Uncountably many quasi-isometry classes of groups of type FP

Ignat Soroko

University of Oklahoma

ignat.soroko@ou.edu

Joint work with

Robert Kropholler, Tufts University
and
Ian J. Leary, University of Southampton

Bielefeld U., April 3–6, 2018
TOPOLOGY \leadsto ALGEBRA
Space $X \leadsto \pi_1(X), H_n(X), \pi_n(X)$, etc.
TOPOLOGY \leadsto ALGEBRA
Space $X \leadsto \pi_1(X), H_n(X), \pi_n(X)$, etc.

ALGEBRA \leadsto TOPOLOGY
Group $G \leadsto$ Eilenberg–Mac Lane space $X = K(G, 1)$:
TOPOLOGY \implies ALGEBRA
Space $X \implies \pi_1(X), H_n(X), \pi_n(X)$, etc.

ALGEBRA \implies TOPOLOGY
Group $G \implies$ Eilenberg–Mac Lane space $X = K(G, 1)$:
- X is a CW-complex,
- $\pi_1(X) = G$,
- \tilde{X} is contractible.
TOPOLOGY \leadsto ALGEBRA
Space $X \leadsto \pi_1(X), H_n(X), \pi_n(X)$, etc.

ALGEBRA \leadsto TOPOLOGY
Group $G \leadsto$ Eilenberg–Mac Lane space $X = K(G, 1)$:

- X is a CW-complex,
- $\pi_1(X) = G$,
- \tilde{X} is contractible.

We build $X = K(G, 1)$ as follows:

- X has a single 0–cell,
- 1–cells of X correspond to generators of G,
- 2–cells of X correspond to relations of G,
- 3–cells of X are added to kill $\pi_2(X)$,
- 4–cells of X are added to kill $\pi_3(X)$,
- etc. . .
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is of type F_n:

$F_1 = \text{finitely generated groups},$
$F_2 = \text{finitely presented groups}.$

If $K(G, 1)$ has finitely many cells, group G is of type F_n.

If $X = K(G, 1)$, G acts cellularly on \tilde{X} and we have a long exact sequence

$$
\cdots \rightarrow C_i(\tilde{X}) \rightarrow \cdots \rightarrow C_1(\tilde{X}) \rightarrow C_0(\tilde{X}) \rightarrow \mathbb{Z} \rightarrow 0
$$

consisting of free $\mathbb{Z}G$–modules. This leads to a definition:

A group G is of type FP_n if the trivial $\mathbb{Z}G$–module \mathbb{Z} has a projective resolution which is finitely generated in dimensions 0 to n:

$$
\cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbb{Z} \rightarrow 0
$$

If, in addition, all $P_i = 0$ for $i > N$, for some N, group G is of type FP. Clearly, $FP_n \supset FP_{n+1}$ and $F_n \supset F_{n+1}$, and $FP \supset F$,

Ignat Soroko (OU) Uncountably many qi classes of FP groups Bielefeld U., April 3–6, 2018 3 / 10
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is of type F_n:

$$F_1 = \text{finitely generated groups},$$
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is **of type F_n**:
$F_1 = \text{finitely generated groups},$
$F_2 = \text{finitely presented groups}.$
If the \(n \)-skeleton of \(K(G,1) \) has finitely many cells, group \(G \) is of type \(F_n \):
\[
F_1 = \text{finitely generated groups},
\]
\[
F_2 = \text{finitely presented groups}.
\]
If \(K(G,1) \) has finitely many cells, group \(G \) is of type \(F \).
If the \(n \)-skeleton of \(K(G, 1) \) has finitely many cells, group \(G \) is of type \(\text{F}_n \):
\[
\text{F}_1 = \text{finitely generated groups},
\text{F}_2 = \text{finitely presented groups}.
\]

If \(K(G, 1) \) has finitely many cells, group \(G \) is of type \(\text{F} \).

If \(X = K(G, 1) \), \(G \) acts cellularly on \(\tilde{X} \) and we have a long exact sequence
\[
\cdots \to C_i(\tilde{X}) \to \cdots \to C_1(\tilde{X}) \to C_0(\tilde{X}) \to \mathbb{Z} \to 0
\]
consisting of free \(\mathbb{Z}G \)-modules. This leads to a definition:
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is of type F_n:

- $F_1 = \text{finitely generated groups}$,
- $F_2 = \text{finitely presented groups}$.

If $K(G, 1)$ has finitely many cells, group G is of type F.

If $X = K(G, 1)$, G acts cellularly on \tilde{X} and we have a long exact sequence

$$\cdots \rightarrow C_i(\tilde{X}) \rightarrow \cdots \rightarrow C_1(\tilde{X}) \rightarrow C_0(\tilde{X}) \rightarrow \mathbb{Z} \rightarrow 0$$

consisting of free $\mathbb{Z}G$–modules. This leads to a definition:

A group G is of type FP_n if the trivial $\mathbb{Z}G$–module \mathbb{Z} has a projective resolution which is finitely generated in dimensions 0 to n:

$$\cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbb{Z} \rightarrow 0$$
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is of type F_n:

- $F_1 =$ finitely generated groups,
- $F_2 =$ finitely presented groups.

If $K(G, 1)$ has finitely many cells, group G is of type F.

If $X = K(G, 1)$, G acts cellularly on \tilde{X} and we have a long exact sequence

$$
\cdots \rightarrow C_i(\tilde{X}) \rightarrow \cdots \rightarrow C_1(\tilde{X}) \rightarrow C_0(\tilde{X}) \rightarrow \mathbb{Z} \rightarrow 0
$$

consisting of free $\mathbb{Z}G$–modules. This leads to a definition:

A group G is of type FP_n if the trivial $\mathbb{Z}G$–module \mathbb{Z} has a projective resolution which is \textbf{finitely generated} in dimensions 0 to n:

$$
\cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbb{Z} \rightarrow 0
$$

If, in addition, all $P_i = 0$ for $i > N$, for some N, group G is \textbf{of type FP}.

Clearly,
If the n–skeleton of $K(G, 1)$ has finitely many cells, group G is of type F_n:
\[F_1 = \text{finitely generated groups}, \]
\[F_2 = \text{finitely presented groups}. \]
If $K(G, 1)$ has finitely many cells, group G is of type F.

If $X = K(G, 1)$, G acts cellularly on \tilde{X} and we have a long exact sequence

\[\cdots \rightarrow C_i(\tilde{X}) \rightarrow \cdots \rightarrow C_1(\tilde{X}) \rightarrow C_0(\tilde{X}) \rightarrow \mathbb{Z} \rightarrow 0 \]

consisting of free $\mathbb{Z}G$–modules. This leads to a definition:

A group G is of type FP_n if the trivial $\mathbb{Z}G$–module \mathbb{Z} has a projective resolution which is \textbf{finitely generated} in dimensions 0 to n:
\[\cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow \mathbb{Z} \rightarrow 0 \]

If, in addition, all $P_i = 0$ for $i > N$, for some N, group G is of type FP.

Clearly,

\[FP_n \supset FP_{n+1} \quad \text{and} \quad F_n \supset F_{n+1}. \]
\[FP_n \supset F_n, \quad \text{and} \quad FP \supset F. \]
Question 1: Are these inclusions strict?

Answer: Yes.
Question 1: Are these inclusions strict?

Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,

Question 1: Are these inclusions strict?

Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
Question 1: Are these inclusions strict?

Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
- Bestvina–Brady’97: $FP_2 \setminus F_2$.
Question 1: Are these inclusions strict?

Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
- Bestvina–Brady’97: $FP_2 \setminus F_2$.

Bestvina–Brady machine:

Input: A flag simplicial complex L.

Output: A group BB_L with nice properties:

- L is $(n - 1)$–connected $\iff BB_L$ is of type F_n,
- L is $(n - 1)$–acyclic $\iff BB_L$ is of type FP_n.

Question 2: How many groups are there of type FP_2?

Answer 1: Up to isomorphism: $2^\mathbb{N}_0$ (I. Leary’15)

Answer 2: Up to quasi-isometry: $2^\mathbb{N}_0$ (R. Kropholler–I. Leary–S.’17)

Ignat Soroko (OU) Uncountably many qi classes of FP groups Bielefeld U., April 3–6, 2018
Question 1: Are these inclusions strict?

Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
- Bestvina–Brady’97: $FP_2 \setminus F_2$.

Bestvina–Brady machine:

Input: A flag simplicial complex L.

Output: A group BB_L with nice properties:

- L is $(n - 1)$–connected \iff BB_L is of type F_n,
- L is $(n - 1)$–acyclic \iff BB_L is of type FP_n.

L is octahedron: $\pi_1(L) = 1$, $\pi_2(L) \neq 0$, \implies Stallings’s example.

L is n–dimensional octahedron (orthoplex) \implies Bieri’s example.

L has $\pi_1(L) \neq 1$, but $H_1(L) = 0$ \implies BB_L of type $FP_2 \setminus F_2$.
Question 1: Are these inclusions strict?
Answer: Yes.

- Stallings’63: example of $F_2 \setminus F_3$,
- Bieri’76: $F_n \setminus F_{n+1}$
- Bestvina–Brady’97: $FP_2 \setminus F_2$.

Bestvina–Brady machine:

Input: A flag simplicial complex L.

Output: A group BB_L with nice properties:

- L is $(n – 1)$–connected $\iff BB_L$ is of type F_n,
- L is $(n – 1)$–acyclic $\iff BB_L$ is of type FP_n.

L is octahedron: $\pi_1(L) = 1, \pi_2(L) \neq 0, \implies$ Stallings’s example.
L is n–dimensional octahedron (orthoplex) \implies Bieri’s example.
L has $\pi_1(L) \neq 1$, but $H_1(L) = 0 \implies BB_L$ of type $FP_2 \setminus F_2$.

Question 2: How many groups are there of type FP_2?
Answer 1: Up to isomorphism: 2^{\aleph_0} (I.Leary’15)
Answer 2: Up to quasi-isometry: 2^{\aleph_0} (R.Kropholler–I.Leary–S.’17)
I.J. Leary’s groups $G_L(S)$

Input: A flag simplicial complex L, a finite collection Γ of directed edge loops in L that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$.

Output: Group $G_L(S)$ defined as:

- **Generators:** directed edges of L, the opposite edge to a being a^{-1}.
- **Triangle relations** For each directed triangle (a, b, c) in L, two relations: $abc = 1$ and $a^{-1}b^{-1}c^{-1} = 1$.
- **Long cycle relations** For each $n \in S \setminus \{0\}$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Theorem (I.J. Leary)

If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial complex L?
I.J. Leary’s groups $G_L(S)$

Input: A flag simplicial complex L, a finite collection Γ of directed edge loops in L that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$.

Output: Group $G_L(S)$ defined as:

- **Generators:** directed edges of L, the opposite edge to a being a^{-1}.
- **(Triangle relations)** For each directed triangle (a, b, c) in L, two relations: $abc = 1$ and $a^{-1} b^{-1} c^{-1} = 1$.
- **(Long cycle relations)** For each $n \in S \setminus \{0\}$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \cdots a_\ell^n = 1$.

Theorem (I.J. Leary)

If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial complex L?
I.J. Leary’s groups $G_L(S)$

Input: A flag simplicial complex L, a finite collection Γ of directed edge loops in L that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$.

Output: Group $G_L(S)$ defined as:

- Generators: directed edges of L, the opposite edge to a being a^{-1}.
- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: $abc = 1$ and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Theorem (I.J. Leary)

If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.
I.J. Leary’s groups \(G_L(S) \)

Input: A flag simplicial complex \(L \), a finite collection \(\Gamma \) of directed edge loops in \(L \) that normally generates \(\pi_1(L) \), a subset \(S \subset \mathbb{Z} \).

Output: Group \(G_L(S) \) defined as:

- **Generators:** directed edges of \(L \), the opposite edge to \(a \) being \(a^{-1} \).
- **(Triangle relations)** For each directed triangle \((a, b, c)\) in \(L \), two relations: \(abc = 1 \) and \(a^{-1}b^{-1}c^{-1} = 1 \).
- **(Long cycle relations)** For each \(n \in S \setminus 0 \) and each \((a_1, \ldots, a_\ell)\) \(\in \Gamma \), a relation: \(a_1^n a_2^n \ldots a_\ell^n = 1 \).

Theorem (I.J. Leary)

If \(L \) is a flag complex with \(\pi_1(L) \neq 1 \), then groups \(G_L(S) \) form \(2^{\aleph_0} \) isomorphism classes. If, in addition, \(L \) is aspherical and acyclic, then groups \(G_L(S) \) are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial complex \(L \)?
Take the famous Higman’s group:

\[H = \langle a, b, c, d \mid a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle. \]

Let \(K \) be its presentation complex. It is aspherical and acyclic. Take \(L \) to be the 2nd barycentric subdivision of \(K \). Then \(L \) is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

\[G_L(S) = \langle 336 \text{ gen’s} \mid 240 \times 2 \text{ triangle relators, } 1 \text{ long relator } \forall n \in S \rangle. \]
Take the famous Higman’s group:

$$H = \langle a, b, c, d \mid a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle.$$

Let K be its presentation complex. It is aspherical and acyclic. Take L to be the 2nd barycentric subdivision of K. Then L is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

$$G_L(S) = \langle 336 \text{ gen’s} \mid 240 \times 2 \text{ triangle relators, 1 long relator } \forall n \in S \rangle.$$

Theorem (R.Kropholler–Leary–S.)

Groups $G_L(S)$ form 2^{\aleph_0} classes up to quasi-isometry.
Take the famous Higman’s group:

\[H = \langle a, b, c, d \mid a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle. \]

Let \(K \) be its presentation complex. It is aspherical and acyclic. Take \(L \) to be the 2nd barycentric subdivision of \(K \). Then \(L \) is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

\[G_L(S) = \langle 336 \text{ gen’s} \mid 240 \times 2 \text{ triangle relators}, 1 \text{ long relator } \forall n \in S \rangle. \]

Theorem (R.Kropholler–Leary–S.)

Groups \(G_L(S) \) form \(2^{\aleph_0} \) classes up to quasi-isometry.

Recall that groups \(G_1, G_2 \) are **quasi-isometric** (qi), if their Cayley graphs are qi as metric spaces, i.e. there exists \(f : \text{Cay}(G_1, d_1) \to \text{Cay}(G_2, d_2) \), and \(A \geq 1, B \geq 0, C \geq 0 \) such that for all \(x, y \in \text{Cay}(G_1) \):

\[\frac{1}{A} d_1(x, y) - B \leq d_2(f(x), f(y)) \leq Ad_1(x, y) + B, \]

and for all \(z \in \text{Cay}(G_2) \) there exists \(x \in \text{Cay}(G_1) \) such that \(d_2(z, f(x)) \leq C \).
How to distinguish groups up to qi?

Grigorchuk'84: growth functions of groups.

Bowditch'98: a concept of taut loops in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally:

If Γ is the Cayley graph of G, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where $\Gamma_\ell = \Gamma_{\ell-1} \cup \bigcup |\gamma| \leq \ell \text{Cone}(\gamma)$.

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \ldots$. A loop $\gamma \subset \Gamma$ of length ℓ is taut if it lies in the kernel $\ker(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1}))$.

Let $TL(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G.

Bowditch: Groups G_1 and G_2 quasi-isometric $\implies TL(G_1)$ and $TL(G_2)$ quasi-isometric in \mathbb{R}.

I.e. there exist constants $A, B, N > 0$ such that for every $l_1 \in TL(G_1)$, $l_1 > N$, there exist an $l_2 \in TL(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.
How to distinguish groups up to qi?

Grigorchuk’84: growth functions of groups.

Bowditch’98: a concept of taut loops in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally:

If Γ is the Cayley graph of G, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where $\Gamma_\ell = \Gamma_{\ell-1} \cup \bigcup |\gamma| \leq \ell \text{Cone}(\gamma)$.

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \ldots$. A loop $\gamma \subset \Gamma$ of length ℓ is taut if it lies in the kernel $\ker(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1}))$.

Let $TL(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G. Bowditch: Groups G_1 and G_2 quasi-isometric $\Rightarrow TL(G_1)$ and $TL(G_2)$ quasi-isometric in \mathbb{R}.

I.e. there exist constants $A, B, N > 0$ such that for every $l_1 \in TL(G_1)$, $l_1 > N$, there exist an $l_2 \in TL(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.
How to distinguish groups up to qi?

Grigorchuk’84: growth functions of groups.
Bowditch’98: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally:

\[
\text{Let } \text{TL}(G) \subset \mathbb{N} \text{ be the spectrum of lengths of taut loops in the Cayley graph of a group } G. \\
\text{Bowditch: Groups } G_1 \text{ and } G_2 \text{ quasi-isometric } \Rightarrow \text{ TL}(G_1) \text{ and } \text{TL}(G_2) \text{ quasi-isometric in } \mathbb{R}. \\
\text{I.e. there exist constants } A, B, N > 0 \text{ such that for every } l_1 \in \text{TL}(G_1), l_1 > N, \text{ there exist an } l_2 \in \text{TL}(G_2) \text{ such that } l_1 \in [Al_2, Bl_2] \text{ and vice versa.}
\]
How to distinguish groups up to qi?

Grigorchuk’84: growth functions of groups.

Bowditch’98: a concept of taut loops in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally: If Γ is the Cayley graph of G, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_\ell = \Gamma_{\ell-1} \cup \bigcup_{|\gamma| \leq \ell} \text{Cone}(\gamma).$$
How to distinguish groups up to qi?

Grigorchuk’84: growth functions of groups.
Bowditch’98: a concept of taut loops in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally:
If Γ is the Cayley graph of G, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_\ell = \Gamma_{\ell-1} \cup \bigcup_{|\gamma| \leq \ell} \text{Cone}(\gamma).$$

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \ldots$. A loop $\gamma \subset \Gamma$ of length ℓ is taut if it lies in the kernel $\ker\left(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1})\right)$.

Let $\mathcal{T}(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G.

Bowditch: Groups G_1 and G_2 quasi-isometric \implies $\mathcal{T}(G_1)$ and $\mathcal{T}(G_2)$ quasi-isometric in \mathbb{R}.

I.e. there exist constants A, B, $N > 0$ such that for every $l_1 \in \mathcal{T}(G_1)$, $l_1 > N$, there exist an $l_2 \in \mathcal{T}(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.
How to distinguish groups up to qi?

Grigorchuk’84: growth functions of groups.
Bowditch’98: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally:

If Γ is the Cayley graph of G, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_\ell = \Gamma_{\ell-1} \cup \bigcup_{|\gamma|\leq \ell} \text{Cone}(\gamma).$$

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \ldots$. A loop $\gamma \subset \Gamma$ of length ℓ is **taut** if it lies in the kernel $\ker\left(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1})\right)$.

Let $TL(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G.
How to distinguish groups up to qi?

Grigorchuk’84: growth functions of groups.

Bowditch’98: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally:

If Γ is the Cayley graph of G, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_\ell = \Gamma_{\ell-1} \cup \bigcup_{|\gamma| \leq \ell} \text{Cone}(\gamma).$$

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \ldots$. A loop $\gamma \subset \Gamma$ of length ℓ is **taut** if it lies in the kernel $\ker \left(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1}) \right)$.

Let $TL(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G.

Bowditch: Groups G_1 and G_2 quasi-isometric $\iff TL(G_1)$ and $TL(G_2)$ quasi-isometric in \mathbb{R}.

Ignat Soroko (OU)
Uncountably many qi classes of FP groups
Bielefeld U., April 3–6, 2018
7 / 10
How to distinguish groups up to qi?

Grigorchuk’84: growth functions of groups.
Bowditch’98: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally:

If Γ is the Cayley graph of G, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_\ell = \Gamma_{\ell-1} \cup \bigcup_{|\gamma| \leq \ell} \text{Cone}(\gamma).$$

We get $\pi_1(\Gamma) \rightarrow \pi_1(\Gamma_1) \rightarrow \pi_1(\Gamma_2) \rightarrow \ldots$. A loop $\gamma \subset \Gamma$ of length ℓ is **taut** if it lies in the kernel $\ker(\pi_1(\Gamma_\ell) \rightarrow \pi_1(\Gamma_{\ell+1}))$.

Let $TL(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G.

Bowditch: Groups G_1 and G_2 quasi-isometric \implies $TL(G_1)$ and $TL(G_2)$ quasi-isometric in \mathbb{R}.

I.e. there exist constants $A, B, N > 0$ such that for every $l_1 \in TL(G_1)$, $l_1 > N$, there exist an $l_2 \in TL(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.
Goal: to engineer groups with taut loops spectra “wildly interspersed” in \mathbb{N}, this will make the linear relation above impossible.
Goal: to engineer groups with taut loops spectra “wildly interspersed” in \(\mathbb{N}\), this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.
Goal: to engineer groups with taut loops spectra “wildly interspersed” in \(\mathbb{N} \), this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.

Recall: \(G_L(S) \) has:

- (Triangle relations) For each directed triangle \((a, b, c)\) in \(L \), two relations: \(abc = 1 \) and \(a^{-1}b^{-1}c^{-1} = 1 \).
- (Long cycle relations) For each \(n \in S \setminus 0 \) and each \((a_1, \ldots, a_\ell) \in \Gamma\), a relation: \(a_1^n a_2^n \ldots a_\ell^n = 1 \).
Goal: to engineer groups with taut loops spectra “wildly interspersed” in \(\mathbb{N} \), this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.

Recall: \(G_L(S) \) has:

- (Triangle relations) For each directed triangle \((a, b, c)\) in \(L \), two relations: \(abc = 1 \) and \(a^{-1}b^{-1}c^{-1} = 1 \).
- (Long cycle relations) For each \(n \in S \setminus 0 \) and each \((a_1, \ldots, a_\ell)\) \(\in \Gamma \), a relation: \(a_1^n a_2^n \ldots a_\ell^n = 1 \).

Intuitively, we expect \(TL(G_L(S)) \approx \ell \cdot S \).
Goal: to engineer groups with taut loops spectra “wildly interspersed” in \(\mathbb{N} \), this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.

Recall: \(G_L(S) \) has:

- (Triangle relations) For each directed triangle \((a, b, c)\) in \(L \), two relations: \(abc = 1 \) and \(a^{-1}b^{-1}c^{-1} = 1 \).
- (Long cycle relations) For each \(n \in S \setminus \{0\} \) and each \((a_1, \ldots, a_\ell) \in \Gamma\), a relation: \(a_1^n a_2^n \ldots a_\ell^n = 1 \).

Intuitively, we expect \(TL(G_L(S)) \approx \ell \cdot S \).

Many triangles \(\implies \) no small cancellation.
Goal: to engineer groups with taut loops spectra “wildly interspersed” in \(\mathbb{N} \), this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.

Recall: \(G_L(S) \) has:

- (Triangle relations) For each directed triangle \((a, b, c)\) in \(L \), two relations: \(abc = 1 \) and \(a^{-1}b^{-1}c^{-1} = 1 \).
- (Long cycle relations) For each \(n \in S \setminus \{0\} \) and each \((a_1, \ldots, a_\ell)\) \(\in \Gamma \), a relation: \(a_1^n a_2^n \ldots a_\ell^n = 1 \).

Intuitively, we expect \(TL(G_L(S)) \approx \ell \cdot S \).

Many triangles \(\implies \) no small cancellation. Use CAT(0) geometry of branched covers of cubical complexes to get estimates for the taut loops spectra.
Goal: to engineer groups with taut loops spectra “wildly interspersed” in \(\mathbb{N} \), this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.

Recall: \(G_L(S) \) has:

- (Triangle relations) For each directed triangle \((a, b, c)\) in \(L \), two relations: \(abc = 1 \) and \(a^{-1}b^{-1}c^{-1} = 1 \).
- (Long cycle relations) For each \(n \in S \setminus 0 \) and each \((a_1, \ldots, a_\ell)\) \(\in \Gamma \), a relation: \(a_1^n a_2^n \ldots a_\ell^n = 1 \).

Intuitively, we expect \(TL(G_L(S)) \approx \ell \cdot S \).

Many triangles \(\implies \) no small cancellation. Use CAT(0) geometry of branched covers of cubical complexes to get estimates for the taut loops spectra. We proved:

\[
\text{If } S \subset \{ C^{2^n} | n \in \mathbb{N} \}, \quad \text{for some } C > 7,
\]

then \(TL(G_L(S)) \) lies in some multiplicative \([A, B]\) neighborhood of \(S \).
Goal: to engineer groups with taut loops spectra “wildly interspersed” in \(\mathbb{N} \), this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.

Recall: \(G_L(S) \) has:

- (Triangle relations) For each directed triangle \((a, b, c)\) in \(L \), two relations: \(abc = 1 \) and \(a^{-1}b^{-1}c^{-1} = 1 \).
- (Long cycle relations) For each \(n \in S \setminus 0 \) and each \((a_1, \ldots, a_\ell) \in \Gamma\), a relation: \(a_1^n a_2^n \ldots a_\ell^n = 1 \).

Intuitively, we expect \(TL(G_L(S)) \approx \ell \cdot S \).

Many triangles \(\implies \) no small cancellation. Use CAT(0) geometry of branched covers of cubical complexes to get estimates for the taut loops spectra. We proved:

\[
\text{If } S \subset \{ C^{2^n} \mid n \in \mathbb{N} \}, \quad \text{for some } C > 7,
\]

then \(TL(G_L(S)) \) lies in some multiplicative \([A, B]\) neighborhood of \(S \).

Now there are uncountably many subsets \(S \) in the above set, and these give \(2^{\aleph_0} \) quasi-isometry classes of groups \(G_L(S) \).
Connection to the Relation Gap problem

If G is an arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$. F acts on R by conjugation, so it induces an action of G on $R_{ab} = R/R[R,R]$, the relation module.

$\text{Rank}(R_{ab})$ as a ZG–module \leq min number of normal generators of R. The difference of the two is the relation gap.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.

Open Question: Are there groups with nonzero finite relation gap? Take our group $G = G_L(S)$ with infinite S.

Exhaust S by finite sets: $\emptyset \subset S_1 \subset S_2 \subset \cdots \subset S_G = G_L(\emptyset) \to G_L(S_1) \to G_L(S_2) \to \cdots \to G_L(S)$.

Fact: they all have the same relation module! Their relation gaps are: $0 \cdots \infty$.

So groups $G_L(S_i)$ for finite S_i are candidates to have finite relation gap!
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

Facts:

- Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.
- Open Question: Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$\emptyset \subset S_1 \subset S_2 \subset \cdots \subset S$.

Fact: they all have the same relation module!

Their relation gaps are: $0 \ldots \infty$.

So groups $G_L(S_i)$ for finite S_i are candidates to have finite relation gap!
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle r_1, \ldots, r_n \rangle$.

F acts on R by conjugation, so it induces an action of G on $R^{ab} = R/[R, R]$, the relation module.
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle r_1, \ldots, r_n \rangle$.

F acts on R by conjugation, so it induces an action of G on $R^{ab} = R/[R, R]$, the relation module.

$\text{Rank}(R^{ab})$ as a $\mathbb{Z}G$–module $\leq \min$ number of normal generators of R. The difference of the two is the relation gap.
Connection to the Relation Gap problem

If \(G \) is arbitrary group, \(G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R \), where
\(F = F(a_1, \ldots, a_m) \) and \(R = \langle \langle r_1, \ldots, r_n \rangle \rangle \).

\(F \) acts on \(R \) by conjugation, so it induces an action of \(G \) on \(R^{ab} = R/[R, R] \), the relation module.

\(\text{Rank}(R^{ab}) \) as a \(\mathbb{Z}G \)-module \(\leq \) min number of normal generators of \(R \).

The difference of the two is the relation gap.

Bestvina–Brady kernels \(BB_L \) have infinite relation gap, and so do \(G_L(S) \).
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle r_1, \ldots, r_n \rangle$.

F acts on R by conjugation, so it induces an action of G on $R^{ab} = R/[R, R]$, the relation module.

$\text{Rank}(R^{ab})$ as a $\mathbb{Z}G$–module $\leq \text{min number of normal generators of } R$.

The difference of the two is the relation gap.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.

Open Question: Are there groups with nonzero finite relation gap?
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on R by conjugation, so it induces an action of G on $R^{ab} = R/[R, R]$, the relation module.

$\text{Rank}(R^{ab})$ as a $\mathbb{Z}G$–module $\leq \min$ number of normal generators of R.

The difference of the two is the relation gap.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. Open Question: Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S.
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on R by conjugation, so it induces an action of G on $R^{ab} = R/[R, R]$, the relation module.

$\text{Rank}(R^{ab})$ as a $\mathbb{Z}G$–module \leq min number of normal generators of R.

The difference of the two is the relation gap.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.

Open Question: Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$\emptyset \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle\langle r_1, \ldots, r_n\rangle\rangle$.

F acts on R by conjugation, so it induces an action of G on $R^{ab} = R/[R, R]$, the relation module.

$\text{Rank}(R^{ab})$ as a $\mathbb{Z}G$–module $\leq \min$ number of normal generators of R.

The difference of the two is the relation gap.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.

Open Question: Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$\emptyset \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$

$$G_L(\emptyset) \to G_L(S_1) \to G_L(S_2) \to G_L(S_3) \to \cdots \to G_L(S)$$
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on R by conjugation, so it induces an action of G on $R^{ab} = R/[R, R]$, the relation module.

$\text{Rank}(R^{ab})$ as a $\mathbb{Z}G$–module $\leq \text{min number of normal generators of } R$.

The difference of the two is the relation gap. Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.

Open Question: Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$\emptyset \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$

$G_L(\emptyset) \to G_L(S_1) \to G_L(S_2) \to G_L(S_3) \to \cdots \to G_L(S)$

Fact: they all have the same relation module!
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on R by conjugation, so it induces an action of G on $R^ab = R/[R, R]$, the relation module.

$\text{Rank}(R^ab)$ as a $\mathbb{Z}G$–module $\leq \min$ number of normal generators of R.

The difference of the two is **the relation gap**.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.

Open Question: Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$\varnothing \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$

$$G_L(\varnothing) \to G_L(S_1) \to G_L(S_2) \to G_L(S_3) \to \cdots \to G_L(S)$$

Fact: they all have the same relation module! Their relation gaps are:
Connection to the Relation Gap problem

If \(G \) is arbitrary group, \(G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R \), where \(F = F(a_1, \ldots, a_m) \) and \(R = \langle \langle r_1, \ldots, r_n \rangle \rangle \).

\(F \) acts on \(R \) by conjugation, so it induces an action of \(G \) on \(R^{ab} = R/[R, R] \), the relation module.

\(\text{Rank}(R^{ab}) \) as a \(\mathbb{Z}G \)-module \(\leq \) min number of normal generators of \(R \).

The difference of the two is the relation gap.

Bestvina–Brady kernels \(BB_L \) have infinite relation gap, and so do \(G_L(S) \).

Open Question: Are there groups with nonzero finite relation gap?

Take our group \(G = G_L(S) \) with infinite \(S \). Exhaust \(S \) by finite sets:

\[
\emptyset \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S
\]

\[
G_L(\emptyset) \to G_L(S_1) \to G_L(S_2) \to G_L(S_3) \to \cdots \to G_L(S)
\]

Fact: they all have the same relation module! Their relation gaps are:

\[
0 \ ? \ ? \ ? \ ? \ ? \ \ldots \ \infty
\]
Connection to the Relation Gap problem

If G is arbitrary group, $G = \langle a_1, \ldots, a_m \mid r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on R by conjugation, so it induces an action of G on $R^{ab} = R/[R, R]$, the relation module.

$\text{Rank}(R^{ab})$ as a $\mathbb{Z}G$–module $\leq \min$ number of normal generators of R.

The difference of the two is the relation gap. Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.

Open Question: Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$\emptyset \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$

$$G_L(\emptyset) \to G_L(S_1) \to G_L(S_2) \to G_L(S_3) \to \cdots \to G_L(S)$$

Fact: they all have the same relation module! Their relation gaps are:

$$0 \ ? \ ? \ ? \ ? \ ? \ \cdots \ \infty$$

So groups $G_L(S_i)$ for finite S_i are candidates to have finite relation gap!

Thank you!