Acylindrical hyperbolicity of non-elementary convergence groups

Bin Sun

April, 4, 2018

VANDERBILT UNIVERSITY
Acylindrical actions

Definition

An isometric action of a group G on a metric space S is acylindrical if $\forall \epsilon > 0$, $\exists R, N > 0$ such that $\forall x, y \in S$, $d(x, y) \geq R \Rightarrow |\{g \in G | d(x, gx) \& d(y, gy) < \epsilon\}| \leq N$.

Examples:

▶ Proper + cobounded \Rightarrow acylindrical

▶ Any finitely generated group acts on its Cayley graph with respect to any finite generating set

▶ \mathbb{F}_∞ acts on its Cayley graph with respect to any basis
Definition

An isometric action of a group G on a metric space S is acylindrical if $\forall \epsilon > 0, \exists R, N > 0$ such that $\forall x, y \in S$,

$$d(x, y) \geq R \Rightarrow |\{g \in G | d(x, gx) \& d(y, gy) < \epsilon\}| \leq N.$$
Acylindrical actions

Definition

An isometric action of a group G on a metric space S is **acylindrical** if $\forall \epsilon > 0, \exists R, N > 0$ such that $\forall x, y \in S$,

$$d(x, y) \geq R \Rightarrow |\{g \in G \mid d(x, gx) \& d(y, gy) < \epsilon\}| \leq N.$$

Examples:

- Proper + cobounded \Rightarrow acylindrical
- Any finitely generated group acts on its Cayley graph with respect to any finite generating set
- F_{∞} acts on its Cayley graph with respect to any basis
Non-elementariness

Definition

An isometric action of a group G on a Gromov hyperbolic space S is **non-elementary** if any G-orbit has infinitely many accumulation points on the Gromov boundary of S.
Definition

An isometric action of a group G on a Gromov hyperbolic space S is **non-elementary** if any G-orbit has infinitely many accumulation points on the Gromov boundary of S.

Examples:

- $F(a, b) \lhd \Gamma(F(a, b), \{a, b\})$
Non-elementariness

Definition

An isometric action of a group G on a Gromov hyperbolic space S is **non-elementary** if any G-orbit has infinitely many accumulation points on the Gromov boundary of S.

Examples:

- Acylindrical + unbounded orbit + non-virtually cyclic \Rightarrow non-elementary (Osin)
A group is **acylindrically hyperbolic** if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.
Definition

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Examples:

- Non-elementary hyperbolic groups
- Non-elementary relatively hyperbolic groups (Damani-Guirardel-Osin)
- Most mapping class groups of punctured closed orientable surfaces (Bowditch, Mazur-Minsky)
- Outer automorphism groups of non-abelian finite rank free groups (Bestvina-Feighn)
- Many 3-manifold groups (Minasyan-Osin)
- Groups of deficiency at least 2 (Osin)
A group is **acylindrically hyperbolic** if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Non-examples:

- $G = A \times B$ with $|A| = |B| = \infty$
- $G = A_1 \cdot \ldots \cdot A_n$ with A_1, \ldots, A_n amenable (Osin)
- Groups with infinite amenable radicals (Osin)
A group is **acylindrically hyperbolic** if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Properties:

- $H^2_b(G, \ell^2(G)) \neq 0$ (Hamenstädt, Hull-Osin), Monod-Shalom rigidity theory
Acylindrically hyperbolic groups

Definition

A group is **acylindrically hyperbolic** if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Properties:

- $H^2_b(G, \ell^2(G)) \neq 0$ (Hamenstädt, Hull-Osin), Monod-Shalom rigidity theory
- Group theoretic Dehn surgery (Dahmani-Guirardel-Osin)
Definition

A group is **acylindrically hyperbolic** if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Properties:

- $H^2_b(G, \ell^2(G)) \neq 0$ (Hamenstäd, Hull-Osin, Monod-Shalom rigidity theory)
- Group theoretic Dehn surgery (Dahmani-Guirardel-Osin)

\[M \setminus \partial M \text{ hyperbolic} \quad H \text{ hyperbolically embedded into } G \]

Dehn filling

\[H/N \]

\[M' \text{ hyperbolic} \quad G/\langle\langle N\rangle\rangle \text{ acylindrically hyperbolic} \]
Acylindrically hyperbolic groups

Definition

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Properties:

- $H^2_b(G, \ell^2(G)) \neq 0$ (Hamenstät, Hull-Osin), Monod-Shalom rigidity theory
- Group theoretic Dehn surgery (Dahmani-Guirardel-Osin)

\[M \setminus \partial M \text{ hyperbolic} \quad H \text{ hyperbolically embedded into } G \]

Dehn filling

\[M' \text{ hyperbolic} \quad G/\langle\langle N\rangle\rangle \text{ acylindrically hyperbolic} \]

- Small cancellation theory (Hull)
Convergence groups

Definition

A group G is called a convergence group acting on a metrisable compact topological space M if the induced diagonal action on the space of distinct triples $\Theta_3(M)$ is properly discontinuous.
Convergence groups

Definition

A group \(G \) is called a convergence group acting on a metrisable compact topological space \(M \) if the induced diagonal action on the space of distinct triples \(\Theta_3(M) \) is properly discontinuous.

- Space of distinct triples \(\Theta_3(M) = \) 3-element subsets of \(M = \{(x, y, z) \in M^3 \mid x \neq y, y \neq z, z \neq x\}/S_3 \), with quotient topology (non-compact!)
A group G is called a convergence group acting on a metrisable compact topological space M if the induced diagonal action on the space of distinct triples $\Theta_3(M)$ is properly discontinuous.

- Space of distinct triples $\Theta_3(M) = 3$-element subsets of $M = \{(x, y, z) \in M^3 \mid x \neq y, y \neq z, z \neq x\}/S_3$, with quotient topology (non-compact!)
- Diagonal action: $g\{x, y, z\} = \{gx, gy, gz\}, \forall g \in G, x, y, z \in M$
A group G is called a convergence group acting on a metrisable compact topological space M if the induced diagonal action on the space of distinct triples $\Theta_3(M)$ is properly discontinuous.

- Space of distinct triples $\Theta_3(M) = 3$-element subsets of $M = \{(x, y, z) \in M^3 \mid x \neq y, y \neq z, z \neq x\}/S_3$, with quotient topology (non-compact!)
- Diagonal action: $g\{x, y, z\} = \{gx, gy, gz\}, \forall g \in G, x, y, z \in M$
- Properly discontinuous: \forall compact $K \subset \Theta_3(M)$,
 $$|\{g \in G \mid gK \cap K \neq \emptyset\}| < \infty$$
Theorem (Bowditch)

A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \(\forall \) infinite sequence $\{g_n\}$ of distinct elements of G, \(\exists \) a subsequence $\{g_{n_k}\}$ and two points $x, y \in M$ such that $g_{n_k}|_{M\setminus\{x\}}$ converges to y locally uniformly.
Convergence group

Theorem (Bowditch)

A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \(\forall \) infinite sequence $\{g_n\}$ of distinct elements of G, \(\exists \) a subsequence $\{g_{n_k}\}$ and two points $x, y \in M$ such that $g_{n_k} \big|_{M \setminus \{x\}}$ converges to y locally uniformly.
A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \(\forall \) infinite sequence \(\{g_n\} \) of distinct elements of G, \(\exists \) a subsequence \(\{g_{n_k}\} \) and two points $x, y \in M$ such that $g_{n_k} \mid_{M \setminus \{x\}}$ converges to y locally uniformly.
Convergence group

Theorem (Bowditch)

A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \(\forall \) infinite sequence $\{g_n\}$ of distinct elements of G, \(\exists \) a subsequence $\{g_{n_k}\}$ and two points $x, y \in M$ such that $g_{n_k}|_{M\{x\}}$ converges to y locally uniformly.
Theorem (Bowditch)

A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \(\forall \) infinite sequence \(\{g_n\} \) of distinct elements of G, \(\exists \) a subsequence \(\{g_{n_k}\} \) and two points $x, y \in M$ such that $g_{n_k}|_{M\setminus\{x\}}$ converges to y locally uniformly.

Examples:
A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \forall infinite sequence $\{g_n\}$ of distinct elements of G, \exists a subsequence $\{g_{n_k}\}$ and two points $x, y \in M$ such that $g_{n_k}\big|_{M\setminus\{x\}}$ converges to y locally uniformly.

Examples:

0. $|M| \leq 2$
Theorem (Bowditch)

A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \forall infinite sequence $\{g_n\}$ of distinct elements of G, \exists a subsequence $\{g_{n_k}\}$ and two points $x, y \in M$ such that $g_{n_k}\mid M \setminus \{x\}$ converges to y locally uniformly.

Examples:

0. $|M| \leq 2$
1. Hyperbolic groups acting on their Gromov boundaries (Tukia)
2. Relatively hyperbolic groups acting on their Bowditch boundaries (Bowditch)
A convergence group G acting on a compact metrisable topological space M is **non-elementary** if G does not fix setwise a non-empty subset of M with at most 2 points.
Definition

A convergence group G acting on a compact metrisable topological space M is **non-elementary** if G does not fix setwise a non-empty subset of M with at most 2 points.

Examples:

- Non-elementary hyperbolic and relatively hyperbolic groups
- Any finitely generated groups whose Floyd boundary has at least 3 points (Karlson)
Definition

A convergence group G acting on a compact metrisable topological space M is **non-elementary** if G does not fix setwise a non-empty subset of M with at most 2 points.

Floyd boundary:

Step 1 Pick a Cayley graph $\Gamma(G, X)$ with $|X| < \infty$ and a function $f : \mathbb{N} \to \mathbb{R}^+$ such that $\sum f(n) < \infty$, $1 \leq f(n)/f(n+1) \leq K$

Example: $f(n) = 1/n^2$
A convergence group G acting on a compact metrisable topological space M is non-elementary if G does not fix setwise a non-empty subset of M with at most 2 points.

Floyd boundary:

Step 1 Pick a Cayley graph $\Gamma(G, X)$ with $|X| < \infty$ and a function $f : \mathbb{N} \rightarrow \mathbb{R}_+$ such that $\sum f(n) < \infty$, $1 \leq f(n)/f(n+1) \leq K$

Example: $f(n) = 1/n^2$

Step 2 Rescale $\Gamma(G, X)$ by deeming an edge in $\Gamma(G, X)$ with distance n from 1 to have length $f(n)$
A convergence group G acting on a compact metrisable topological space M is non-elementary if G does not fix setwise a non-empty subset of M with at most 2 points.

Floyd boundary:

Step 1 Pick a Cayley graph $\Gamma(G, X)$ with $|X| < \infty$ and a function $f : \mathbb{N} \to \mathbb{R}_+$ such that $\sum f(n) < \infty$, $1 \leq f(n)/f(n+1) \leq K$.

Example: $f(n) = 1/n^2$

Step 2 Rescale $\Gamma(G, X)$ by deeming an edge in $\Gamma(G, X)$ with distance n from 1 to have length $f(n)$.

Step 3 Look at the points added in forming the metric completion.
Theorem (S)

Non-elementary convergence groups are acylindrically hyperbolic.
Theorem (S)

Non-elementary convergence groups are acylindrically hyperbolic.

Common properties proved independently for acylindrically hyperbolic groups and non-elementary convergence groups:

- None of them can be invariably generated. (Hull, Gelander)
- Admits a faithful primitive action if has no non-trivial finite normal subgroup. (Hull-Osin, Gelander-Glasner)
- Has simple reduced C^*-algebra if has no non-trivial finite normal subgroup. (Damani-Guirardel-Osin, Matsuda-Oguni-Yamagata)
Main result

Theorem (S)
Non-elementary convergence groups are acylindrically hyperbolic.

Corollary (Yang)
Let G be a finite generated group whose Floyd boundary has at least 3 points. Then G is acylindrically hyperbolic.
Main result

Theorem (S)
Non-elementary convergence groups are acylindrically hyperbolic.

Corollary (Yang)
Let G be a finite generated group whose Floyd boundary has at least 3 points. Then G is acylindrically hyperbolic.

Question
Does every acylindrically hyperbolic group admits a non-elementary convergence action?
A counterexample

Mapping class group of the double torus, generated by a_1, \ldots, a_5, subject to $[a_i, a_j] = 1$ for $|i - j| > 1$ and some other relations.
A counterexample

Mapping class group of the double torus, generated by $a_1, ..., a_5$, subject to $[a_i, a_j] = 1$ for $|i - j| > 1$ and some other relations

Facts about convergence groups:

- Any infinite order element fixes one or two points
- Commuting infinite order elements share fixed points
Suppose a group G acts on a hyperbolic space S by a non-elementary acylindrical isometric action.
Suppose a group G acts on a hyperbolic space S by a non-elementary acylindrical isometric action.

Look at the induced action on ∂S.
Suppose a group G acts on a hyperbolic space S by a non-elementary acylindrical isometric action.

Look at the induced action on ∂S.

This action satisfies a generalization of the convergence property, which can be used to characterize acylindrical hyperbolicity.
Thank you for your attention!