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Two Approaches to Security

Computational Security (CS) vs Information Theoretical
Security (ITS)
Assumptions

• CS: wiretapper has limited computational ability

• ITS: wiretapper has unlimited computational ability

Security

• CS: relatively secure;

• ITS: absolutely secure

Resources (Random key, throughput, complexity, etc)

• CS: less;

• ITS: more
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Two Approaches to Security

Consequence

• CS:very popular, especially in commercial systems;

• ITS: not so popular

But ITS received more and more attention. In particular CS would
be broken if the wiretapper could use quantum computer.
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Shannon Information Quantities

• Shannon Entropy:a measurement of uncertainty of random
variable (r.v.)
Let S be a r.v.taking values in S. Then

H(S) = −
∑
s∈S

P (S = s) log(S = s)

0 ≤ H(S) ≤ log |S|.
Uncertainty may not be negative.

• Conditional Entropy: the remaining uncertainty of r.v.S if r.v.
Y is known

0 ≤ H(S|Y ) = H(S, Y )−H(Y ) ≤ H(S),

H(S|Y ) = H(S) iff S and Y are independent and
H(S|Y ) = 0 iff S is a function of Y .
Knowledge of Y reduces the uncertainty of S
Note: quantum conditional entropy may be negative.
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Shannon Information Quantities

• Mutual Information: Information of S contained by Y .

I(S;Y ) = H(S)−H(S|Y ) = H(S)+H(Y )−H(S, Y ) = I(Y ;S)

0 ≤ I(S;Y ) ≤ H(S)

I(S;Y ) = 0 iff H(S|Y ) = H(S) i.e.,S and Y are
independent, and I(S;Y ) = H(S) iff S is a function of Y .

• Similarly we have conditional mutual information I(S;Y |X).

Usually we use Shannon Information Quantities to measure
classical ITS but sometimes other information quantities (e.g.,
Rényi entropy) also are used. For quantum systems von Neumann
Entropy and Holevo quantity are good measurements of security.
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Criterions of ITS

• Perfect Security: the wiretapper has NO information about
the secret message S, from the accessed massage Y by him,
which usually take “too much” resource:

H(S|Y ) = H(S) or I(S;Y ) = 0.

• Imperfect Security: the wiretapper may has LIMITED
information about S, which may need less resource.

H(S|Y ) ≥ h or I(S;Y ) ≤ i

for some h ∈ (0,H(S)], i ∈ [0,H(S)).

• Asymptotically Perfect (Imperfect) Security, which sometimes
is easier to be handled

lim
n→∞

1

n
I(Sn;Yn) = 0.
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The Goal to Study ITS

Look for optimal coding schemes with given secure criterion in the
sense

• to maximize the protected message or throughput

• to minimize the resource needed (size of random key, etc).
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Shannon Cipher System

• A random message S and a random key K are independently
and uniformly generated from the same set {0, 1, . . . , p− 1};

• The sender sends the outcomes of the random key k to the
legal receiver via a secure channel;

• m+ k (mod p) is sent publically and both legal and illegal
receivers can observe it;

• With the key the legal user may recover the message whereas
without the key the illegal user has no information about S
(perfect security).

• The size of key is equal to the size of the message.
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Shannon Cipher System

The coding scheme is optimal in the sense to minimize the key size.
Proof: Shannon, 1949
The legal receiver can decode correctly ⇒ H(S|Y,K) = 0
The illegal receiver has no information about S ⇒
H(S|Y ) = H(S)

log |S| = H(S) = H(S|Y )−H(S|Y,K)

= I(S;K|Y ) ≤ H(K|Y ) ≤ H(K) = log |K|,

where Y is the public message.



. . . . . .

Two Approaches to Security Measurements and Criterions of ITS Examples

Secret Sharing

Secret Sharing (Blakley 1979, Shamir 1979)

• There are a dealer and a set of participates in the game.

• The dealer observes a secret message S and accordingly
chooses random sharings Yi’s and distributes them to
participates.

• A subset of participates try to recover the message by pooling
their sharings.

• They can recover it if the subset is legal (i.e. in access
structure).

• Otherwise they should have absolutely no information about it
from their sharings (perfect security).

• Fixed the sizes of the sharings received by the participates, we
want to maximize the size of shared message.
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Secret Sharing

(k, n) threshold secret sharing scheme (Blakley 1979, Shamir 1979)
There are totally n participates and each r ≥ k-subset of them are
legal. That is, a set of participates can recover S iff the number of
participates is no less than k. The Scheme:

• Choose n different non-zero elements αi, i = 1, 2, . . . , n from
a field F with at least n+ 1 elements.

• The message S is randomly generated from the same field F
• After receiving an outcome s of S, the dealer randomly
independently chooses k − 1 elements a1, a2, . . . ak−1 and
constructs a polynomial
g(x) = s+ a1x+ a2x

2 + . . .+ ak−1x
k−1.

• The dealer sends g(αi) to the ith participate as the share.

• The size of message is equal to the sizes of the sharings
distributed to the participates.

It is easy to show the scheme is perfect secure i.e., any k − 1
participates have no information about S.
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Secret Sharing

Theorem: The size of the message S may not be larger than the
size of sharing of Yj for any participate j if there is no useless
participate. I.e., for all participate j, there is an illegal subset set J
such that J ∪ {j} is legal. Consequently threshold secret sharing
scheme is optimal.
Proof: J is illegal ⇒ H(S|Yi, i ∈ J) = H(S)
J ∪ {j} is legal ⇒ H(S|Yj , Yi, i ∈ J) = 0, so

log |S| = H(S) = H(S|Yi, i ∈ J)−H(S|Yj , i ∈ J)

= I(S;Yj |Yi, i ∈ J) ≤ H(Yj |Yi, i ∈ J) ≤ H(Yj) ≤ log |Yj |.

In general case to determine the optimal secret sharing scheme is
very difficult.
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Wiretap Channel I

(Classical) Wiretap channel (Wyner 1975, Csiszár-Körner 1978)

• A sender sends a uniformly distributed message S via a
memoryless noisy channel with two output terminals.

• A legal receiver and a wiretapper access the two outputs of
the channel resp.

• The legal receiver may correctly decode with a high
probability.



. . . . . .

Two Approaches to Security Measurements and Criterions of ITS Examples

Wiretap Channel I

• the wiretapper has no or limited information about the
message S i.e.,

lim
n→

1

n
I(S;Zn) = 0 or lim

n→∞

1

n
H(S|Zn) =

1

n
log |S|

(asymptotically perfect security)
or limited information about the message

lim
n→∞

1

n
H(S|Zn) ≥ h,

where Zn is random output received by the wiretapper, for a
constant (“equivocation“) h, (asymptotically imperfect
security).
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Wiretap Channel I

• The goal: maximizing the transmission rate

• The maximum possible rate is call the capacity. That is, C is
the capacity of a wiretap channel (for asymptotically perfect
security) if for all ϵ, δ, λ > 0 and sufficiently large n there is a
block code of length n with rate 1

n log |S| > C − ϵ such that
the legal receiver can decode correctly with probability at least
1− λ and for the wiretapper

1

n
I(S;Zn) < δ.

and there is no such code exists if the rate 1
n log |S| > C.

• Similarly one may define capacity of wiretap channel for
asymptotically imperfect security. Obviously the capacity
decreases if the equivocation increases.
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Wiretap Channel I

The proof of the Coding Theorem, (or determining the capacity),
is divided as two parts:

• Direct Part: The existence proof: By random coding. For
wiretap channel, the randomization of input is necessary.

• Converse Part: The non-existence proof: By information
inequalities.

• The additional resources. e.g., feedback, common randomness
shared by the legal users etc, may increase the capacity
(Ahlswede-C. 2006).

• Alternative models e.g., compound wiretap channel
(Bjelaković-Boche-Sommerfeld, 2011), wiretap channel with
side information (Chen-Vinck, 2008), etc, were studied.
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Quantum Wiretap Channel

Classical-Quantum Wiretap Channel, (C.-Winter-Yeung 2004,
Devetak 2005)

• A memoryless channel with a classical input and two quantum
outputs connect a sender Alice and a legal receiver Bob and a
wiretapper. That is, Bob and the wiretapper receive quantum
states ρ⊗n(xn) and σ⊗n(xn) resp. if Alice inputs a classical
sequence xn.

• Alice sends a classical message via the channel. We want that
Bob correctly decodes the message with an arbitrarily high
probability and the wiretapper has no information, no mater
what measurement he use. Namely the Holevo quantity
between Alice and the wiretapper vanishes as length of the
code increases (asymptotically perfect security).
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Quantum Wiretap Channel

• Due to no-cloning theorem we have to describe the two
quantum outputs by a single “big” state ω(x). I.e.,
ρ(x) = trW (ω(x)) and σ(x) = trB(ω(x)).

• It turns out that the capacity is equal to the difference of the
two Holevo quantities i.e., the coherent information.

• The result had been used to prove (direct) coding theorem for
quantum-quantum channel (Devetak 2005).
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Wiretap Channel II

The wiretap channel II (Ozarow-Wyner 1984)

• Message is encoded into a codeword of length n via a
noiseless channel.

• A legal user receives the whole codeword.

• A wiretapper accesses any t components of the codeword.

• The legal user can decode correctly (with probability one).
The illegal user has no information about the message (perfect
security), or limited information about it (perfect security).

• To maximize the size of the message: The problem has been
completely solved. (the Direct part: by construction of code:
the Converse: by information inequalities).
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Wiretap Network

Wiretap Network (C.-Yeung, 2002, 2011) consists of

• a graph (nodes - users, edges - noiseless channels).

• a subset of nodes - source nodes accessing information sources
and a subset of nodes - sinks accessed by legal receivers.

• a collection of subsets of channels - collection of wiretap
subsets

Senders send messages from source nodes to sinks via the network
and a wiretapper can arbitrarily choose wiretap subset and accesses
its all channel. The requirement of coding is that the legal receiver
correctly decode and the wiretapper has no or limited information
about the message (perfect and imperfect security). The goal is to
maximum the throughput and minimize the randomness used by
coding.
The model contains Shannon cipher system, secret sharing, and
wiretap channel II as special cases.
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Private Computations in Networks

• There are n users 1, 2, . . . , n in a communication network,
each accesses an information source Xi. The sources are
independent.

• The users cooperate to compute the value of a function
f(X1, X2, . . . , Xn) := f(Xn) by exchanging information over
the network.

• The users do not trust each others and they want the others
to know no additional information about their own source.
That is, the remaining uncertainty of the sources for the user
j must be H(Xi, i ̸= j|Xj , f(X

n)) after the communication
(perfect security).

• The goal is to minimize the randomness needed.
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Key Agreement

Key agreement or Key Distribution (Maurer, Ahlswede-Csiszar,
Csiszar-Narayan, et al)

• A set of legal users try to generate a common secret random
key by discussion through a public channel or network. The
legal users and a wiretapper may observe all message sent via
public channel. Usually we assume that the users may send
unlimited message through the public channel.

• The wiretapper try to have as much as possible information
about the key. The requirement is the wiretapper may have
no information or limited information about the secret key.
That is, the mutual information between the key and the
message leaked to the wiretapper asymptotically vanishes or
upper bounded by a given constant. (asymptotically perfect or
imperfect security).
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Key Agreement

• The legal users share certain resource whereas the he
wiretapper may or may not have certain own related resource.

• By resource for legal users, we mean different terminals of a
correlated information source, inputs and outputs of private
channels, different parts of entanglement states, etc. The
resource of wiretapper are a different terminal of of the same
information source, different outputs of the same private
channels and parts of the same entanglement states, etc.

• the goal is to maximize the rate of the common key.
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Key Agreement

An Example of Key Agreement (Maurer 1993, Ahlswede-Csiszar
1993)

• There is a discrete memoryless correlated information source
(Xn, Y n, Zn) in the model.

• Alice, Bob, and a wiretapper access the terminals Xn, Y n,
and Zn of the source resp.

• Alice and Bob (the legal users) try to generate a common
secrete key with a as large as possible rate by discussion via a
public channel according to the outcomes of Xn and Y n such
that the wiretapper has no or limited information about the
key (asymptotically perfect or imperfect security).

• The otimal coding shceme was obtained.
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Key Agreement

A Quantum Application of the Coding Scheme in the Example
(Schumacher-Westmoreland, 1998 )

• Alice assesses the classical input of a memoryless
classical-quantum wiretap channel and Bob and a wiretapper
access the two quantum outputs of the channel resp. Alice
and Bob generate a common random key by the following
scheme.

• Alice random chooses a classical input Xn according to a i. i.
d. distribution Pn and sends it through the channel.
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Key Agreement

• Bob and the wiretapper perform measurement to their own
outputs, components by components repeatedly, and to have
random sequences Y n and Zn resp. This builds meoryless
correlated source (Xn, Y n, Zn) accessed by Alice, Bob, and
the wiretapper.

• Then Alice and Bob apply the coding scheme in the example
to generate a random key with rate I(X;Y )− I(X;Z) such
that Shannon mutual information between the key and all
messages received by the wiretapper vanishes as the length of
the code increases (asymptotically perfect security).
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Key Agreement

An Observation on the Application (C.-Winter-Yeung, 2004): The
strategies for both sides are not optimal.

• It actually formes a classical wiretap channel (I) if Bob and
the wiretapper apply the strategy to measure their quantum
outputs components by components. Thus Alice may first
randomly generate a key and then treat the (resulting)
channel as a classical channel to send the key via it, with a
rate at least I(X;Y )− I(X;Z) (sometimes even larger).
That is, the public discussion is Not necessary in this case.

• The strategy to measure the quantum output component by
component for the wiretapper is not optimal. In fact it has
been shown that the wiretapper may have a better result by
performance of a suitable measurement to the whole output
(see the next slide).
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Key Agreement

• More severely to apply the coding scheme for key agreement
with 3 terminal source, Alice and Bob must know the joint
distribution of the correlated source. In other words, Alice and
Bob must know the both measurements, of Bob and the
wiretapper, before choosing a code. For no reason the
wiretapper to inform them his own measurement.

• For the same reason,we must know wiretapper’s measurement
if we stick to use a particular Shannon conditional entropy to
measure the security. On the other hand the wiretapper may
perform a good measurement to the whole output
asymptotically to achieve the Holevo bound, the upper of
information for all measurement, which may not be achieved
by Shannon mutual information obtained by measurement
component by component.Thus in this case, Holevo quantity
is a better measurement of security.
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Key Agreement

• Similarly Bob also may perform a measurement to whole his
output instead of the measurements component by
component.

• This motivated us to study classical-quantum wiretap channel.
By employing a secure code for the channel Alice and Bob
may achieve the coherent information, the best possible key
rate in both cases with and without public discussion. It is
secure no mater what measurement the wiretapper chooses.
That is the public discussion is unnecessary.
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Thank You!
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