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1 Alice encodes classical values in quantum states.
2 Quantum states are sent through the quantum channel.
3 Bob decodes quantum states in order to obtain classical

values.
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1 Source produces entangled qubits.
2 Alice and Bob perform measurements.
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Protocol

When devices are perfect

Prepare and measure ≡ Entanglement-based

⇒ Security of one implies security of the other one.

A simply proof is in T. Meyer, PhD Thesis,

http://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-6444/thesis noextras.pdf
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Protocol

QKD protocol

1 Creation and distribution: NSOURCE pulses are produced.

2 Measurement: A & B choose at random and independently
the measurement basis and measure

3 Sifting: discard measurements where Alice and Bob used
a different basis.
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Protocol

Classical post-processing

1 Parameter estimation(PE):
estimated Quantum Bit Error Rate (QBER) e.
If e too big the protocol is aborted.

2 Error correction(EC): Alice sends an error correction code
to Bob.

3 Error verification(EV): it is verified that the EC protocol
worked.

4 Privacy amplification(PA): the corrected string is shrunk
and a final key of length ℓ is obtained.

NEXT STEP: Provide a connection between ℓ and Nsource.
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Security

Same definitions

Shannon entropy: H(X )P := −∑

x∈X PX (x)log2PX (x).

Von Neumann entropy: S(X )ρ := −tr(ρ log2 ρ).

Mutual information:
I(X ;Y )P := H(X )P + H(Y )P − H(X ,Y )P .

Classical Conditional entropy:
H(X |Y )P := H(X ;Y )P − H(Y )P

Quantum Conditional entropy:
S(X |Y )ρ := S(X ;Y )ρ − S(Y )ρ.

Binary entropy: h(p) := −p log2 p − (1 − p) log2(1 − p).
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Security

Definition of security

Classical security
- X random variable describing the
possible keys
- E random variable describing
Eve’s information

A key (of length ℓ) is ε-secure if

H(X) ≥ ℓ − ε (1)

I(X ;E) ≤ ε (2)

Ahlswede, R.; Csiszar, I.; IEEE 39 Issue:4, 1993.

Quantum security
- X random variable describing the
possible keys
- M(ρE ) random variable obtained
when E applies POVM M on ρE

A key (of length ℓ) was ε-secure if

H(X) ≥ ℓ − ε (3)

max
M

I(X ;M(ρE )) ≤ ε (4)

H.-K. Lo and H. F. Chau, Science 283, 2050 (1999).

The quantum definition is problematic:
(Robert König, Renato Renner, et al. Phys. Rev. Lett. 98, 140502 (2007))

1 Not composable.
2 No operational meaning for ε.
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Security

Trace distance definition of security

ρK ℓEℓ key + Eve’s quantum state

ε-security

A key K ℓ is ε-secure if a

min
τE

1
2
‖ρK ℓEℓ − 1

2ℓ
1l ⊗ τE‖1 ≤ ε,

where ‖A‖1 := tr(
√

AA†) and 0 ≤ ε ≤ 1 is the security
parameter.

a
Renner, R., International Journal of Quantum Information (IJQI), ETH Zurich, 2008

Properties:
1 Composable.
2 Meaning for ε.
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Security

Eve’s attacks

ρANsource BNsource : Alice and Bob system

1 Collective attacks: final state tensor product
ρANsource BNsource = ρ⊗Nsource

AB
2 Coherent attacks: no assumption on ρANsource BNsource

For an arbitrary long key, ensuring particular symmetries

Coherent attacks≡collective attacks
Kraus, Gisin, Renner, Phys. Rev. Lett. 95, 080501 (2005)
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Security

What is the best state for the eavesdropper?

Definition

The state |ψ〉ABE is a purification of ρAB iff ρAB = trE (|ψ〉ABE 〈ψ|).

⇒The BEST FOR THE EAVESDROPPER: obtain
ρE = trAB (|ψ〉ABE 〈ψ|).

Rev. Mod. Phys. 81, 1301–1350 (2009)
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Asymptotic analysis

Formula for the asymptotic secret key rate
I. Devetak and A. Winter, Proc. R. Soc. Lond. A 461, 207 (2005)

n:=number of bits remained after PE

ρXnY nEn = ρ⊗n
XYE state describing Alice’s string (X) + Bob’s string

(Y) + Eve’s system (E)

r∞ := S(X |E)ρ
︸ ︷︷ ︸

PA

−H(X |Y )ρ
︸ ︷︷ ︸

EC

.

Two examples:
Rev. Mod. Phys. 81, 1301–1350 (2009)

BB84: 1 − h(eX )− h(eY )

six-state protocol:

1−eZ h
(

1+(eX−eY )/eZ
2

)

−(1−eZ )h
(

1−(eX+eY+eZ )/2
1−eZ

)

−h(eZ )
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Asymptotic analysis

BB84 (isotropic channel)
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Finite-key analysis

Secret key length

Using the framework of the finite-key analysis the following result holds.

Theorem: If Alice and Bob distill a secret key of length

ℓ ≤ max
ε,εPE,εPA

0≤ε+εEC+εPA+εPE≤ε
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S(X |E)ρ
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PA

− 5

√

log2

(
2

ε
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1

n
︸ ︷︷ ︸

Finite correction

− fECH(X |Y )ρ
︸ ︷︷ ︸

EC


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εEC
︸ ︷︷ ︸

EV

− 2 log2
1

εPA
︸ ︷︷ ︸
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,

then it is ε-secure.
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Finite-key analysis

Finite-key analysis
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Imperfections

Imperfections

Detectors: ηD: efficiency, pDARK : dark count probability

Quantum channel: losses and decoherence

Source: no single-photon source, no bell states source

Rev. Mod. Phys. 81, 1301–1350 (2009)
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Imperfections

Effect of losses

Perfect detectors, perfect source, no decoherence; Optical fiber tlink (L) = 10−
αL
10 with α = 0.17dB/Km.
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Imperfections

Effect of imperfect detectors

QBER = QBERChannel + QBERDarkCounts

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  50  100  150  200  250

Q
B

E
R

L (km) 

BB84, ηD = 0.95, pDark = 10−5



Quantum key distribution Quantum repeaters Conclusions

Imperfections

Effect of imperfect source

Ideal state

|ψ+〉 = 1√
2
(|11〉+ |00〉)

Real produced state

ρ = F |ψ+〉〈ψ+|+
(

1 − F
3

)

(|ψ−〉〈ψ−|+ |φ+〉〈φ+|+ |φ−〉〈φ−|)

Other possible imperfections:

multi-photon pulses

pulses produced probabilistically
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Imperfections

How to calculate the secret key rate

1 create a model of the set-up and all imperfections

2 calculate the raw key rate Rraw = Number of measurements
Number of initial pulses

3 calculate the QBER e

4 calculate the secret fraction r(e) = Number of secure bits
Number of measurements

5 the total rate is K = Rrawr(e)
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Some generalities

Introduction

Entanglement swapping: 2 short-distance entangled pairs ⇒
1 long-distance entangled pair
Distillation: N pairs with fidelity F0 ⇒ M < N pairs with fidelity
F1 > F0

Quantum relay: only entanglement swapping
with memory
without quantum memory

Quantum repeater: entanglement swapping + distillation
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Some generalities

Global scheme

Alice Bob
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Device

Measurement
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Security proof: repeater under the control of the eavesdropper
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Some generalities

A model of quantum repeaters
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Some generalities

How entanglement is created

Quantum
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Some generalities

On the role of quantum memories
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Our work

what we are doing

1 consider different model of quantum relay and calculate
the secret key rate

2 consider different distillation protocols and see which one
is better

3 general model for the imperfection in the gates
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Our work

A specific example:Briegel-type quantum relay
Effect of gates imperfection

BB84: perfect detectors, perfect source, perfect channel
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Our work

Gates imperfection + imperfect source

Minimal fidelity and pGATE permitting to extract a key.
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Our work

On-going work

analysis other quantum repeaters architectures(Rydberg
gates, Hybrid, ...)

analysis DLCZ-type protocol
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Our work

Analysis of distillation protocols



Quantum key distribution Quantum repeaters Conclusions

Our work

General model for imperfection

Many models of imperfections are present in literature:
1 Briegel-model, i.e. depolarization
2 diamond norm
3 gate fidelity

⇒ study these models in general and calculate key rates.
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Conclusions

Quantum key distribution:

Protocol: entanglement-based ≡ prepare and measure

Security: trace-distance definition, purification for the
eavesdropper

key-rate: asymptotic vs finite-size corrections

imperfections: essential for a correct analysis

Quantum repeaters:

General scheme
Our work

Quantum relays
analysis of different distillation protocols
models for imperfections of the gates
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