Acylindrical hyperbolicity of non-elementary convergence groups

Bin Sun

April, 4, 2018

VANDERBILT VUNIVERSITY

Acylindrical actions

Acylindrical hyperbolicity of non-elementary convergence groups Bin Sun, Vanderbilt University

æ

/□ ▶ < 글 ▶ < 글

An isometric action of a group G on a metric space S is acylindrical if $\forall \epsilon > 0, \exists R, N > 0$ such that $\forall x, y \in S$,

 $d(x,y) \geq R \Rightarrow |\{g \in G \mid d(x,gx) \& d(y,gy) < \epsilon\}| \leqslant N.$

An isometric action of a group G on a metric space S is acylindrical if $\forall \epsilon > 0, \exists R, N > 0$ such that $\forall x, y \in S$,

 $d(x,y) \geq R \Rightarrow |\{g \in G \mid d(x,gx) \& d(y,gy) < \epsilon\}| \leqslant N.$

Examples:

- $\blacktriangleright Proper + cobounded \Rightarrow acylindrical$
- Any finitely generated group acts on its Cayley graph with respect to any finite generating set
- \blacktriangleright F_{∞} acts on its Cayley graph with respect to any basis

Non-elementariness

Definition

An isometric action of a group G on a Gromov hyperbolic space S is non-elementary if any G-orbit has infinitely many accumulation points on the Gromov boundary of S

Non-elementariness

Definition

An isometric action of a group G on a Gromov hyperbolic space S is non-elementary if any G-orbit has infinitely many accumulation points on the Gromov boundary of S

Examples:

Non-elementariness

Definition

An isometric action of a group G on a Gromov hyperbolic space S is non-elementary if any G-orbit has infinitely many accumulation points on the Gromov boundary of S

Examples:

▶ Acylindrical + unbounded orbit + non-virtually cyclic ⇒ nonelementary (Osin)

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Examples:

- Non-elementary hyperbolic groups
- Non-elementary relatively hyperbolic groups (Damani-Guirardel-Osin)
- Most mapping class groups of punctured closed orientable surfaces (Bowditch, Mazur-Minsky)
- Outer automorphism groups of non-abelian finite rank free groups (Bestvina-Feighn)
- Many 3-manifold groups (Minasyan-Osin)
- Groups of deficiency at least 2 (Osin)

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Non-examples:

- $\blacktriangleright \ G = A \times B \text{ with } |A| = |B| = \infty$
- $G = A_1 \cdot ... \cdot A_n$ with $A_1, ..., A_n$ amenable (Osin)
- Groups with infinite amenable radicals (Osin)

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Properties:

▶ $H_b^2(G, \ell^2(G)) \neq 0$ (Hamenstädt, Hull-Osin), Monod-Shalom rigidity theory

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Properties:

▶ $H_b^2(G, \ell^2(G)) \neq 0$ (Hamenstädt, Hull-Osin), Monod-Shalom rigidity theory

Group theoretic Dehn surgery (Dahmani-Guirardel-Osin)

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Properties:

▶ $H_b^2(G, \ell^2(G)) \neq 0$ (Hamenstädt, Hull-Osin), Monod-Shalom rigidity theory

Group theoretic Dehn surgery (Dahmani-Guirardel-Osin)

 $\begin{array}{ll} M \ \partial M \ \text{hyperbolic} & H \ \text{hyperbolically embedded into } G \\ \text{Dehn filling} & H/N \\ M' \ \text{hyperbolic} & G/\langle\!\langle N \rangle\!\rangle \ \text{acylindrically hyperbolic} \end{array}$

A group is acylindrically hyperbolic if it admits a non-elementary acylindrical and isometric action on some hyperbolic space.

Properties:

► $H_b^2(G, \ell^2(G)) \neq 0$ (Hamenstädt, Hull-Osin), Monod-Shalom rigidity theory

Group theoretic Dehn surgery (Dahmani-Guirardel-Osin)

 $\begin{array}{ll} M \ \partial M \ \text{hyperbolic} & H \ \text{hyperbolically embedded into} \ G \\ \text{Dehn filling} & H/N \\ M' \ \text{hyperbolic} & G/\langle\!\langle N \rangle\!\rangle \ \text{acylindrically hyperbolic} \end{array}$

Small cancellation theory (Hull)

A group G is called a convergence group acting on a metrisable compact topological space M if the induced diagonal action on the space of distinct triples $\Theta_3(M)$ is properly discontinuous.

A group G is called a convergence group acting on a metrisable compact topological space M if the induced diagonal action on the space of distinct triples $\Theta_3(M)$ is properly discontinuous.

▶ Space of distinct triples $\Theta_3(M) = 3$ -element subsets of $M = \{(x, y, z) \in M^3 \mid x \neq y, y \neq z, z \neq x\}/S_3$, with quotient topology (non-compact!)

A group G is called a convergence group acting on a metrisable compact topological space M if the induced diagonal action on the space of distinct triples $\Theta_3(M)$ is properly discontinuous.

- ▶ Space of distinct triples $\Theta_3(M) = 3$ -element subsets of $M = \{(x, y, z) \in M^3 \mid x \neq y, y \neq z, z \neq x\}/S_3$, with quotient topology (non-compact!)
- \blacktriangleright Diagonal action: $g\{x,y,z\}=\{gx,gy,gz\}, \forall g\in G, x,y,z\in M$

A group G is called a convergence group acting on a metrisable compact topological space M if the induced diagonal action on the space of distinct triples $\Theta_3(M)$ is properly discontinuous.

- ▶ Space of distinct triples $\Theta_3(M) = 3$ -element subsets of $M = \{(x, y, z) \in M^3 \mid x \neq y, y \neq z, z \neq x\}/S_3$, with quotient topology (non-compact!)
- \blacktriangleright Diagonal action: $g\{x,y,z\}=\{gx,gy,gz\}, \forall g\in G, x,y,z\in M$
- ▶ Properly discontinuous: \forall compact $K \subset \Theta_3(M)$,

$$|\{g \in G \mid gK \cap K \neq \emptyset\}| < \infty$$

A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \forall infinite sequence $\{g_n\}$ of distinct elements of G, \exists a subsequence $\{g_{n_k}\}$ and two points $x, y \in M$ such that $g_{n_k}|_{M \setminus \{x\}}$ converges to y locally uniformly.

Examples:

A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \forall infinite sequence $\{g_n\}$ of distinct elements of G, \exists a subsequence $\{g_{n_k}\}$ and two points $x, y \in M$ such that $g_{n_k}|_{M \setminus \{x\}}$ converges to y locally uniformly.

Examples:

0. $|M| \leq 2$

A group G is a convergence group acting on a metrisable compact topological space M if and only if it has the following convergence property: \forall infinite sequence $\{g_n\}$ of distinct elements of G, \exists a subsequence $\{g_{n_k}\}$ and two points $x, y \in M$ such that $g_{n_k}|_{M \setminus \{x\}}$ converges to y locally uniformly.

Examples:

- **0**. $|M| \leqslant 2$
- 1. Hyperbolic groups acting on their Gromov boundaries (Tukia)
- 2. Relatively hyperbolic groups acting on their Bowditch boundaries (Bowditch)

A convergence group G acting on a compact metrisable topological space M is non-elementary if G does not fix setwise a non-empty subset of M with at most 2 points.

A convergence group G acting on a compact metrisable topological space M is non-elementary if G does not fix setwise a non-empty subset of M with at most 2 points.

Examples:

- Non-elementary hyperbolic and relatively hyperbolic groups
- Any finitely generated groups whose Floyd boundary has at least 3 points (Karlson)

A convergence group G acting on a compact metrisable topological space M is non-elementary if G does not fix setwise a non-empty subset of M with at most 2 points.

Floyd boundary:

Step 1 Pick a Cayley graph $\Gamma(G, X)$ with $|X| < \infty$ and a function $f : \mathbb{N} \to \mathbb{R}_+$ such that $\sum f(n) < \infty, 1 \leq f(n)/f(n+1) \leq K$ Example: $f(n) = 1/n^2$

A convergence group G acting on a compact metrisable topological space M is non-elementary if G does not fix setwise a non-empty subset of M with at most 2 points.

Floyd boundary:

Step 1 Pick a Cayley graph $\Gamma(G, X)$ with $|X| < \infty$ and a function $f : \mathbb{N} \to \mathbb{R}_+$ such that $\sum f(n) < \infty, 1 \leq f(n)/f(n+1) \leq K$ Example: $f(n) = 1/n^2$

Step 2 Rescale $\Gamma(G,X)$ by deeming an edge in $\Gamma(G,X)$ with distance n from 1 to have length f(n)

A convergence group G acting on a compact metrisable topological space M is non-elementary if G does not fix setwise a non-empty subset of M with at most 2 points.

Floyd boundary:

- Step 1 Pick a Cayley graph $\Gamma(G, X)$ with $|X| < \infty$ and a function $f : \mathbb{N} \to \mathbb{R}_+$ such that $\sum_{i=1}^{n} f(n) < \infty, 1 \leq f(n)/f(n+1) \leq K$ Example: $f(n) = 1/n^2$
- Step 2 Rescale $\Gamma(G,X)$ by deeming an edge in $\Gamma(G,X)$ with distance n from 1 to have length f(n)

Step 3 Look at the points added in forming the metric completion

Non-elementary convergence groups are acylindrically hyperbolic.

□→ < □→</p>

Non-elementary convergence groups are acylindrically hyperbolic.

Common properties proved independently for acylindrically hyperbolic groups and non-elementary convergence groups:

- ▶ None of them can be invariably generated. (Hull, Gelander)
- Admits a faithful primitive action if has no non-trivial finite normal subgroup. (Hull-Osin, Gelander-Glasner)
- Has simple reduced C*-algebra if has no non-trivial finite normal subgroup. (Damani-Guirardel-Osin, Matsuda-Oguni-Yamagata)

Non-elementary convergence groups are acylindrically hyperbolic.

Corollary (Yang)

Let G be a finite generated group whose Floyd boundary has at least 3 points. Then G is acylindrically hyperbolic.

< A >

Non-elementary convergence groups are acylindrically hyperbolic.

Corollary (Yang)

Let G be a finite generated group whose Floyd boundary has at least 3 points. Then G is acylindrically hyperbolic.

Question

Does every acylindrically hyperbolic group admits a nonelementary convergence action?

Image: A image: A

A counterexample

Mapping class group of the double torus, generated by $a_1, ..., a_5$, subject to $[a_i, a_j] = 1$ for |i - j| > 1 and some other relations

A counterexample

Mapping class group of the double torus, generated by $a_1, ..., a_5$, subject to $[a_i, a_j] = 1$ for |i - j| > 1 and some other relations

Facts about convergence groups:

- Any infinite order element fixes one or two points
- Commuting infinite order elements share fixed points

Characterizing acylindrical hyperbolicity

Suppose a group G acts on a hyperbolic space S by a non-elementary acylindrical isometric action.

Suppose a group G acts on a hyperbolic space S by a non-elementary acylindrical isometric action.

Look at the induced action on ∂S .

Suppose a group G acts on a hyperbolic space S by a non-elementary acylindrical isometric action.

Look at the induced action on ∂S .

This action satisfies a generalization of the convergence property, which can be used to characterize acylindrical hyperbolicity.

Thank you for your attention!