}$ spans a simplex of $L \Rightarrow$ proper action

Theorem (Moussong)

Theorem (Moussong)

 Σ_W supports a *W*-invariant CAT(0) metric.

Theorem (Moussong)

Σ_W supports a *W*-invariant CAT(0) metric.

Therefore $\Sigma_W = \underline{E}W$.

Theorem (Moussong)

Σ_W supports a *W*-invariant CAT(0) metric. Therefore $\Sigma_W = \underline{E}W$.

$$\dim(\Sigma_{W_L}) = \dim(CL') = \dim(L) + 1$$

Theorem (Moussong)

 Σ_W supports a *W*-invariant CAT(0) metric. Therefore $\Sigma_W = \underline{E}W$.

$$\dim(\Sigma_{W_L}) = \dim(CL') = \dim(L) + 1$$

Theorem (Moussong)

 Σ_W supports a *W*-invariant CAT(0) metric. Therefore $\Sigma_W = \underline{E}W$.

$$\dim(\Sigma_{W_L}) = \dim(CL') = \dim(L) + 1$$

Example

if $L = \Delta^n$

Theorem (Moussong)

 Σ_W supports a *W*-invariant CAT(0) metric. Therefore $\Sigma_W = \underline{E}W$.

$$\dim(\Sigma_{W_L}) = \dim(CL') = \dim(L) + 1$$

if
$$L = \Delta^n$$
 then $\dim(\Sigma_{W_L}) = n + 1$

Theorem (Moussong)

 Σ_W supports a *W*-invariant CAT(0) metric. Therefore $\Sigma_W = \underline{E}W$.

$$\dim(\Sigma_{W_L}) = \dim(CL') = \dim(L) + 1$$

Example

if $L = \Delta^n$ then $\dim(\Sigma_{W_L}) = n + 1$ but $W_L \cong (\mathbb{Z}/2)^{n+1}$ is finite,

Theorem (Moussong)

 Σ_W supports a *W*-invariant CAT(0) metric. Therefore $\Sigma_W = \underline{E}W$.

$$\dim(\Sigma_{W_L}) = \dim(CL') = \dim(L) + 1$$

Example

 $\begin{array}{l} \text{if } L = \Delta^n \text{ then } \dim(\Sigma_{W_L}) = n+1 \\ \text{but } W_L \cong (\mathbb{Z}/2)^{n+1} \text{ is finite, so } \underline{E}W_L \simeq \{pt\}. \end{array}$

Theorem (Petrosyan-P.)

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent

Therefore $\widetilde{B}_{W_L} \simeq \underline{E} W_L$
Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

- 1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent Therefore $\widetilde{B}_{W_L} \simeq \underline{E} W_L$
- 2. $\dim(\widetilde{B}_{W_L}) = \operatorname{vcd} W_L$

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent Therefore $\widetilde{B}_{W_L} \simeq \underline{E} W_L$

2.
$$\dim(\widetilde{B}_{W_L}) = \operatorname{vcd} W_L = \underline{\operatorname{cd}} W_L$$

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

- 1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent Therefore $\widetilde{B}_{W_L} \simeq \underline{E} W_L$
- 2. $\dim(\widetilde{B}_{W_L}) = \operatorname{vcd} W_L = \underline{\operatorname{cd}} W_L$

(except it could be that $\underline{cd}W_L = 2$ but $\dim(\widetilde{B}_{W_L}) = 3$)

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

- 1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent Therefore $\widetilde{B}_{W_L} \simeq \underline{E} W_L$
- dim(B̃_{WL}) = vcdW_L = <u>cd</u>W_L (except it could be that <u>cd</u>W_L = 2 but dim(B̃_{WL}) = 3)
 + B̃_{WL} 'often' has a simple cell structure.

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

- 1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent Therefore $\widetilde{B}_{W_L} \simeq \underline{E} W_L$
- dim(B̃_{WL}) = vcdW_L = cdW_L (except it could be that cdW_L = 2 but dim(B̃_{WL}) = 3)
 + B̃_{WL} 'often' has a simple cell structure.

Idea

$$\Sigma_W = W \times CL' / \sim$$

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

- 1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent Therefore $\widetilde{B}_{W_L} \simeq \underline{E} W_L$
- dim(B̃_{WL}) = vcdW_L = cdW_L (except it could be that cdW_L = 2 but dim(B̃_{WL}) = 3)
 + B̃_{WL} 'often' has a simple cell structure.

Idea

$$\Sigma_W = W \times CL' / \sim$$

Replace CL' with a simpler fundamental domain B_W and define

Theorem (Petrosyan-P.)

There exists a W_L -complex \tilde{B}_{W_L} ('Bestvina complex') such that:

- 1. \widetilde{B}_{W_L} and Σ_{W_L} are W_L -homotopy equivalent Therefore $\widetilde{B}_{W_L} \simeq \underline{E} W_L$
- 2. dim(B̃_{WL}) = vcdW_L = cdW_L (except it could be that cdW_L = 2 but dim(B̃_{WL}) = 3)
 + B̃_{WL} 'often' has a simple cell structure.

Idea

$$\Sigma_W = W \times CL' / \sim$$

Replace CL' with a simpler fundamental domain B_W and define $\widetilde{B}_W = W \times B_W / \sim$

Example

 $W_L \cong (\mathbb{Z}/2 \times \mathbb{Z}/2) * \mathbb{Z}/2$

Example

 $W_L \cong (\mathbb{Z}/2 \times \mathbb{Z}/2) * \mathbb{Z}/2$

Example

 $W_L \cong (\mathbb{Z}/2 \times \mathbb{Z}/2) * \mathbb{Z}/2$

Actions with a strict fundamental domain

Actions with a strict fundamental domain

Let a group G act on a simplicial complex X with a strict fundamental domain Y.

Actions with a strict fundamental domain

Let a group G act on a simplicial complex X with a strict fundamental domain Y.

Then

$$X \cong G \times Y / \sim$$

Actions with a strict fundamental domain

Let a group G act on a simplicial complex X with a strict fundamental domain Y.

Then

$$X \cong G \times Y / \sim$$

where \sim is given in terms of stabilisers of simplices of Y.

Actions with a strict fundamental domain

Let a group G act on a simplicial complex X with a strict fundamental domain Y.

Then

$$X \cong G \times Y / \sim$$

where \sim is given in terms of stabilisers of simplices of Y.

If $X = G \times Y / \sim$ is a model for <u>*E*</u>G then our theorem applies:

Actions with a strict fundamental domain

Let a group G act on a simplicial complex X with a strict fundamental domain Y.

Then

$$X \cong G \times Y / \sim$$

where \sim is given in terms of stabilisers of simplices of Y.

If $X = G \times Y / \sim$ is a model for <u>*E*</u>*G* then our theorem applies:

We get a *G*-complex $\widetilde{B}_G = G \times B_G / \sim$ with:

Actions with a strict fundamental domain

Let a group G act on a simplicial complex X with a strict fundamental domain Y.

Then

$$X \cong G \times Y / \sim$$

where \sim is given in terms of stabilisers of simplices of Y.

If $X = G \times Y / \sim$ is a model for <u>*E*</u>G then our theorem applies:

We get a *G*-complex $\widetilde{B}_G = G \times B_G / \sim$ with:

•
$$X \simeq_G \widetilde{B}_G \simeq \underline{E}G$$

Actions with a strict fundamental domain

Let a group G act on a simplicial complex X with a strict fundamental domain Y.

Then

$$X \cong G \times Y / \sim$$

where \sim is given in terms of stabilisers of simplices of Y.

If $X = G \times Y / \sim$ is a model for <u>*E*</u>G then our theorem applies:

We get a *G*-complex $\widetilde{B}_G = G \times B_G / \sim$ with:

$$\blacktriangleright X \simeq_G \widetilde{B}_G \simeq \underline{E}G$$

• $\dim(\widetilde{B}_G) = \underline{cd}G$ (except when $\underline{cd}G = 2$)

Actions with a strict fundamental domain

Let a group G act on a simplicial complex X with a strict fundamental domain Y.

Then

$$X \cong G \times Y / \sim$$

where \sim is given in terms of stabilisers of simplices of Y.

If $X = G \times Y / \sim$ is a model for <u>*E*</u>G then our theorem applies:

We get a *G*-complex $\widetilde{B}_G = G \times B_G / \sim$ with:

$$\blacktriangleright X \simeq_G \widetilde{B}_G \simeq \underline{E}G$$

• $\dim(\widetilde{B}_G) = \underline{cd}G$ (except when $\underline{cd}G = 2$)

Examples

A group G acting properly on a CAT(0) space (simplicial complex).

Examples

A group G acting properly on a CAT(0) space (simplicial complex).

Coxeter groups

Examples

A group G acting properly on a CAT(0) space (simplicial complex).

Coxeter groups

 $W \curvearrowright \Sigma_W$ – Davis complex

Examples

A group G acting properly on a CAT(0) space (simplicial complex).

Coxeter groups

 $W \curvearrowright \Sigma_W$ – Davis complex

graph products of finite groups

Examples

A group G acting properly on a CAT(0) space (simplicial complex).

Coxeter groups

 $W \curvearrowright \Sigma_W$ – Davis complex

graph products of finite groups

RACG with $\langle s_i \rangle \cong \mathbb{Z}/2$ replaced by arbitrary finite groups F_i

Examples

A group G acting properly on a CAT(0) space (simplicial complex).

Coxeter groups

 $W \curvearrowright \Sigma_W$ – Davis complex

graph products of finite groups

RACG with $\langle s_i \rangle \cong \mathbb{Z}/2$ replaced by arbitrary finite groups F_i

G acts properly on a right-angled building

Examples

A group G acting properly on a CAT(0) space (simplicial complex).

Coxeter groups

 $W \curvearrowright \Sigma_W$ – Davis complex

graph products of finite groups

RACG with $\langle s_i \rangle \cong \mathbb{Z}/2$ replaced by arbitrary finite groups F_i

G acts properly on a right-angled building

some automorphism groups of buildings

Examples

A group G acting properly on a CAT(0) space (simplicial complex).

Coxeter groups

 $W \curvearrowright \Sigma_W$ – Davis complex

graph products of finite groups

RACG with $\langle s_i \rangle \cong \mathbb{Z}/2$ replaced by arbitrary finite groups F_i

G acts properly on a right-angled building

some automorphism groups of buildings

proper, chamber-transitive

THANK YOU
