SECURITY, FINITE KEY, AND QUANTUM REPEATERS

Silvestre Abruzzo, Sylvia Bratzik, Markus Mertz, Hermann Kampermann, and Dagmar Bruß

Heinrich-Heine-Universität Düsseldorf Institut für Theoretische Physik III

GEFÖRDERT VOM

- Quantum key distribution
 - Protocol
 - Security
 - On the definition
 - On the eavesdropper
 - Asymptotic analysis
 - Finite-key analysis
 - Imperfections
- Quantum repeaters
 - Some generalities
 - Our work
- 3 Conclusions

Protocol

QKD prepare and measure

- Alice encodes classical values in quantum states.
- Quantum states are sent through the quantum channel.
- Sob decodes quantum states in order to obtain classical values.

Protocol

Entanglement-based QKD

- Source produces entangled qubits.
- Alice and Bob perform measurements.

When devices are perfect

Prepare and measure ≡ Entanglement-based

⇒ Security of one implies security of the other one.

A simply proof is in T. Meyer, PhD Thesis,

http://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-6444/thesis_noextras.pdf

Protocol

QKD protocol

Creation and distribution: N_{SOURCE} pulses are produced.

Measurement: A & B choose at random and independently the measurement basis and measure

Sifting: discard measurements where Alice and Bob used a different basis.

Classical post-processing

- Parameter estimation(PE):
 - estimated Quantum Bit Error Rate (QBER) e.
 - If e too big the protocol is aborted.
- Error correction(EC): Alice sends an error correction code to Bob.
- Serror verification(EV): it is verified that the EC protocol worked.
- Privacy amplification(PA): the corrected string is shrunk and a final key of length \(\ell\) is obtained.

NEXT STEP: Provide a connection between ℓ and N_{source} .

Same definitions

- Shannon entropy: $H(X)_P := -\sum_{x \in \mathcal{X}} P_X(x) \log_2 P_X(x)$.
- Von Neumann entropy: $S(X)_{\rho} := -tr(\rho \log_2 \rho)$.
- Mutual information: $I(X; Y)_P := H(X)_P + H(Y)_P H(X, Y)_P$.
- Classical Conditional entropy: $H(X|Y)_P := H(X;Y)_P - H(Y)_P$
- Quantum Conditional entropy: $S(X|Y)_{\rho} := S(X;Y)_{\rho} S(Y)_{\rho}$.
- Binary entropy: $h(p) := -p \log_2 p (1-p) \log_2 (1-p)$.

Definition of security

Classical security

- X random variable describing the possible keys
- *E* random variable describing Eve's information

A key (of length ℓ) is ε -secure if

$$H(X) \ge \ell - \varepsilon$$
 (1)

$$I(X; E) \le \varepsilon$$
 (2)

Quantum security

- X random variable describing the possible keys
- $\mathcal{M}(\rho_E)$ random variable obtained when E applies POVM \mathcal{M} on ρ_E

A key (of length ℓ) was ε -secure if

$$H(X) \ge \ell - \varepsilon$$
 (3)

$$\max_{\mathcal{M}} I(X; \mathcal{M}(\rho_{E})) \le \varepsilon \tag{4}$$

Ahlswede, R.; Csiszar, I.; IEEE 39 Issue:4, 1993.

H.-K. Lo and H. F. Chau, Science 283, 2050 (1999).

The quantum definition is problematic:

(Robert König, Renato Renner, et al. Phys. Rev. Lett. 98, 140502 (2007))

- Not composable.
- 2 No operational meaning for ε .

Conclusions

Security

Trace distance definition of security

 $\rho_{K^{\ell}F^{\ell}}$ key + Eve's quantum state

ε -security

A key K^{ℓ} is ε -secure if a

$$\min_{\tau_E} \frac{1}{2} \| \rho_{K^{\ell} E^{\ell}} - \frac{1}{2^{\ell}} \mathbf{1} \otimes \tau_E \|_1 \le \varepsilon,$$

where $||A||_1 := \operatorname{tr}(\sqrt{AA^{\dagger}})$ and $0 \le \varepsilon \le 1$ is the security parameter.

Properties:

- Composable.
- 2 Meaning for ε .

^aRenner, R., International Journal of Quantum Information (IJQI), ETH Zurich, 2008

Security

Eve's attacks

 $\rho_{AN_{\text{source }}BN_{\text{source}}}$: Alice and Bob system

- Collective attacks: final state tensor product $\rho_{A^{N_{\text{source}}}B^{N_{\text{source}}}} = \rho_{AB}^{\otimes N_{\text{source}}}$
- **2** Coherent attacks: no assumption on $\rho_{A^{N_{\text{source}}}B^{N_{\text{source}}}}$

For an arbitrary long key, ensuring particular symmetries

Coherent attacks

collective attacks

Kraus, Gisin, Renner, Phys. Rev. Lett. 95, 080501 (2005)

Security

What is the best state for the eavesdropper?

Definition

The state $|\psi\rangle_{ABE}$ is a purification of ρ_{AB} iff $\rho_{AB} = \text{tr}_{E}(|\psi\rangle_{ABE}\langle\psi|)$.

 \Rightarrow The BEST FOR THE EAVESDROPPER: obtain $ho_{\it E}={\rm tr}_{\it AB}\,(|\psi\rangle_{\it ABE}\langle\psi|).$

Rev. Mod. Phys. 81, 1301-1350 (2009)

Asymptotic analysis

Formula for the asymptotic secret key rate

I. Devetak and A. Winter, Proc. R. Soc. Lond. A 461, 207 (2005)

n:=number of bits remained after PE

 $\rho_{X^nY^nE^n} = \rho_{XYE}^{\otimes n}$ state describing Alice's string (X) + Bob's string (Y) + Eve's system (E)

$$r_{\infty} := \underbrace{\mathcal{S}(X|E)_{
ho}}_{PA} - \underbrace{\mathcal{H}(X|Y)_{
ho}}_{EC}.$$

Two examples:

Rev. Mod. Phys. 81, 1301-1350 (2009)

- BB84: $1 h(e_X) h(e_Y)$
- six-state protocol:

$$1 - e_Z h\left(\frac{1 + (e_X - e_Y)/e_Z}{2}\right) - (1 - e_Z) h\left(\frac{1 - (e_X + e_Y + e_Z)/2}{1 - e_Z}\right) - h(e_Z)$$

Asymptotic analysis

BB84 (isotropic channel)

Secret key length

Using the framework of the finite-key analysis the following result holds.

Theorem: If Alice and Bob distill a secret key of length

$$\ell \leq \max_{\substack{\overline{\varepsilon} \,,\, \varepsilon_{\text{PE}}, \varepsilon_{\text{PA}} \\ 0 \leq \overline{\varepsilon} + \varepsilon_{\text{EC}} + \varepsilon_{\text{PA}} + \varepsilon_{\text{PE}} \leq \varepsilon}} \left[n \underbrace{\left(\underbrace{\frac{S(X|E)_{\rho}}{PA}} - \underbrace{5\sqrt{\log_2\left(\frac{2}{\varepsilon}\right)\frac{1}{n}}}_{\text{Finite correction}} - \underbrace{f_{\text{EC}}H(X|Y)_{\rho}}_{\text{EC}} \right) - \underbrace{\log_2\frac{2}{\varepsilon_{\text{EC}}}}_{\text{EV}} - \underbrace{2\log_2\frac{1}{\varepsilon_{\text{PA}}}}_{\text{ε-security}} \right]}_{\text{ε-security}},$$

then it is ε -secure.

Finite-key analysis

Finite-key analysis

Imperfections

• Detectors: η_D : efficiency, p_{DARK} : dark count probability

Quantum channel: losses and decoherence

Source: no single-photon source, no bell states source

Rev. Mod. Phys. 81, 1301-1350 (2009)

Imperfections

Effect of losses

Perfect detectors, perfect source, no decoherence; Optical fiber $t_{link}(L) = 10^{-\frac{\alpha L}{10}}$ with $\alpha = 0.17 dB/Km$.

Imperfections

Effect of imperfect detectors

$$QBER = QBER_{Channel} + QBER_{DarkCounts}$$

BB84,
$$\eta_D = 0.95$$
, $p_{\text{Dark}} = 10^{-5}$

Effect of imperfect source

Ideal state

$$|\psi^{+}\rangle=rac{1}{\sqrt{2}}(|11\rangle+|00\rangle)$$

Real produced state

$$\rho = F|\psi^{+}\rangle\langle\psi^{+}| + \left(\frac{1-F}{3}\right)(|\psi^{-}\rangle\langle\psi^{-}| + |\phi^{+}\rangle\langle\phi^{+}| + |\phi^{-}\rangle\langle\phi^{-}|)$$

Other possible imperfections:

- multi-photon pulses
- pulses produced probabilistically

How to calculate the secret key rate

- create a model of the set-up and all imperfections
- 2 calculate the raw key rate $R_{\text{raw}} = \frac{\text{Number of measurements}}{\text{Number of initial pulses}}$
- calculate the QBER e
- **a** calculate the secret fraction $r(e) = \frac{\text{Number of secure bits}}{\text{Number of measurements}}$
- **1** the total rate is $K = R_{\text{raw}} r(e)$

Introduction

Entanglement swapping: 2 short-distance entangled pairs ⇒ 1 long-distance entangled pair

Distillation: N pairs with fidelity $F_0 \Rightarrow M < N$ pairs with fidelity $F_1 > F_0$

- Quantum relay: only entanglement swapping
 - with memory
 - without quantum memory

Quantum repeater: entanglement swapping + distillation

Global scheme

Security proof: repeater under the control of the eavesdropper

A model of quantum repeaters

How entanglement is created

On the role of quantum memories

what we are doing

- consider different model of quantum relay and calculate the secret key rate
- consider different distillation protocols and see which one is better
- general model for the imperfection in the gates

A specific example:Briegel-type quantum relay Effect of gates imperfection

BB84: perfect detectors, perfect source, perfect channel

Gates imperfection + imperfect source

Minimal fidelity and p_{GATE} permitting to extract a key.

On-going work

- analysis other quantum repeaters architectures(Rydberg gates, Hybrid, ...)
- analysis DLCZ-type protocol

Analysis of distillation protocols

General model for imperfection

Many models of imperfections are present in literature:

- Briegel-model, i.e. depolarization
- diamond norm
- gate fidelity
- \Rightarrow study these models in general and calculate key rates.

Conclusions

Quantum key distribution:

- Protocol: entanglement-based

 prepare and measure
- Security: trace-distance definition, purification for the eavesdropper
- key-rate: asymptotic vs finite-size corrections
- imperfections: essential for a correct analysis

Quantum repeaters:

- General scheme
- Our work
 - Quantum relays
 - analysis of different distillation protocols
 - models for imperfections of the gates

