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New Directions in the Theory
of Identification via Channels

Rudolf Ahlswede and Zhen Zhang, Senior Member, IEEE

Abstract—We study two problems in the theory of identification
via channels. The first problem concerns the identification via
channels with noisy feedback. Whereas for Shannon’s trans-
mission problem the capacity of a discrete memoryless channel
does not change with feedback, we know that the identification
capacity is affected by feedback. We study its dependence on
the feedback channel. We prove both, a direct and a converse
coding theorem. Although a gap exists between the upper and
lower bounds provided by these two theorems, the known result
for channels without feedback and the known result for channels
with complete feedback, are both special cases of these two new
theorems, because in these cases the bounds coincide. The second
problem is the identification via wiretap channels. A secrecy
identification capacity is defined for the wiretap channel. A
“Dichotomy Theorem” is proved which says here that the second-
order secrecy identification capacity is the same as Shannon’s
capacity for the main channel as long as the secrecy transmission
capacity of the wiretap channel is not zero, and zero otherwise.
Equivalently, we can say that the identification capacity is not
lowered by the presence of a wiretapper as long as 1 bit can be
transmitted (or identified) correctly with arbitrarily small error
probability. This is in strong contrast to the case of transmission.

Index Terms— Cryptography, identification, channel capacity,
wiretap channel, noisy feedback.

I. INTRODUCTION

HE MODEL of identification via channels was introduced
by Ahlswede and Dueck in [3]. Since then, several
articles (c.f. [4]-[7]) on this subject have appeared and there
are still many interesting and important open problems in this
fertile research area. In this paper we introduce and study two
new problems. The first concerns identification via channels
with noisy feedback, which is a model that unifies both the case
of channels without feedback and the case of channels with
complete (or noiseless) feedback. The identification problems
for these two cases were studied in [3] and [4], which contain
the most basic results in this area.
A communication channel with noisy feedback is defined
by a quadruple
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X, W, ), 2z} M
where & is the input alphabet, ) is the output alphabet, Z
is the output alphabet for the feedback, and W = {W (y, z |
z):z € X,y € Y, z € Z} is a stochastic matrix which
gives the conditional probability of the output letters y and z
when the input letter is 2. The transmission probability for n-
sequences " = (21, ++,Zn) € X" Y = (Y1, *,Yn) €Y7,

2" = (z1,"-+,2n) € Z™ is given by
n
Wy, 2™ | 2") = [[W(ye, 2 | 20) @)
t=1
for n = 1, 2, 3,---, that is, the channel is assumed to be
memoryless.

To define identification feedback codes (IDF) in the sense
of [4] for this channel we let F,, be the set of all possible
vector valued functions

f=0 1 3)
where for t € {2,---,n}, f! is defined on Z*~! and takes
values in X. f! is an element of X. It is understood that,
when f is used for the transmission over the channel, after
the feedback signals 2y, 23, -+, 2;—1 have been made known
to the sender by the feedback channel, the sender transmits
f#1,++,2-1). When t = 1, the sender transmits f. The
joint distribution of the output random variables Y7,---,Y,
and the feedback random variables Z;,---, Z, is determined
by the function f used and by W as follows. For y™ € )",
z2" e 2Z"

Pr(Y"=y", 2" =2"|f)
=W"(Qy", 2" | f)

= HW(yt, zt | fz1, 5 2-1))- @
t=1
We set
WhYT )= Y WhE 2| ) &)

zZnezZn

and describe now the feedback codes with randomized encod-
ing strategies, that is, elements of P(F,,), the set of probability
distributions on F,.
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Definition 1: A randomized (n, N, A) IDF code for W is
a system )

{(QF(IZ)’ D;):i=1,---,N}
with
Qr(-|i) € P(F,), D; C Y,

and

forie {1,.--,N}

D Qr(g| )W™(Di | g) =1 - A
9€Fn
> Qrlg|HW™(D; | g) <A (6)
gEFn )
for all 4, j € {1,---,N} and i # j.
Let Np(n, A) be the maximum integer N for which a
randomized (n, N, A) IDF code for W exists. We also use

W(yle)=) Wy, z|2)

and call {X, W, Y} the main channel. Our goal is to deter-
mine the double exponential growth of Ng(n, A). Insofar we
have the following result.

Theorem 1: If the transmission capacity C of the main
channel W is positive, then we have for all A € (0, )

1
lim inf Elog log Np(n, A) > max I( XU AY) (7)

where the maximum is taken over all joint distributions
P XYZU with

Pxyzu(z, y, 2, u) = p(z)W(y, z | z)q(u | z, z)
satisfying
IUNZ|XY)<I(X AY).
Furthermore

1

lim sup p loglog Np(n, A) <maxI(XZAY), (8)
n—oo

where the maximum is taken over all joint distributions Pxy z

with

Pxyz(z,y, z) = p(x)W(y, z | z).

Remarks:

1) This theorem implies the results of [3] and [4]. To see
this, observe that in the case without feedback Z = 0 and
both bounds equal Shannon’s transmission capacity. This is the
result of [3]. In the complete feedback case we have Z =Y
and both bounds equal the maximum entropy H(Y'). This is
the result of [4]. Therefore, Theorem 1 can be viewed as a
unification of the results of [3] and [4].

2) A challenging task is to close the gap between the two
bounds. We guess that the lower bound is tight, however, a
converse proof technique more powerful than those of [3] and
[5] is needed!

The second problem concerns identification via a wiretap
channel. This channel was introduced by Wyner [1]. It can be
viewed as a probabilistic model for cryptography.
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The channel has two outputs. One is for the legitimate
receiver and the other, which is a degraded version of the first
output, is for the wiretapper, The goal of the communication
is to send messages to the legitimate receiver while the
wiretapper must be kept ignorant. A more general version of
the wiretap channel was studied in [2], where the assumption
that the output for the wiretapper, is a degraded version of the
output for the legitimate receiver is dropped. We address here
right away this general model. As defined in [2], a wiretap
channel is a quintuple

{(x,w,v, ), Z} ®

where & is the input alphabet, J is the output alphabet for
the legitimate receiver, Z is the output for the wiretapper,
W ={W(y|z): z € X, y € Y} is the channel transmission
matrix, whose output is available to the legitimate receiver, and
V={V(z|z):z € X, z € Z} is the channel transmission
matrix, whose output is available to the wiretapper. The
channel is assumed to be memoryless, that is, the conditional
probabilities of the output word y™ and 2" given the input
word 2" are

n

Wy | 2m) = [[W(ye | 22)

t=1

and

V(| 2) = HV(Zt | ).

t=1

In the classical transmission problem, an (n, M, €)-code for
the wiretap channel is defined as a system

{(ci, Di): 1 <i < M}

where for all 3, ¢; € P(X™) are the codewords and D; C Y™
are the disjoint decoding sets. It is required that for any i

an

and if X™ has uniform distribution over {¢;: 1 < i < M},
then

(10)
X 2 Wr(DE i) <e

TIXMAZY <e (12)

The secrecy capacity of the wiretap channel is defined as the
maximum rate of any code which satisfies these conditions.
Formally, let

M(n, €) =max{M: 3 an (n, M, €) code}  (13)
then the secrecy capacity of the wiretap channel is defined as
Cs = max{R: Ve > 0, In(e) such that for

n > n(e) M(n, €) > Z"R}. (14)
The secrecy capacity of the general wiretap channel was
determined in [2]. It is

Co=_ max I{UAY)—I{U A Z).
U—-sX—-YZ

15)

The problem of identification via this channel in the sense of
[3] can be formulated as follows: For any finite set A let P(A)
stand for the set of all probability distributions on A.
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Definition 2: A randomized (n, N, A)-identification code
for the wiretap channel is a system.

{(Q¢19), Di): 1< i< N}

where, for all i, Q(- | i) € P(X™) and D; C Y™, which
satisfies the following three conditions:
1) for all i

> QT | HWT(Di|2™) 1A

zrex ™

(16)

a7

2) for all pair (i, j) with 4 # j

> Q" | HWHDi]z") < A

zneXn

(18)

and
3) for any pair (i, j) with 4 # j and any V C 2"

> Q@™ V(v an)
zhEXT™
+ ) Q@™ )V 2" 21— A (19)

E"EX'"'

In contrast to the transmission problem, the decoding sets for
the identification problem are not necessarily disjoint.

Condition 3 enforces that the wiretapper is kept with his
error probability close to % This is the highest possible value,
because the wiretapper could just accept an ¢ of his interest
with probability 3. Mathematically, Condition 3 means, of
course, that the output distributions for the wiretap channel
are almost the same for any two input distributions Q(- | %)
and Q(- | j).

The maximum N for which a randomized (n, N, A)-
identification code exists is denoted by N(n, A). Define the
secrecy identification capacity of the wiretap channel by letting

Cs; = max {R: VA > 0, 3n()) such that for
n>n(\) N(n, A)>22"}.

The main result on this problem is the following:

Theorem 2 (Dichotomy Theorem): Let C be the Shannon
capacity of the channel W and let C, be the secrecy trans-
mission capacity of the wiretap channel, then

Csi = C,

ifCs >0 (20)

and

Csi

0, if Cs =0.

Remark 3: This result has solved the second problem. Still
it may be of interest to know whether the strong converse
holds.

The paper is organized as follows: In Section II we discuss
the strong converse proof of Theorem 1 for the channel without
feedback from [5], which will be used repeatedly throughout
the paper, and we prove Theorem 1. Section III is devoted to
the proof of Theorem 2.
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II. PROOF OF THEOREM 1

In this section we prove Theorem 1. The converse part is
proved in the first subsection, the direct part is proved in the
second subsection, and deterministic IDF codes are briefly
discussed in the last subsection.

A. Converse Part of Theorem 1

For identification via channels without feedback a so-called
soft converse was proved in the original paper [3]. The method
was refined and strengthened in [5] to give a proof of the
strong converse theorem. The techniques used in [3] and [5]
are needed in this section as well as for wiretap channels.
Although the proofs in [5] were already simplified compared
with those in [3], they are still too long and too complicated
to reproduce all the details here. Therefore, in this section, we
briefly review some of the key steps and key definitions from
[5] and present modifications necessary for our purposes. The
details can be found in [5].

We start with a review, of some definitions. A probability
distribution @ on A is called an n-type if for any a € A,
Q(a) € {%,---,%,---,1}. Let T be the set of all possible
n-types. For any Q € T let

T, = {a": Va e, Hizs=al = afl Q(a)}. 22)
Let B be a subset of A" and let @p denote the uniform
distribution on B. Finally, an ID code {(Q, D;): 1 < i < M}
is called homogeneous if for every P € T

@1(Tp) == Qu(Tp).

We state the first auxiliary result from [5].
Proposition 1: For every (n, N, A)-ID code, § > 0, X >
A and all sufficiently large n, there exists a homogeneous

. (n, N', X)-ID code satisfying N’ > N exp {~6n(n+1)1*l},

where X is the input alphabet.
For a distribution ¢} on X™ and every P € T, define

Q(z")
Q(Te)

An ID code is called M-regular if for every P € I' and all
i, QF is of M-type.

Proposition 2: A homogeneous M-regular (n, N, A)-ID
code with A < % satisfies

Q7 (s") =

log N < n(n+ 1)Mlog|X|.

21 -

The main result of [5], that is, the strong converse for the
channels without feedback, follows easily from the following
result.

Proposition 3: For every homogeneous (n, N, A)-ID code,
AN > A, v > 0, and for all sufficiently large n, there exists
a homogeneous exp {nC + n~y}-regular (n, N, X')-ID code,
where C is the Shannon channel capacity.

In the proof of this proposition the following lemma of [5]
is needed.
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Lemma 1: Let P € T and let Q) be a probability distribution
on Tp. For every € € [0, €], § € [0, o] and for all sufficiently
large m, there exists an exp {nC + nv}-type distribution Q
defined on Tp, where C is the Shannon channel capacity,
such that for every D C B™, where B is the output alphabet,

QW™(D) < (1 +¢€)(1 — e ™) IQW™(D) + e~ ™ (23)
QW™(D) > (1 —€)(1 — e ™)QW™ (D) —e™™  (24)

where W is the channel transition probability matrix and where
v = p(8), and p: [0, 8] — R* is a continuous strictly
increasing function such that p(0) = 0.

By checking the proof of this lemma in [5] we can find that
actually the following stronger result was proved:

Lemma 2: Let P € T and let @ be a probability dis-
tribution on 7. For every € € [0, €], § € [0, &), let
U = {Uy,---,Up} be a random code having independent
codewords and with codeword distribution @. For every R >
I(P, W), M' = e"R’*+n7, where v is defined in Lemma I,
the probability of the event that the following conditions are
satisfied approaches 1 as n goes to infinity: For all D C B®

QW™(D) < (14 €)(1 = 27" "1QW™(D) + e~ (25)
QW™(D) > (1 — €)(1 — e ™™)QW™(D) —e™  (26)

where Q is the uniform distribution on U.

Since the original proof of Lemma 1 is extremely compli-
cated, instead of copying it step by step we just point out the
modifications needed to reach the current conclusions. In this
new version, the lemma is strengthened in two points:

1) C is replaced by any R > I(P, W)

2) the existence of such a code is replaced by the conclusion
that the random code satisfies (25) and (26) with probability
approaching 1.

The first conclusion can be justified by noticing that [5, eq.
(32)] is really unnecessary for the lemma. We need only

sup I(P,V)+6<I(P, W)+ p(6) < R+ p(6).
verf

This is so, because we are considering a fixed P anyway. The
second conclusion comes from the following refinement of [5,
Lemma 5].

Lemma 3: Let (4iy,---,%n) be the realization of the i.i.d.
random variables (Uy,- - -, Upr) with common distribution Q.
Let £ be the event that the following conditions are satisfied:

M
%21{{“ € HY (y™)} < (1 + ©QHT (y™)),

=1
for every y" € G¥

M
1 . n n
le{w € Hi(y™)} > (1 — )Q(H{ (4™)),
=1
for every y" € Gf

and

M
1 c |5 -n
ME WP (G)° | ) < e/,
=1
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Then we have
Pr(€) < e ™8/3 4 2= (87/3)e™"

A careful check of the proof of {5, Lemma 5] shows that the
conclusjon is what is actually proved, although the statement
of the lemma is slightly weaker.

In our proofs we use these definitions and results.

The converse part can be proved by following the argument
in [S] with certain modifications. We present in this subsection
only the modifications without going into all the details. Since
the proofs of the two converses are very similar, pointing out
these modifications is good enough for the readers to complete
the proof by going through the proof in [5].

Let f be a feedback coding function. With the function f a
set of pairs S5 = {(z", 2"): f(z") = z"} is associated. The
probability of a pair (2", 2”) € Sy is

Wz |2 = W, 2 | ),
yn

This gives a distribution on the set X™ x Z™. We denote it
by Pg(z™, 2™). Let Q(- | i) € P(F,) be the distribution of
the user i. This induces a distribution on X" x Z" defined
as follows:

Pz, 2"y = Y Q(f | §)Ps(a", 2").

fE€Fn

An n-type P on X x Z is called e-typical if for any 2 € X
and any z € Z

P(z, z)

W—W(ﬂm) <e

Let P¢ be the set of all possible e-typical n-types, then we
have from the weak law of large numbers

n—0oo

UTp =1

PePy

The idea of the proof is the following: a feedback code
{(Q( | i),D;):1 < i < N} induces an identification
code without feedback for the channel from (z, z) to y with
transition probability

Wiy |, 2) = oo @212

YW,z x)
yl

' of the form

{(P;, D;): 1<i < N}.

Therefore, the proofs from [5] can be easily modified and
applied to this induced code. The following proposition is
modified from [5, Proposition 5].
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Proposition 4: For every (n, N, A)-feedback identification
code and X > A, v > 0, § > O there exists a homogeneous
exp {nT + ny}-regular (n, N’, X')-ID code, where N’ >
Nexp{-6n(n + )¥Z} and T = max, [(XZ A Y)
where the joint distribution Pxy 7 satisfies Pxyz(z, ¥, 2)
Pp@W(y, = | o).

This proposition is proved by an argument as that used in
the proof of [5, Proposition 5]. The only difference is that
[5, Lemma 1] is now replaced by Lemma 2 of this paper.
Therefore C is replaced by

max [(P, W) =T +v
Pep

where v is a continuous function of e satisfying v(0) = 0.
The converse is proved now by the same argument as in [5]
with [5, Proposition 5] replaced by this new proposition.

B. Proof of the Direct Part of Theorem 1

The proof of the direct part of Theorem 1 is based on two
ideas.

The first one is the idea presented in [4, Section IIJ,
where the identification code is constructed by means of two
fundamental codes. One code is of block length » and the
other one is of block length m, which is much smaller than
n. The task of the first code is to set up a common random
experiment. The result of the experiment, which is known with
high probability to both, the encoder and the decoder, serves
as a “public key.” According to this key a codeword of the
second code is transmitted in the second step. Two different
users use the same codeword for the same public key with
very small probability. Thetefore, the goal of identification is
achieved.

The second idea is the well-known superposition coding
scheme introduced in [9]. In this coding scheme, there are
K steps. In each step, a codeword is sent to transmit a new
message as well as to resolve an uncertainty left over from
the previous step.

For given § > 0 and € > 0, let Pxyzy be a probability
distribution Pxvzy(z, y, 2, u) = p(e)W(y, z | z)g{u |
x, z) that achieves max I(U A Z | X) under the constraint

IUAZ|XY)<I(XAY) -6,

We construct three codes of block length n using p and g of
this form.

Code Cy: Code C; is an (n, M,, 27"*) channel code for
the channel with

W(y|z)=) W(y, z| 2.

The codewords are assumed to be in 7},, where we assume

without loss of generality that P is an n-type. The cardinality
of the code is M, = 2M(XAY)—en where ¢ is the given

positive number which is assumed to be sufficiently small.

Let {Dg") :1 < 4 < M} be the decoding regions of the
codewords of C; with maximum decoding error at most 2~ %7,
where o > 0 is a continuous function of € satisfying :(0) = 0.
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Code Family Ca(c): Code family Cy(c) C U™, where U is
the alphabet of the random variable U, is a family of source
codes indexed by the codewords ¢ € C;. This family of codes
are required to satisfy the following conditions:

1) Given ¢ € C; the codewords in Cy(c) are jointly e-typical
with ¢ with respect to the joint distribution Pxg7, a marginal
of Pxyzu. '

2) The cardinalities of the codes are N,, = 2" /(UAZ[X)+en
for all ¢ € C;.

3) For each ¢ € Cy, there exists a mapping

fe: 2™ = Cy(c)
satisfying

a) If fo(2") # 0, then f.(2"), ¢ and z™ are jointly
e-typical.

b) Pr(f.(2") =0|c) <277, where {3 is a continuous

function of e satisfying 3(0) = 0.

Code Family C3(c): The code family C3(c) consists of an
integer set {1,---, L,}, where L, = 2"U(ZAUIXY)+n) gnd
< is a continuous function of e satisfying (0) = 0, and two
mappings defined as follows:

®.:Cy(c) — {1,---, Ly}
and
Ueo:Y* x {1,---,L,} — Ca(c)

satisfying
Pr(W. (Y™, c(fe(Z27))) # fe(Z7) | €) <2777

where o is a continuous function of € with o(0) = 0.

Proof of the existence of the codes (code families): The
existence of the code C; is based on the channel coding
theorem with maximum error criterion ([10]).

The existence of the code family Ca(c) is proved by the
random coding method. Since the method is classical, we give
only a brief outline of the proof. The code is selected randomly
according to the distribution

r(u” | ¢) = Z " (u" | ¢, 2" YW (y", 2" | ¢).

y", 2"

The N,, codewords are selected independently. The mapping
fec is defined by using joint e-typicality as follows:

1) If there exists a unique codeword c3(c, %) in Cy(c) which
is jointly e-typical with 2" and c, then let f.(2") = 4,

2) otherwise, let f.(2") = 0.

The properties of f. are proved by using the properties of
the joint e-typical sequences. These proofs are standard and
therefore omitted.

The existence of the code family C3(¢) is proved by using
the source coding theorem with side information and by
noticing the following fact. Since the joint distribution of c,
Y U™, Z", and f.(Z™) are given by the joint distribution of
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X", Y™, Z", U™, the code Ca(c), and the mapping f., then

H(f2") | ¢, Y™)
= I(Z" A fo(Z") | e, Y™)
= H(Z" | ¢, Y") - H(Z" | ¢, Y™, [.(Z"))

=H(Z"| ¢, Y") = H(Z" | ¢, Y™, U™, f(Z™))

(where U™ is the codeword of C»(c) whose index is the value
of fo(Z™))

>H(Z"|¢,Y")—H(Z" |c, Y™, U™)
=Y H(Z |z, Vi) - H(Zi | z:, Y, U))

=nl(ZAU | X,Y)+f0n

where /3 goes to zero as ¢ goes to zero. In the last step of the
derivation we used the typicality of the codewords. Applying
the source coding theorem with side information (if necessary,
we may repeat the same code N times and use nN in place
of n) to this case gives the existence of the code family Cs(c).

Using these three codes (code families), the coding scheme
can be described. It includes two steps. In the first step, the
sender and the receiver set up with high probability a common
random experiment. In the second step, based on the result of
the common random experiment, the sender sends a codeword
to the receiver.

We formulate the two steps as follows:

1) The coding is done in K blocks. Each block is
of length n. The code C; is partitioned into L, =
onI(UAZIXY)+7n gubcodes of equal size (roughly) B, =
on(I(XAY)-I(UAZIX, Y)=v=€) which are denoted by C* for
m =1,---,L,. The codewords of the subcodes are indexed
by the numbers in {1,---,B,}. Since (X AY) > I(UAZ |
X,Y) + 6, this is possible for ¢ small enough. We send
a fixed codeword, say ¢; in Ci, in the first block. In the
second block, based on the feedback signal Z]* in the first
block, we send a c; € C{* where m = ®.,(f.,(Z7)) is
determined by the channel and where c; is selected from the
code C7* randomly with respect to the uniform distribution.
In the following steps i for ¢ = 3 to K, if the feedback
signal in the previous step is Z} ,,
¢ € C™ where m; = @, (fe, ,(Z,)). ¢ is selected
randomly with respect to the uniform distribution in C;™.
The codewords ¢;,---,cx can be correctly decoded with
probabilities at least 1 — K27 ™*. Then the codewords of the
second code {f.,(Z7), -, fex_1(Z%_1)} can be recovered
with probability at least 1 — (K —1)2~"7 under the condition
that the codewords from the code C; are correctly decoded.
The overall misdecoding probability is at most

P.=K(2 " 427™),

This means that with probability at least 1 — P, the
sender and the receiver have a common knowledge of
{fe(Z7), - fex_(Z%_;1)} and the indices b; of the
codewords ¢; in their corresponding subcodes Ci* of the
code Cy, which are numbers from the set {1,---, B,}, at the
end of the first K blocks. They are viewed as the result of
the common random experiment.

then the sender sends -
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2) Let
F={F:F:{1,--- N} 1x{1,-- -, B.,}} = C1}. @7

Each user is assigned a mapping in F. Let F; be the mapping
assigned to the user j. Once {f.,(Z7), -, fex_,(Z%_1)}
and {by,---,bx} from the first K steps are available to the
sender (and with probability at least 1 — P, correctly to the
receiver), the user j selects a codeword

Fj(fc1(ZIl)7' "7fCK—1(Z11:'—1)7 b17 : “,bK) € cl

and sends it through the channel. This codeword can be
decoded correctly with probability at least 277,

We now prove that, if the user number satisfies a certain
condition, then there exists mappings F; for the users such
that the two kinds of error probabilities of the code described
above satisfy the requirement of the identification code.

Obviously, the misrejection probability is at most 1 — (K +
1)(27™> + 27™7), which goes to zero as n goes to infinity
for a fixed K.

The misacceptance probability can be estimated as follows:
we assume that the mapping is selected according to the
uniform distribution on F and the selection for different users
are independent. Let F{) be the mapping assigned to the user to
be identified, let F; be the mapping assigned to the user . For
a particular 7 = (fcl (ZIL): ) ch‘1(ZI7é—1): by, -, bK)

Fo(v) = Fi(0)

with probability 2-"/(XAY)+ne — pr—1 The misacceptance
probability, when the user is 4, is greater than A + p. (where
pe is the probability that the receiver and the sender cannot
reach a common result of the random experiment and which
goes to zero as m goes to infinity) with probability at most

Nf_lef(l _ 2—n1(XAY)+ne)N,{<—IBf—G

K-1pK
L (9—nI(XAY)+ne\G Nn Bn
@ (M)

where
G =max{|V|: Pr(v e V) < A}

Since any set V with cardinality at most

2—2Kn6N1{(—1B£( — 2n(K—1)I(U/\Z‘X)—nEB7};(

has a vanishing probability as n goes to infinity, we have
G > 27 HneNK-1BK

Therefore, when 2Ke < I(X AY) — ¢ this probability has
an upper bound . -

2_2n(K—1)I(U/\Z|X)+nK(I(X/\Y)AI(U/\Z|.X,Y))—n(K+l)e—nK'y+o(nK)
or(K—1)I(XUAY)=n(K+1)e—nKy+o(nK)

<2
When user 7 is to be identified, the probability that there exists
a user j # i having misacceptance probability at least A + p.

is at most

M
1—(1—2—

Zn(K—l)I(XUAY)An(K+1)i—nK»y+n(nK))
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This goes to zero when

M < 22n(K—1)I(XUI\Y)—n(K+1)E—nK'y+o(nK)_En

If we delete users for whom there exists at least one different
user having misacceptance probability at least A + pe, then the
number of users deleted is in average a vanishing portion of
all M users. Therefore, there exists a set of mappings for M’
users out of the M users, where

M’ _ 2211.(Kf1)I(XUAY)—n(K+1)5—nK’y+o(nK) —2en

such that the subcode of these users satisfies all requirements
of the identification code. The rate of the code is at least
K-1
——I(XYAY)—2e—1.
K1 XY AY) =2y
For large K, this is greater than I(XU AY') — 3e¢ — . Letting
€ go to zero the direct part of Theorem 1 is proved.

C. Deterministic Identification Codes

Another result of [4] is for deterministic feedback identifi-
cation codes. Actually, the same concept can be defined for
channels with noisy feedback. In this subsection, we present
only the definitions and results for this concept without de-
tailed proofs. These results are proved by the method used for
the randomized identification code with some modifications.

Definition 3: A deterministic (n, N, \) IDF code for W is
a system

{(fi, Di):i=1,---,N}
with
fie 7, DiC Y, forie {1,---,N}
and
WDi|fi)z1-x  W™D;|fi)<A
for all 4,5 € {1,---,N} and 7 # j.
Let Ns(n, A) be the maximum integer N for which a

deterministic (n, N, A) IDF code exists.
Here are our results for this quantity.

(28)

Theorem 3: If the transmission capacity C' of W is positive,

then we have for all A € (0, 1)

lim inf loglog Ny(n, \) > maxI(Z AU | X)  (29)
where the maximum is over all joint distributions Pxy zy with
Pxyzu(z, y, 2, u) = p(@)W(y, 2| 2)q(u | z, 2)

satisfying
IUAZ|XY)<I(XAY).
Furthermore
lim nsggo—:glog log Nf(m, A)
< min{maxI[(XZ AY), maxH(Z | X)} (30)

where the maximum is taken over all joint distributions Pxy z
with

Pxyz(z, y, 2) = p(x)W(y, z | x).
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{II. PROOF OF THEOREM 2

In this section we prove Theorem 2. The direct part is proved
in the first three subsections and the converse part is proved
in the last subsection.

A. Preparations for the Proof of the Direct Part

In the proof of the direct part of Theorem 2, we use a coding
technique introduced in [4, Section III], where the identifica-
tion code is constructed by means of two fundamental codes.
This coding technique has been already used for channels with
noisy feedback. By Shannon’s coding theorem, we know that
for every € > 0, € < C, where C is the Shannon capacity of
the main channel W, there is a § = §(¢) > 0 and an ng(e)
such that for n > ng(€), there exists an (n, M, 27"%) code

where M = 2(C—9)_ This code serves as the first fundamental
code which will be used in the construction of the identification
code.

For the wiretap channel, in place of the second fundamental
code, we use a code system which consists of a code of
length m and a collection of subcodes of this code. This
code system should satisfy certain conditions described later.
To construct this code system, we use a random variable U
jointly distributed with random variables X, Y, and Z. The
joint distribution of these random variables is of the form

Pyxyz(u, z,y, z) = q(u)r(z | w)W(y, z | 2) (32)
which satisfies the condition
HUAY) > I(UNAZ). (33)

The following proposition gives the existence of a code system
which will be used in the construction of the identification
code. Let

W(y|u) = r(z| wW(y| ).

x

W is called the u, y-channel. Let

V is called the u, z-channel. .

Proposition 5: For any € > 0 there exists a §(¢) > 0 and an
my such that for any m > mg there exist an (m, M’, 2~™9)
code

Co={(c}, D)):1<i< M} (34)
for the u, y-channel W, where M’ = 2mUI(UAY)=€) and
L = 2™¢ subcodes

L=A{C}:1

-, L} (35)

— 2m(I(U/\Z)+E)

- k)

of the code Cs with a common cardinality M*
having the following two properties:

1) The number of common codewords of any two different
subcodes is at most eM™*.
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2) Let Q; be the uniform distribution on C}. Then for every
pair i and j:i # j

DQ:V™|Q;V™) <.

This proposition will be proved in Subsection III-C.

B. Proof of the Direct Part of Theorem 2

Using these two fundamental codes, we can construct the
identification code as follows:

Let {1,---,L} be the index set of £, the set of subcodes
of the second fundamental code C,. We consider mappings of
the form

¢:CL—{1,---,L}. (36)

Let ® be the set of all possible mappings ¢. The Hamming
distance of two mappings ¢ and ) is defined as the number of
codewords of C; at which ¢ and ¢ have different values. It can
easily be seen that we can construct by the greedy algorithm
a set of mappings of cardinality at least

LM
T M
> (W)@ -nymk

k=eM

QMD(EL™) o s
>
- M

where
1y € 1—¢€
D(EHL ) —GIOgF‘F(l—G)IOgT’_L—_l

satisfying the property that the Hamming distance between any
pair of different mappings in the set is at least M — eM. Let

this set of mappings be
* ={¢;: 1<i< N} 37

which will be used in the construction of the identification

codes. Let P be the uniform distribution over the code C1,

g; be the uniform distribution on the subcode C}, and let
Q¥ = gr™, which is a distribution on the alphabet A™. Let
mapping ¢; be assigned to user 2, then the distribution Q(- | 7)
in the identification code is defined as follows: for ™ € A"
and z™ € A™

Q(z™, 2™) | i) = P(2") @4, (am)(2™)-

The decoding set D; is defined as

(38)

M
D, = [ JBy x DHe)
t=1

where

DE) = U Dé,

c'eCr

and where D, was defined in (31) and D! when ¢’ = ¢} (which
was defined in (34)). We now estimate the first and the second
kinds of error probabilities of this code.
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We have for user ¢, the first kind of error probability is

>

(zm, zm)eXntm™

M
>1- (1 ~ > P@E)W™(D | &) +1

Q((z", &™) | )W ™ (D; | 2", 2™)

M
_ ZP(at) Z q;i(ét)(cl)wm(p(¢i(5i)) | )
t=1 c'€Ca;(e4)

>1-—2""8 _9mé (39

If 7 # j, then the second kind error probability for the user j,
when user 7 is to be identified, is

>

(xn’ mm)exn+m

Q((z", &™) | HW™(Di | 2™, 2™)

M _ M
<1-Y"P@E)W"(D: | &)+ Y _P(&)
t=1 t=1

Y @y OWDEED | )

' €Caj(zr)

<27y
t:i(Ee)=0;(Er) t: i (Ce)# P (Ce)
Z q;j(ét)(cl)wm(p(m(ét)) | )

'€Cs;20)

t: i (E)#E D5 (Ee)
D G Y WDl
<'€Cy;(z1) c"€Ch4(e0)
>, P@E)
t:¢i(8)#¢;(20)
q;j(at)(c/)wm(plcf | )

P(ét) + P(&t)

<27 et P(é:)

<27 4 et

2

C'€C¢j(5t)nc¢i(at)

+ > P@&)
t:hi(C)7#P5(8e)
: Z q;j(a,)(c’)Wm((Déf)c | )
C'€Cy;(ee)
<27 4 2¢ 4 2™, (40)
For a fixed A < %, let n be sufficiently large and then m
be sufficiently large and e sufficiently small, the requirement
for these two error probabilities in the definition of the
identification code can be satisfied.
The next problem is to prove that the wiretapper cannot
identify, that is, we need to prove (19).
We see that for any pair ¢ # j

D@Q(- [ )V T™Q(- | V™)
=Y P@D(QupaV"Qp,V™)
ceCy

< ZP(E)E =€

éely

(41)
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Therefore, for any region V C Z™+™  denoting by V; the
distribution Q(- | ¢)V™*™ and by V; the distribution Q(- |
J)V™t™, we obtain

Vi(v . Vi(ve
Vi(V) log Vjivi + Vi(V°)log Vjivc; < D(Vi||[Vj) < e.
Since
D(al|8) = alog% +(1-a)log i :g
= —alog (1 + ﬂ—_a)
x
—(1—-a)log <1+ [13:((11

>-af22_q-f=2

= 2(8 - a).
Similarly

D(Blla) > 2(a - B).
From

D(Vil[Vj) < e
and
D(Vj|lV;) < e

we obtain

V;(V Vi(ve

Vi(V) log 7103 + ViV og g0 < ¢

and

V;(V V;(ve

Vi) tog PO 407 0g P <

This implies
Vi(V) = V;(V)I <

We can see that the last inequality implies the last requirement
for the identification code. The direct part of Theorem 2 is
proved.

C. Proof of Proposition 5

To construct the second fundamental code with the required
structure and properties, we use the random coding method.
It is well known that there exists an (m, M’, 27™%) code Cj.
Without loss of generality, we can assume that the distribution
g of U is an m-type and C; C T;. To construct the random
family of subcodes of this code {C}: i =1,---, L} satisfying
the required properties, we proceed as follows: The size of the
code is M’ = 2mUI(UAY)=€) u4nd the common size of the
subcodes is M* = 2mU(UAZ)+Y) | where the number ~ is
introduced in Lemma 1. This is possible because [(U AY') >
I(U A Z). A subcode of this code can be selected by using
a binary M’-sequence s = (s1;---,8m-), Where s; is either
0 or 1. A codeword c} is in the subcode C, if and only if
8; = 1. After the code Cy is selected, we select L = 2™¢
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subcodes of Cy. Let these subcodes be C. These codes are
chosen randomly by letting for any s of weight M*

1
(i)

M*
and the selections for different i are done independently. We
are going to prove that for the random code chosen as above
with probability approaching 1 as m goes to infinity the code
has the required properties.

From Lemma 2, the subcode selected satisfies the following

condition with probability approaching 1: for every D C 2™,
let @ be the uniform distribution on the subcode, then

QV™(D) < (14 €)(1 — e ™) 1QV™(D) 4+ e ™ (42)
QV™D) > (1 —-€)(1 — e"™)QV™(D) —e~™. (43)

Pr(C} =C,) =

For sufficiently large m, we may assume that this probability
is at most e. We prove that if two subcode C; and C; both
satisfy this condition, then

D(Q:VIQ;V) < Be)

where (¢) goes to zero as € does and where @); denotes the
uniform distribution on the code C;. ,
This is proved as follows: Let

@4)

D = {zm: ZQiVm(zm | ™) > tZij/'m(zm |um)}

then
(1+€e)(1—-e ™) 1QV™(D,) + ™
> t(1 - e)(1 — e ™)QV™(Dy) — te™™°.
This implies
(1 +t)e™™ > (41 —€)(1 — e — mb)
— 1+ )1 —e ™) THEV™(Dy)

that is

- (1 +t)em
Q) < G T e - G+ a0 e
We know that

5 Qi) [um)
5 Q) (er [um)

is at most e®™, where

max V(2 | u)

o =log ——= .
min V(z | u)
Letting
s 0+ €)2(1 — e~mé)~1
T Ao
we obtain

(14¢8)e"™ (1 —e™™9)

19 ma + logt. (45)

D(Q:V|IQ;V) <
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We can easily see that the right-hand side of (45) approaches
zero as m goes to infinity and then e goes to zero.

By randomly selecting L subcodes, then deleting those
subcodes for which the conditions in the Lemma are not
satisfied, the number of remaining subcodes is in average at
least L(1 — ¢). This is enough for our purpose.

We now prove that the intersection of two subcodes has
more than eM* codewords with doubly exponentially small
probability. This is done by the following calculation:

Pr(|C; NC;)| > eM*) < M* (54 (&)

(i)

M*

which is doubly exponentially small. This proves that with
probability approaching 1, any pair of the subcodes satisfy the

condition that their intersection has a size at most eM*. The
proposition is proved.

D. Proof of the Converse Part

We begin with the following lemma.
Lemma 4: Let Q1 and Q2 be two distributions on Z™ and
for any V C 2™

Qi(V)+Qa(V°) >1—¢

and let U be a binary random variable with uniform distribu-
tion and V(2™ | U = i) = Q; for i = 1, 2 then

(46)

2
my < i =
(UAZ™) <L ach;%:E + log 47

1
1- %me
Proof: Let

Ve={2": Q1(z™) <1Q2(2™)}

then
Q1(V1) + Q2(VF) < tQ2(Ve) + 1 = @2(Ve).

Therefore

t1Qa(Ve) +1—Qa(Vy) > 1 -
This implies

(1-1)Q2(Vs) <

that is, for 0 <t < 1

Qe(Vi) < -

Similarly, for t > 1

te
t—1°

Q1(Vi) <

. Therefore, for any 0 < £t < 1

U A Z™) = lel(zm) log 2Q1(=")
2 1(@Q1(zm) + Q2(2™))

log %QQ(Zm) .
1(@1(z™) + Q2(2™))

+5Qa(=")

For any ¢, 0 <t < 1, we have for z™ ¢ V; U Vf/t
3@1(z™)
1(@1(z™) + 2(2™))

and for any 2™

log

1
§1+10g1+t

3Q1(z™)
(Q1(z™) + Q2(2™))

1 m
+5Q2(2")log 1
4

3o

3Qa2(2™)
@) + Que™)
(@(7™) + Qa=™)).

<

DN =

Therefore
UAZ™)

< Z Q1(z™)log 1)
T v, Q=) + Qa(z™)

1/t
1w 3@2(2™)
+ 2Q2(z ) log L0 (=) + Q2(z™)

1+1
+ +0g1+t

< 2@V + @) + (Vi)

+1+log

1+t

1+t
Taking ¢ = 1 — z¢, we obtain

2
I(UANZ™) < —+1
( )_w-?_Ogl—%ace

This proves the lemma.
Lemma 5: Let Q; and @ be two distributions on Z™ for
which there exists a V C Z™ such that

Q1(V) + Q2(V°) <

and let U be a binary random variable with uniform distribu-
tion and V(2™ | U = i) = Q; for i = 1, 2, then

U AZ™) > h(%(l _ e)>.

(48)

(49)

Proof:

Q1 (V) + Q2(V)
2Q:(V)
1 Q:1(V) + Q2(V)
+5Q2(V)log R e 2G20V)
1 c Q1 (V) + Q2(V°)
+ §Q1(V ) log W

+ 1)og ———Ql(zgilfz;(w)}

(UAZ™) > - [%Ql(V) log

2

| >n(30-9).

(50)
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The existence of the identification code at a positive rate
implies the existence of distributions (- | ¢) and decoding
regions D; such that

1) for all ¢
Z Q(z"™ | )W™(D; | z™) > 1 — A, (51)
rreEX™
2) for any pair ¢ # j
Y Q™ [HW(D; |z™) < A (52)

znEX N
and
3) for any pair i # j and any V C Z"

S QG [ HVEY ™)

zrEX”
+3 g e XmQa™ | V(Y[ 2M) 21— A (53)

From the first two properties, we obtain

> Q™| W™ (Df | 2"
rmEXT
+ ) Q™ | HW™(D: | z™) < 2

anexn
which implies by Lemma 4 that for the random variable U
defined there we have

IUAY™ > h(%(l - 2,\)).

By the third property and Lemma 3, the same random variable
U satisfies

2 1
I(UANZ™) < inf = —_—
(UNZ )‘;I;%:c+log1—%q;)\

Then A is small enough, we obtain the following conclusion:
there exists a random variable U satisfying

i)
U—-X"Y™mZz™

IUAY™)>TI(UAZ™).
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Proposition 6: 1If there exists an m and a U satisfying the
requirements i) and ii), then

- Cs > 0.
Proof:
O<IUAY™)-I(UAZ™)

=ZI(U/\Y}|Y1,"'7Yrt—1; Zt+1a"'7Zm)

t=1

_I(U/\Zt | Yla"'a},t—ly Zt+17"'3Zm)
Therefore, there exists a ¢ such that
IUAY1 | Y1, -, Y1, Zega, o+ Zm)
~IUANZ |\ Y1, Y1, Zig1, -+ Zm) > 0

which implies
Cy > 0.

The converse is proved.

Remark 4: Inspection of the proof shows that the possibility
of “safe” identification for two options (or for 1 bit) implies
“safe” identification at rate equal to Shannon’s capacity.
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