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0. ABSTRACT

In [2] we proved a coding theorem and the weak converse of ‘
the coding theorem for averaged channels under different assumptions on the
time structure and the output alphabet of the channel, and we gave explicit
formulas for the weak capacity, The strong converse of the coding theorem
does not hold; therefore, it is of interest to know the 2 -capacity

C, (M) = Llim in_ log N (n,n) [9]. We could not decide, if C,(%) exists
n - co
for every A (0<A<4) ; however, we give upper and lower bounds for
Lim sup N(n,%) and Lim thf N(n, Q) , (Chapt. I, 2),
n—» Qo n —»>co

" In Chapter I, 5 we proved a coding theorem and the weak converse
for stationary semicontinuous averaged channels, where the average is taken
with respect to a general probability distribution. (We obtained this result in
[2], Chapter 7, remark 1, by a different method only under an additional
- restriction. ) The new method (Lemma 3) applies to averaged channels with
side information (cf. [8], [13]).

In Chapter II we introduce a new compound channel:

the sender can choose for the transmission of a code word
the individual channel over which he wants to transmit.
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I. AVERAGED CHANNELS WHERE EITHER
THE SENDER OR THE RECEIVER KNOWS
THE INDIVIDUAL CHANNEL WHICH
GOVERNS THE TRANSMISSION

1. INTRODUCTION AND DEFINITIONS

Simultaneous discrete memoryless channels, where the
individual channel which governs the transmission is known to the sender or
receiver were discussed for the first time by Wolfowitz [8], [11]. Kesten
gave an extension to the semicontinuous case [6]. Compound channels where
the channel probability function (c. p. f.) for each letter is stochastically
determined were introduced by Shannon [13]. Wolfowitz proved strong
converses [11]. In [2] we proved a coding theorem and its weak converse
for averaged channels under different assumptions on the time structure
(stationary, almost periodic, nonstationary) and the output alphabet (finite,
infinite) of the channel. We introduce now averaged channels with side
information. First let us repeat the definition of a general averaged channel.

Let Xt={1,...o.}_ for t=1,2,.. and (x't,;ﬁ't) = (x",£"
for t =1,2,... where X' is an arbitrary set and &£' is a o -algebra of
subsets in X' .

Furthermore, let S={s,... } be a nonempty (index) set,
(8, M,q) a normed measure space and let FEC.1M0s),...FE (- lals) be
probability distributions (p. d.)on (X't 2't) (teN, seS).

n
For each xn=(x,1,...,xn) €X, = tW )(t we define a p. d. on
=1 '

n n n

(L= TT XS 2= T by £ (oixgls) = T FEC IS s)
t=1 t=1 n n £ =1

The sequence of kernels (Fn(. R s)) n=12,... forms a semicontinuous (in

general nonstationary) channel without memory. (Incase x't=x%' is finite,

the kernels F'(.l.1s) are given by stochastic matrices wb(klils) =

=FY({k}lils) (leX,keX') . We speak then of a discrete channel without
memory ] . Thus we have assigned to each s€ S a semicontinuous channel.
If we are interested in the simultaneous behaviour of all these channels, then
we call this indexed set of channels a simultaneous channel (semicontinuous,
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without memory). The set {Fn(. l.1s)lse S) designed by S, iscalleda

sirhultaneous channel in the discrete time-interval < 4, n>. (cf. (8] s [6] , [1])

If Fn(AI x,!1s) 1is a measurable function on (s,M,q) for
each A€ ;f,'n, x.€ X, , then we can define an averaged channel by
P (Alx) = S F,(Alx, 1s)dq(s)

S
for Aedl x, eX,,n=1,2,...

A more intuitive description of this channel can be given as
follows: at the beginning of the transmission of each word of length n an
independeni random experiment is performed according to (S,M,q) with
probability q(s) that the outcome of the experiment be seS . If s is the
outcome of the experiment the word (of length n ) is transmitted according to

Fo(-1-18).

The definition of a code depends on the knowledge of the channel
Fnlel-1s) by the sender and or receiver. If neither knows the channel

over which the message is transmitted, a (n, N ,7) code for the compound
channel is defined as a set {( ey A, Cug, A,N)} , ‘where

w; e Xps Ai,ééf'n for i:‘\,...N)A'LnAj:(\? for i4j, such that
(1) IFh(AL\ug\s)dq(s)ZM?\ (¢=1,...N)
S .

The u; and A; do not depend on s . (cf. [2])

Paragraph 2 is concerned with existence problems of the
A -capacity of this channel.(cf. [9])

If only the sender knows the channel of transmission, the w;’s but not the A;
may depend on s . A (n,N,%) code {(u,(s),A), ., (uy(s), AN

must now satisfy

(2) SFn(A;lu;,(s)ls)dq(s)21-9\ (L=1,...N)
)

If only the receiver knows the channel, the A but not the ug
may depend on s and A, in (1) is replaced by A (s) . Finally if both

sender and receiver know the channel, w; and A; may depend on s
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We put

Ny(n,2) = maximal N for whicha (n,N2) code exists if neither sender

nor receiver knows the channel over which the message is transmitted.

N¢(n,2) for ¢=2,3,4 arethe maximal N for whicha (n,N) code

exists respectively if the sender only (i=2), the receiver only (¢=3) , the
sender and receiver (i=4) know the channel,

We designate the different compound channels by €. 8,, 0,5, ¢, . In

this chapter we prove a coding theorem and the weak converse for €;

(C=1,...4) in the stationary case. (I, 4, 5) (For results in the nonstationary

case cf. [2], [5])

In §3 we show that in general memory need not "increase
capacity” (cf. [(10]).

2. AREMARKON THE A -CAPACITY OF €,

According to Wolfowitz [9] Lim in logN,(n,2) is, if the limit exists, the

N ~—» oo
A -capacity C1(9\) of the channél ‘(’,1 . It is known [5], [9], [2] that '61(9\)

cannot be constant, because the strong converse of the coding theorem does not
hold in general We need the

LEMMA 1:
If

N
%%Pn(AiluL)21~’>\ for =1,2,...N and 1>, p>0
t_,:

such that y B> A , then
;o L
Q§$-|—N-Z1Fn<?*e'uc‘$)i1-x§24—?
L=
PROOF:

N
Assume q_{s|—s\l—-ZFn(AL\u£\s)21—5)§<4—(5 , then we have, if we
. i=1

N
write {(s) instead of %Z FoCA luls)
. L=1
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§ $(sHdq(s) = S $(sH)dq(s) + K fCs)dq(s) <
S tet-y t21-y

< (-x)qisli<t-y}+qislf21-y}, since f(sr<1.
= (-0 U-qislf21-y +qisls21-y} =
= 1—X+xq{sl{21-x}é

E ey rg(A-p) = 1-yp<1-2,

in contradiction to the proposition,
This proves the Lemma,

Forap. d. p on X let R(p,F(-|-1s) be the rate of the channel
FC.lets). ‘

THEOREM 1

Let X' be finite.

a)  ,C,(A):= in sup sup inf R(p,F(.1-18))2
gP>21-% p {5':q(5") 21-B} ses'
2 lim sup %Log N,(n,2)
n — oo
b)  _C(M):= sup sup sup inf R(p,FC.1.18))<

O0<€<1 p §:q(8)>1-eXr ges'

In

lim inf L log N,(n,A)

n—» 0o
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PROOF: _
Choose ¢,8' with q(58)> 1- ¢X  such that

sup wnf R(p,F(-l.1s)-C (%)l_sé )
p P 1 2
p sed

then m such that (1-57\7(1—11) =1-A.

A v -code for the simultaneous channel S ={F,(-1.1s)| se¢S'} is

a A-code for B, . ‘
b) follows now from the coding theorem for S, .

A A -code for Pn is an averaged A -code for P,

N
A S e Alud)z1-0 .,
N (o1
From Lemma 1 follows that for every pair (y, p) with O0<y,p<t1

¥P>A there exists a subset $" of S with q($"21-p  such that

N
2 FulAilugls) 21—y (seS")

(=1

4
(3) N

Applying Fano’ s Lemma for averaged errors we get

%LogN,l(n,’)\)S L sup inf R(p,F(.1.1s))
1‘8 p seS"

and furthermore
Llog Ny(n2) 2, C(),
this proves a)

It is an easy consequence of the definition for 4_(11(’)\) and C, (M)

that C,(2) y (N are monoton increasing in A , that lim C,(2) s
1 ) A0+ v
Lirn L,(N)  exist and that  lim +C1(')\) = lim C, N . Let us denote
A0 A—>0 A0

this limit by C, . Then we have as a consequence of Theorem 1
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COROLLARY 1. C, is the weak capacity for ¢, . In [2]

we gave a different proof. (Theorem 5, chapt. 7.)

REMARK 1. For an individual channel it is unessential whether
we work with a A -code or with an averaged A-code, (cf. [11], ch. 3.1
Lemma 3. 11) however, it makes a difference for simultaneous channels. If
we use averaged A-codes for simultaneous discrete memoryless channels,
then the strong converse of the coding theorem does not hold.

EXAMPLE 1.

X=x'=§1,2,...5}, 5=191,2}

(1 0 0 0 0)

01 00O

(W(j'“mt.j=1,..., = 00100
00100

\0 0 410 0)

(0010 0)

. 00100
(W(j“"')'))é.j=1,...,5= 00100
00040

L0 00O 1

The capacity of the simultaneous channel is given by

> w(jlils)
max min R(p,w(-]-1s)) = max min 2_ Pew(jlils) log — i
=1|2 :4.2 l.-,':1 .
P p s J ZPkW(J”‘\S)
k=1
R(p,w(«1.11)) = (p,+ p,+ ps) log { +
) 37 P4+ Ps Po+ Pat Po
1 1
+ p,log — + p,_log —
P4+ p, P23,
R(pw(1.12)) = (p1+ pz+p3) log . ! +
Pr+ Pt Py
4

1 1
tlog— +p_log—
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(4)

other p.d.’s.

(5)

(6)

max R(p,w(-|-|1))= log 3
P

The maximum is attained for p= (—13—;%—; P3' P41 Ps) ~and no

max R(p,w(:1.12)) = log3 , the maximum is attained
p

1 1 ’
for p:(p1,p2,p3,-g-,_3_) and no other p.d.’s.
From (4), (5), it follows that’

max min R(p,w(.l-15)< log3
p s=1,2

Consider the sets

Vo= {x,lxps (el x™ e X, xte {34,5

W= §xplx, = (el x™) e Xy xte§t, 2,33

Define the code {(q;,A;)|G; eV, UW,, A;={x}] xt = t_th

component of w;%}
The length of this code is
N=2.3"-1>3"

For Az1/2 the code is an averaged simultaneous A -code:

N
LS rAluds)z i aon (s=12)
N v=1 2

If we denote the maximal length of an averaged simultaneous A -code in
<A nd by N,C(n,A) then we have

Na(“:?‘) >3n= glogdn
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However, it follows from Fano’ s Lemma that

mox min R(p,w(.l.18)) < log 3
p S=1|2

is the weak capacity for our simultaneous channel with averaged error, The
strong converse of the coding theorem does not hold. In special cases we can
give a sharper estimate than that given by Theorem 1.

EXAMPLE 2., Given %X=X'=%1,... a¥ and the stochastic matrices
w11, w(-112) with a. rows and a columns. For s=1,2 we
define the discrete memoryless channel '

n
(P10l o iya by Py (xl 1x,1s) :;W1w(x'tlxﬂs) for

all x,eX,, %, eX,, n=1,2,... andthe averaged channel €, by

P.(xhixy) = % Py 1y 1) + ';T P 1212) (X, € Xy Xh€Xh, nz1,2,.0) .

We get
(7) C.(A) = max max R(p,w( |-1s)=C for 'A>12-
1 5:1,2 P
and
(8) C,(M) = max inf R(pw(.I.1s)=C for a<%
P s=4,2
and
= . 1 1 o1 1 =
C2 UWmsup — log N(n,—) 2 Wminf— logN(n,—)2C
(9) n pn 2 n — o n 2
f =L
or A=

LC,(N) = max max R(p,w(-1.1s) = € for >12— follows from the
s=1,2 p

coding theorem for an individual channel. It remains to show that C, (N < E

a A-code {(w;,A)/i=1,..N} for

€, has the property that either
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(10). PCAdw I 24-2  or  Py(A[luil2)Z1-2 (i=4,... N).

Therefore:

N(n,n) £ 280 ¥ K(WVR and CM<E.

(8) is trivial. (9) is a consequence of (7), (8).] |
It is possible that C,(2) exists for A = ‘? and is unequal to C andto C

Choose for example w{.1-11) such that O<CZerc error< Max R(p,w(-1-11)) ([12])
p

zero error —

and
w(titl2) =1 for i=1, - a
w(jlil2)=0 for j#1 (=1,..a .
Then we get
c>cC = m%togN(n,l)>C=O..

Lo
n —» 00
In general we have

C=> lim sup log N(VM%‘)Z tim tnf LOQN("‘:JZ-) > h"‘3"1(-(:"629,\"0 err_or) )

n—oo n—> o0

where C is the maximum of the zero error capacities of

zero error
w(111), w(-1.12).

A formula for C(iz-) would imply a formula for C which is

zero error )

unknown [12], But even the existence of Lim ';‘T logN(n, ;—) is not
n-— o

obvious. This seems to be a difficult problem. It is easy to construct channels

for which C(A) has countable many jumbs but for which the weak capacity

C= LLmo C(A)  exists, as was shown in [9]. Probably there exist even
n—>

channels for which 'C(A) does not exist for all A but for which C still exists,

REMARK 2. Incase S is finite we can give a Sharper estimate
than a) in
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THEOREM 1:

unf sup sup inf R(p F(lols) =
O<n<t p S':q_(S’)Z‘l—%- ses' ‘

> lim sup % Log N4(n,N)

n-—» o

This can be proved by extending the argument used under (10) for S=4%1,2}
to the general finite case.

3. A REMARK ON THE PAPER OF WOLFOWITZ:
"MEMORY INCREASE CAPACITY"

Given a stochastic matrix w(i}j), i=1,...a
. (=1 a

We define the channel O without memory:
. ty b !
pn<9n|¥n)=£1w(9 Ix®), x eX,, y eXh, n=1,2,...

Let (P,(.1.1M) n=1,2,...  be any channel with the property
PECGtLEIM) = w(yt Ix®),  xFeXb, yte X't to42,.

Thus, the two channels are directly comparable. Wolfowitz (10] proved:
suppose that in channel M the power of the memory ( [11], ch. 6.7) between
blocks of letters separated by d letters approaches zeroas d-—sco
uniformly in the blocks, then the capacity of channel M is not less than that
of channel O '

It follows from Dobrushin’ s inequality [4] that

C,= limsup = sup R(p,,P,(.1-1M) 2 Cy .

M
n — Co .

Wolfowitz’ s result holds, iff Gy is capacity. But C need nct be the capacity
of channel M . [cf. [2], ch. 3, remark 3.]

Averaged channels are channels with memery. They give us
examples of channels, where memory decreases capacity.
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EXAMPLE 3, Let w(-1.11), w(.1.12) bLe stochastic matrices

with

max R(p,w(.1.120) =0
P

mox R(p,w(.|.|1))> 0.
P

Let wl1)=q, w11 +q, w(.1.12).

For q, sufficiently near to 1
max R(p,w)>0,
P

but the weak capacity of

2
(pn(“"m)nﬂ,---: (gqspn('l'ls))nz‘h'z,---

is max inf R(p,wClidsN=0.
P s=1,2
In general we have:

Cyz mgx s§|2qsi2(p,w(-l-ls)) [cf. [2], ch. 3. remark 3]

Co = mg.x Rlpya,wCl M) +q,w(.1.12))

the weak capacity of M= max inf R(p,w(.i.1s)).
’ p S=1|2

If max inf R(pw(l1s)< Co, then the memory decreases
’

p s=4,
capacity.
If max unf R(p,w(-1-1s)2Cq  then memory increases
’ O $=1,2
capacity.

- 46 -



EXAMPLE 4,

1 O
w(.1.11) = [ }

0O 1
(.1.12) = (o
w(.|. = 10
- 24
UQ=9,= 3

11
wi(-1.)= 2 2

21

2 2
mox inf R(p,w(.1-18)) = log?2
p s=1,2
CO=O

Even if the strong converse holds for channel M , the capacity need not be
greater than CO . (For the definition of the general discrete channel see [1 1] ,
ch. 5)

EXAMPLE 5. X = X'=£$1,2}
Pn(111..1\111..1)=1

P,(000..0}1000..0)=1

pn(gnb(‘n):_gw iff 'X'n:l: (171,1 1)

+ (0,0,0...0)

(n:’l,?_,...), xnexn,gnexln .

The strong capacity of (P (-1.) _,, is O and Cpn= log2

|t Rl
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4. DISCRETE AVERAGED CHANNELS WHERE EITHER THE
SENDER OR THE RECEIVER KNOWS THE c. p. f.

Assume X'P={1,...a} t=1,2,...; S={12,...} 1=0q,,), q,>0
p. d. on S .

The discrete averaged channel is defined by

(P (Al n=4,2,.. = (;qun(A\xn\s)) n=1,2,...
Sz

!
ACXn,xneXn .

LEMMA 2: For q= (q,»---) define

m = Ln‘f' >0
k ?(:1,---kq-7c

If {Cu, s, AL Lo (upCs), Al CsN} is a set of pairs,
where u;(s)e X, , A'L(s)ei,:,, for v=1,..N, se$S
AN Ais) = ¢ for i4j,seS

and furthermore

(11) 2 q P (A () ui(s)ls) 21 Ok
s€S Z
then
(12) PACAL(O | wi()1s) 2 4m for L s =1,k i, N .
v oo
PROOF: Define €, = > Ay .
= k41 -
From (11) we conclude y
Kk
' , _ 1 .
S%'Qspn(AL(57‘LLL($)l5> 2 1 E'k‘?nk ) since
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k o
(13) %qspn(A'L(s)l w;(s)ls)z ;qspn(AIL(S)lu.L(S)\ s)-¢g,2
S= =

1
2 1-(3_-'qk+bk).
But

n

k
(14) Zq_sP (A ()] uy ()1s) - q P CA (s lu (s s')<4-¢,-7m,
s=1 .

1

for s’z 4,k .

From (13), (14) we have
QP (AL () ui(s)ls) = %nk for - s=14,.. k3 t=1,...N

and therefore
1 .
Pn(AIL(S)\uL(S)lS)>‘EY\k fOI' S:‘l,‘_‘ kn L=4I“' N

(cf. [2] proof of th. 2)

REMARK 3. The proof goes through verbatim for the semi-
continuous case. Averages with respect to general p. d. can be treated in the

same way as in [2], §7. However, in &5 we give a different proof, which
covers all these cases,

THEOREM 2, (Cod. th., and weak converse for ‘63 )

Let C5 = max inf R(p’,w(ol-\s)) .
P seS '

Then the following estimates hold:

a) Given O0<%<1,8>0, then there exists an n,= n,(4A,8)

such that N3(n,'}\) > e(C3=S)n for nzng.
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b) Given &>0 , then there exists a A4 and an ny=n_(4,d)

(C3+6‘)n

such that Ns(n,’/\) <e for nzn

o

PROOF: a) A A -code for the simultaneous channel
§P.(-1.1s)] seS} is a A -code for €, .

b) For the given § >0 choose k such that

) TS
lck_cls? , then choose A= >

It follows from‘Lemmav?;, that for a A -code
fCu;, A’L(S))l t=1,...N:seS} for €s -
PrlA ugls)yz Ly
holds.
Statement b) follows now by usual arguments. ([2], Theorem 4.5, 2. )

THEOREM 3. (Coding theorem and weak converse for €, and

t,) Let C,= Cy= inf max Rip,w(.1.15)) .
: SES p

Then the following estimates hold:

a) Given 0<2A<1,d>0 , there exists an Ny=ngy{A,4) such
that Nj(n,’)\)> os’,(cJ"‘S)n for nZn, (j=2,4).
b) Given é>0 ,there exists a A and an ny=ny(A, &) such

(Cj+6)n

that Nj(n,m<e for  nzn, (j=2,4).

PROOF: a) follows from Theorem 4.5.3 in [11].
b) By the same arguments as in the proof for

Theorem b) we get
pn(AlL(S)luL(SHS)?-%‘"}k s=4,... k; Lt=1,... N

Applying the strong converse of the coding theorem for individual channels we
get b),

REMARK 4, The strong couverse of the ceding theorem does
not hold for €,, ‘63 and €,
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EXAMPLE 6 ([2], ch. 3, remark 1) Choose w(.l1.1s), s=1,2
such that

_(Pn(’\'H)),{:{,z,... has capacity 0 and (pn("'lm)nd,?.,..,
has capacity C(2)>0 . Then a fortiori C,=C3=C,4=0
A X -code for 1EP,,(-I-I?.) isa A-code for B, . For '>\>% we get
C(2)n-k(NVn

N;(n,2\)> e for (iv=2,3,4).

That €3 does not have a strong capacity was earlier shown be Wolfowitz ( [11],
ch. 7.7)

5. The general case

We return to the case, where the individual channels (Fn(-l 1s))

n=12,.. aresemicontinuous and q is a general p. d. (as described in §1).

LEMMA 3

N .
It S [P (AU uils)ls) dqlsrz 1-2
S

X
N =1
for v=1,...N and 1>y,p>0 suchthat yR>0

then

N
q{s]jﬁ % PCA () uits)ls)z1-a} 2 1-p

N
PROOF. Define *(s) = % 2_P (A(s)uils)]s),
‘ i=1

then the proof of Lemma 1 turns over verbatim.

THEOREM 4. (Coding theorem and weak converse for €,

Let  ¢4= inf sup lim + sup sup inf R(pIDIF (-1.1s3
d>O§S'CS=q_(S')31—0(}n—)oong)nezn P: sefs' Pnintn ))
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where @,=<D,,...,D > is a partition of X,, in finitely many elements of

b
&£, and, Z, is the set of all such finite partitions, and R(p 1®,1F,(-1.1s)) =

Fa(Dilx,ls)

Z ZP(x'n)Fn(D'lx- Is) Log
i=1,..b x,,ex,," o 2 Pty Fa(Dily,ts)
Y& Xn
then the following estimates hold:

a) Given O0<2%<1, §> 0 , than there exists an n_ =n, (2, 8§),

such that N1(n,')\)>e(c1"d)" for nzng -

b) Given >0 , then there exists a A andan ng,= (A, 8),

such that - N1(n|’}\)<e(c‘1‘6)” for nzn, .
PROOF. a) Define
C,()= sup lim—"n- sup sup inf R(p,|D,IF 1 1)) .

15'cs: q(s)24-a} N> Dn p, sed

" Given 28>0, choose at<n and S' such that q(8)z1-a and

| tim % 'sup sup Lnfl R(pl@ann(.\.\s)) _ c,1(oc)\ < —i—
n-»co ﬂn pn 5¢S
Define A'= A - . A N-code for the semicontinuous simultaneous channel
{F,(1.1s) 1 ses'} isa A-code for €, , because (1-N)(1-x)=

=1l-(1-c)A -t =1-2 .

The coding theorem for semicontinuous simultaneous channels
([6], th. 1) gives us :

)
N1(n,'>\)3_ e<°1<d>-7>n_kcx>w, > e(c1_5)n

for n sufficiently large.

b) Choose « such that
(15) |C ()-Cl< S, then p such that log a(1_~1)< S
1 1 3 1-p T3
and finally A 'such that o> A
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By Lemma 3 there exists a set § with q($)21-« and

N
%ZF,,(A;‘\ wils)>21-6 for s¢S . From Fano’s Lemmas we obtain
¥ iz

Cqla)
n
N,(n,M)<e 17P

If we use (15) we get statement D).

THEOREM 5 (Coding theorem and weak converse for ¢, )
Let C,= inf sup sup inf R(p,F (-1.15))
>0 p  5'CS5:q(8)21-a ses’
“then the following estimates hold:

a) Given 0<2<1,6>0 , then there exists a ny=n (%, 4), such

that

(03—5)71

N3(n,'A)>e for n

v
3

b) Given § >0 , then there exists a A and an n =n,(,8),

such that

(Cy+ d)n

N3'(n,')\)< e for nzn,
PROOF': a) Define
Cple) = sup sup inf R(p,F(.1-15))

P §8'18'cs,qeo 21~} se9

Given A,d>0 , choose «< ) and §' such that q(s') 24-« and

| sup inf ch,F(.s.\s»-c3ca>\s.§2_

p seS’
-t
1 -t

Define A' =

. A N -code for the compound channel (with receiver

knowledge)

S1(R)= {F,(-1.18) ] se s} isa A-code for €,, because
(A-NY(A-at) = 1=-A.
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The coding theorem for s, (R) ([6], th. 4) gives us

. 5 |
Ng(n,2) 2 N (n N > o(C3Ce - FIn-k(A)IVn 5

2z 0(C3-8n  for g sufficiently large.
b) Choose « such that

1
(16) | Cala)-Cyl s 153-, then § such that log o“x( TR 1) <

w #

g
3
and finally A such that op >

By Lemma 3 there exists a set S with q(S)2> 1-o and

N
—'l—ZFn(AL(S).Iu‘;IS)>_“1~p for seS.
(=1

From Fano’ s Lemma we get

Ca (o)
1-$B

Ns(n.?\) <e

If we use (16) we get statement b)
TEHEOREM 6 (Coding theorem and weak converse for €, and €,)
Let

.= Cu= int sup lim - sup inf sup R(p.,D,,F, (.1.1sY)

C ]
$'C5:q(8) 21 -k noo N ' ntn
o >0 C5:q z -» Q)n 5eS Pa

(tlie existence of the limit was shown in [6]), then the following estimates hold:

a) Given O0<?2<1,8 >0 , then there exists an Nea=ngy(A,8),
such that
(Ci=8)n
Ny(n Ay >e ™ for nzng C(j=2,4) ' )
‘ b) Given 550 , then there exists a A and an Ng=Nng(A, 8) ,
such that



(Cj+d)n for- nzn, (j=2,4)

Nj (n,N)< ¢
PROOF: a) It follows from the definition of ¢, and <€, that

(17) No(n,2) = N,(n,2A) therefore it is enough to prove a) for '62_

Define

C,(a) = , Sup lim .1; sup inf sup R(p,ID,IF (-1.15))
{s'15'cs:q(8)21-a3 n>ew D, se8' p '

Given A,4> 0 , choose «< and S' such that q(5)>1-« and

f tim —31— sup inf sup R(pnlgjn\Fn(.L\s))— CZ(cL)\ S% .

n-—>» oo i)n se§ pn

A-
1 -«
knowledge S/ (s) = {F,(-1.}s)lseS'} isa A-codefor €, .

Define ' = . A N -code for the simultaneous channel with sender

The coding theorem for S/ (s)([6], th. 3) gives us

: d v
N,(n,A)2 Ns(n A 2 e(cz(d)' _2') " for n sufficiently large and therefore

Cy~d)n

N,(n,2)2 et for n sufficiently large.

b) Choose o such that

- (18) | Chtar-cyl f% then @ such that

log a(-;l—1—‘3- - 1)f %— and finally A such that xf>A.
By Lemma 3 there exists a set & with q(S)2 4-« and

N
_ZﬁFn(A;(s)\ wi(sils)z4-p for ses.
iz

Z |-~
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From Fano’s Lemma and (17) we get

Cq(oﬂ) »
No(n, M) < Ny(nA)<e b . If we use (18) we get statement b),

II. ANEW CHANNEL

Let S be an arbitrary (index)-set and to each se$ assigned
a semicontinuous nonstationary channel without memory, ( Fo(-1:15)) .
n= '1, 2,

In the theory of simultaneous channels [8], [1] one uses the
following definition of a 2 -code: a A-code (N\n,Q) is a set of pairs
{(u.,:,A,’_I(.:L...N’; with uLGXn,Aiesﬂ; for 1=1,..N. A;_ﬂAjz(p
for 14} and with s

(19) inf FoCA Juils)2 1-a
5eS

This describes the situation, where neither the sender nor the
receiver knows the individual channel which governs the transmission of a
code word uw; .

If the sender can choose for the transmission of a code word u;

the channel over which he wants to transmit, then we have in the code definition
(19) to exchange by

(20) sup Po(Ailuils)>q-4
 s€S '

We denote the described compound channel by W

1. THE STATIONARY DISCRETE | 3
CASE

Assume that the channels (F,(-1-15)) n=1,2,... ai-_e discrete and
stationary.
TFEOREM 7 (Coding theorem and strong converse for W .)

- 56 -



Let C = sup max R(p,w(-1:1s))
S€ES P

Given >0, 0<a <t then there exists an n  such that for nz n,

a) N(n,\)> elC-9In

b) N (n,My<elC*éIn

PROOF: Part a) follows from the coding theorem for an individual
channel.

For the proof of part b) we need the

LEMMA. [[11], 4.2.2. p. 35], [1]

Let b be greater than O . There exists a nullsequence of positive real
numbers

{a.} n=41,2,.. with the property:

let neN,AcX,,x_ €S, ,s s*eS suchthat

F,CAlx 1s)>b and
Iw(iljls*) - wliljis)] = 2 (120, j£a)
2"
then Fo(Alsals®) |
Fn(A‘xnIS) n

S can be written as a finite union of disjoint sets

Sr_(r:1,....(

) =R), suchthat

. - -Nn .
bw(jlits) -w(jlits*)l< a-2 (i,j=4,-.a) for s,s'esS .

Let now {(u;,A{)li=1,..N} be a code (N,n,A) of maximal
length, ,

To every u; corresponds an individual channel P,C.1.1 si)

and therefore a matrix w(.].1s;) . Let {(uu-hr, AL Tie=1,.. N.}
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be the subcode which corresponds to $. . It follows from the Lemma that for

a N> A there exists an n. such that for n 2 n

0 o

'Pn(ALr\quls)Z‘!_’)\' for all seS. (r=1,... R)

The strong converse of the coding theorem for an individual channel gives us

R Cn +k(N)Vn (C+8)n
N(n,2)= 2 N_(nA)< Re <e
=1

for n sufficiéntly large.
REMARKS: In the semicontinuous case we have in general no
compactness property which leads to the Lemma. The coding problem for

channel W is than equivalent to the coding problem of an individual channel
with the input alphabet

X = US X Xg = §(1,S)---(O.,S))} for se¢S , where the code words are
se

restricted to have as components elements from one set X

2, THE c. p.f. VARIES FROM
LETTER TO LETTER

Given a set of kernels {F(-1.1s)| se S} . For every n -tupel

S =(sh ... s, ste s we can define the product kernel

F (o 00s,) = TTF( st) .

Consider now the class
= {F (1ol sp) ) s,,,:(s1,... s™), sLeS}
A simultaneous A-code for € is a set of pairs {(uw;,A)ji=1,..N},

LLLGX

y ALe L AINA = for (4| with

FoCA Tuls,) 2 1-2 for all s, = (s' ... s").

.



It is an unsolved problem to estimate the maximal length of such a A-code [7].

If we use the code definition (20) then the sequence ( €,) n=1,2,... defines
a compound channel W . '

sup F (A lugls) > 1-2 for 1=1,..N is equivalent with:
S

n

there exist s1n . sﬁ such that

(21)

Fn(ALluils;)> 1 -2 for t=1,...N.

Define a new channel W in the following way;

input alphabet X x$
output alphabet (X', £')

(xpisp) s O s?) oo (M s™
Fo(Alx,,s,0) = F (Al ls,)  for

Aed ), (x,,5,)€(XxS)x.. x(Xx$S) n=1,2,.

A % -code for channel ¥ isa A-code for W and vice versa. We have reduced
the coding problem for 1 to a known situation: W is a stationary memoryless
channel with general input and output alphabets and can be treated by the methods

developed in [3].
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