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Towards Characterizing Equality in Correlation Inequalities

RupoLr AHLSWEDE AND LEVON H. KHACHATRIAN

1. INTRODUCTION

For most of the basic inequalities in mathematics we know conditions which
completely specify the cases of equality. Many combinatorial correlation inequalities
are special cases of the AD-inequality, as explained in [3, 8, 10].

However, for this inequality it seems to be difficult to classify the cases of equality.
Certainly this is even more difficult for the much more general inequalities of [3] and its
relatives, which can be produced by the very same ideas of exploiting notions of
expansiveness. In fact, the equality characterization problem for these general ine-
qualities constitutes by itself a rich area in combinatorial extremal theory. Closer to
home there are the equality characterization problems for inequalities, which are
consequences of the AD-inequality. Aharoni and Holzman [1] completely settled this
for the Marica-Schénheim inequality. Another, though fairly special, still interesting
case of AD could be handled by Beck [17].

It seems that the first study of this kind was made by Daykin, Kleitman and West
[12], who investigated the inequality

|A||B|=<|L||AAB|, 1.1)
where the lattice L is a product of finite chains and
AAB={anb:aecA,becB}

If L is a lattice of subsets of a finite set, then this inequality follows immediately from
an inequality known to combinatorialists as Kleitman’s inequality [17] and known to
probabilists and physicists as Harris’s inequality [15]. The more general inequality (1.1)
was proved by Anderson [8] and by Greene and Kleitman [14].

Actually, the product of chains is a distributive lattice and (1.1) extends to any
distributive lattice, because as such it is a special case of FKG [13]. This was noticed by
Seymour and Welsh [19]..

FKG in turn is a simple consequence of AD (see [3]). Our renewed interest in
correlation inequalities came with our introduction and study of cloud-antichains [5, 6]
and the connection to inequality (1.1), which we established in [4].

The main contributions of the  present paper are two equality characterization
results. They both continue and complete the basic investigations of Daykin, Kleitman
and West [12]:

I. On pages 142-143 of [12] there is a detailed discussion about the difficulties in
extending the results (Theorems 4 and 5) basic for equality characterization in (1.1) for
lattices, which are products of chains of equal length k, to lattices, which are products
of chains of varying lengths, say k;, k,, . . ., k,. We overcome these difficulties and also
obtain the desired equality characterizations in Theorems 1 and 2 (Section 3). Actually,
the corresponding statement (Theorem 6 of [12]) for equal lengths chains contains a
flaw (see Example 1 in Section 2). The statement holds, however, if k is a prime.
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I1. Hilton [16] proved that if A and B are subsets of a boolean algebra each not
containing an element and its complement, and if no element of A is related to any
element of B, then |[A U B|<}|L|. In [12] this was generalized to lattices with a polarity
(Theorem 8). Amongst others, the authors called for solution of the equality problem.
Our answer is Theorems 3 and 4 of Section 5.

2. Previous RESULTS

We repeat results of Daykin, Kleitman and West [12], which are described in the
abstract of [12]. Except for a reference to these theorems in square brackets, we will
literally repeat the main part of the abstract:

‘Let L be a lattice of divisors of an integer (isomorphically, a direct product of
chains). We prove |A||B|<|L||[ANB| for any A, BcL where || denotes
cardinality and ANB={aNb:aecA,beB} |ANB| attains its minimum for
fixed {4}, |B| when A and B are ideals [Theorem 2]. |-| can be replaced by certain
other weight functions [Theorem 3]. When the n chains are of equal size k, the
elements may be viewed as n-digit k-ary numbers. Then for fixed |A4|, |B|, |A N B|
is minimized when A and B are |A| and |B| smallest n-digit k-ary numbers written
backwards and forwards, respectively [Theorem 4]. |A N B| for these sets is
determined and bounded [Theorem 5]".

We do not need Theorem 3. Whereas Theorems 2 and 4 are self-explanatory, we give
the details of Theorem 5 for the orientation of the reader, even though we do not rely
upon it.

THEOREM 5 [12). Suppose that L is a product of n chains of size k, 0< a <k",
osB=<k" Let p(n o B)=min{ANB|:|A|=a, [B|=8} and g(n, a, B)=
wil(n, a, B) — aB/k™ If pk" ' <a<(p+1)k" ! and B =rmod k, then:

) e, @, ) = e{n 1, — it [ E22)
o , p=0
+1: B )
LSS
=
(ii) &, a, B) = £k<n -1, a—pk", l-Bk;p.‘)
r{‘l _k%l O=srs<p,
+
k- r)]%, p<r<k
Furthermore,
(iif) eln, k" = a, k" = B) = &i(n, o, B);
(iv) pi(n, K" = a, k" = B) = wi(n, @, B) + k" — a — B;
and, finally,

(v) 0<¢(n, o, B)<kn/4.
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Remark. 1. In the notation of this theorem, equality characterization for (1.1)
means to find necessary and sufficient conditions for

&(n, a, B)=0. (2.1)
Theorem 6 of [12] asserts that (2.1) holds iff
@) k" | aB,k |a and k| B, or
(i) trivially, a or B is k" or 0.
This is true if k is a prime. For composite k the conditions (i) and (ii) are necessary, but
not sufficient.

ExampLE 1. Choose n=3, k=4 and a=pB=8 These numbers satisfy (i).
However, for all ideals A, B = L with |A| = |B| = 8, inspection shows that |AAB|>1=
|A| |B] - 473. We shall see that (i) has to be replaced by
(i*) there are positive integers i, a; and B, such that

a=k- ay and ﬁ = k"—‘ﬂl.

3. EquaLiTy CHARACTERIZATION IN [A AB|=|A||B| L™}

Let L=[k,] X --X[k,] be the lattice defined as direct product of chains [k,] of
length k;=2 (i=1,...,n). For any I c[n]={1, 2,..., n}, we define the sublattice

L= [11k] (3.1

iel

THEOREM 1 (equality characterization within ideals). For ideals A, B c L, equality
in (1.1) holds iff:
(a) A or B equals Jor L; or
(b) there exists an I < [n], 0<|I| <n, such that

A=L;XA; and B=B XLy,
So, |A| =1ILicr k; - 1A4| and |B| = IL;cpaps ki - 1By, for some ideals A, Lpprand Bic L,
THEOREM 2 (equality characterization for general sets in terms of
cardinalities). Equality in (1.1) is assumed for sets of cardinality o and B iff:

(@) aorBis0orIli, k; or
(b) there exists an I < [n], 0 <|I| <n, and there exist posmve integers a, and B, with

01=Hki‘¢11, B= H ki - Bs.

el ie[n]\J

Note that Theorem 2 is an immediate consequence of Theorem 2 of [12], mentioned
in Section 2 and Theorem 1. We need here another well-known result, which is now
also a child of AD (see [3]).

- CHEBYSHEV'S INEQUALITY. Suppose that we have the two decreasing sequences of
non-negative numbers

y2uy=-o=zu,=0 and x\=x,=---=x,=0.
Then,

2 ux; = i E’:: (3.2)
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Moreover, equality holds iff at least one of the conditions u,=u,=---=u,, or

Xy =Xy="" X, holds.

Proor oF THeoREM 1.  Clearly, condition (a), and also condition (b), imply equality

in (1.1). The issue is to prove that equality implies (a) or (b).

Suppose then that A # ¢, B # ¢ and that (the case n =1 being trivial) n = 2. For any

r e [n] and i € [k,], define

Ai={a"eA:a,=i}, Bi={b"eB:b, =i},

Clearly,
k, k,
A= U A,', B = LJI Bi
i=1 i=
and
ANA; =9, B:NB;=¢ fori#j.
Therefore

k,
JANB|= > |A;N B,
i=1

(3.3)

(3.4)

(3.5)

(3.6)

Now set A, ={i} X A}, B, =i X Bf, where A¥, B¥ c L") 211, [k;], |A¥ =|A), |B¥ =
|B| and |4; N B,| =|A¥ N BY|. Since A and B are ideals, also A¥, B} (i=1,...,k,) are

ideals and
AfoA¥>-- DAL, Bf>B3>---oBf.

Therefore we have
Al =|Ag = - - = A, |B1|=|Bs| = - - =|By|.

Since for ideals C and D always

CND=CAD,
we conclude from (1.1) that, fori=1,...,k,,
A gy = ATLIBA 141 1B
I it= -

Hi#r kj Hi#r kj '
Hence, by (3.6) and the following definitions,

1 &

1 |4l 1B].

k,
lAnB|=2|A;*nB,*|>H
=1

Skald kk i=

3.7)

(3.8)

(3.9)

(3.10)

Under the conditions (3.8) we can now apply Chebyshev’s inequality, which yields

1 o A, Tk |B;| - |Al1B]

ANB|=
e L]
In the case |4 N B|=|A||B|/|L|, therefore, necessarily
Al |B; .
|A,’-"ﬂB;“|=Q—I fori=1,2,...,k,
Hj#r kj

and by the equality characterization in Chebysev’s inequality

il =4 =---=|A,|=1Al/k, or |By=|Bj=---= |B| = |B|/k,
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holds. Then define I =[n] as the set of all positions for which |4,|=---=|A4;] (i e I).
Clearly, then, |By| =+ - =B, (j € [s]\]).

If now I=[n], then A=L, and if I=¢, then B=L, and we are not under our
supposition.

Finally, if 0<|I| <n, we conclude with (3.7) that A¥ =A%}=---=Ag for r eI and
that Bf =B%=---=Bf for r e [n]\L

Therefore we must have
A=L; XA and B =B X L,
where A; © Ly,)\; and B, = L; are ideals. O

4. AuxiuARY REsSuULTs FOR EQUALITY CHARACTERIZATION FOR CLOUD-ANTICHAINS OF
LENGTH 2 SATISFYING A POLARITY CONSTRAINT

As indicated under II of the Introduction, we have obtained a second equality
characterization in Theorem 2. We introduce first some notions from [4] and [12].

Let L be a distributive lattice. For a subset C of L let u(C) and /(C) denote the filter
and the ideal generated by C; that is,

u(C)={cel:AaeC,a<c}, 4.1)
I(C)={xeL:FaeC,a=c} 4.2)

By a polarity o of the lattice L (in the sense of [11]) is meant an orderseversing
bijection, the square of which is the identity: that is, a<b implies ob <oa and
o(o(a)) = a. For example, complementation is a polarity. For A c L we set o(A)=
{oa:ac A} If ab and b a we write aolcb. If for A, Bc L and for all a € A,
b € B, we have a =i b, then we write A S B.
Let us consider a problem studied in [12], which generalizes the problem considered
by Hilton [16] and which is mentioned under II in the Introduction.
For A, B c L we write Al B, if
ASEB (4.3)
and if
a € A implies o(a) ¢ A and b € B implies o(b) ¢ B. 4.4)

We also speak of a polar image free cloud-antichain.
Theorem 8 of [12] says that A =€ B implies

Al +|B|<m=<}|L), 4.5)

when 7 is the number of non-trivial orbits of o (i.e. unordered pairs {e, oe} with
e # o(e)).

It was asked in [12]: ‘Which A, B achieve the maximum 7?".

Here we completely answer this question, when L is a direct product of chains of
arbitrary lengths and polarity is complementation.

At first we present auxiliary results, which are true for any distributive lattice and
any polarity o.

Suppose that for A, Bc L, A=l B and

|| +|B| = . 4.6)

Let (A*, B*) be any pair of bisaturated extensions of (A, B) with respect to (4.3); that
is, Ac A*, B < B*, A* oc B* and A*, B* are maximal. obviously, A* and B* are both
convex. Note that the pair (A*, B*) is not uniquely defined.
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However, we can write
A*=AUU'(A1)UD1, B*=BU(T(B1)UD2,

where D,UD,cD={aeL:o(a)=a}, (A;UB,)ND =0 and A, c A, B;c B, since
if, say, a € 0(A,) and o(a) ¢ A, we could take sets A’ =A U{a}, B for which (4.3),
(4.4) hold and |A’| + |B| = m + 1, in contradiction to (4.5).
So A* and B* can be represented as
A* =A1 UO'(A])UA2UCUD1, B* =B1 U U'(BI)UBzu O'(C)UDz,

where o(A, U B)N(A*UB*)=(.
Since (A*, B*) satisfies (4.3) and is bisaturated, necessarily
E=1(A*)\A*=[(B*)\B* = Il(A*) N [(B*)
and
F=u(A*)\A*=u(B*)\B* =u(A*) Nu(B*)

(see also [4]).

Clearly, no element of E is greater than an element from L\ E, because E is an ideal,
and no element of F is smaller than an element from L\F, because F is a filter.
Formally,

ENA*)Vu(B*)=0 and FN{IA*UIB*)=0Q.
E and F are unions of the following sets:
E=RUDyUo(A3)U a(B3) and F=a(R)UD,U ag(A}) U o(BY),

where
RCL\D, D3CD, D4CD, AgUA§=A2,

ASNAL=@, B3U Bl = B,, BNBi=g

LemMa 1.
$oco(dy),  AsSkca(BY), Aisko(B3),  Bjoko(BY),
(A*UB*\(ASUB3)ol= D3  and (A* UB*)\(A}U B}) o D,.
ProOF. Suppose that there exists an a € A3 and an a, € o(A}) for which a >4, or

a<a,. a>a, is impossible, because a € A5 A* and a, € 0(A}) = F. Also, a<a, or,
equivalently, o(a) > o(a,), is impossible, because o0(a) € 0(A3) < E and o(a;) € AL

A*. Hence A$ o= 0(A}). One proves the other relations similarly. 0O
We have
m=|C|+|Ay| + |42l +|B:| +|Bo| +|R|, D=DyUD,UD;UD,
and
L] =2 +|D|.
From assumption (4.6) we have 7 = |A| + |B| = [A,]| + |4,| + 2 |C| + [B4| + [B,| and hence
IR =|C) 4.7)
We now consider /(C) N {(¢C). In Theorem 8 of [12] it is shown that
{OYNI(eC) =R, (4.8)

and so [/(C) N I(oC)| < |R| = C, by (4.7).



Equality in correlation inequalities 321

Also (see [12, Lemma 2}) it has been proved that

_I©)| - oC)]

ICl= <[(C)NI(eC),

IL|
which, together with (4.7) and (4.8), gives us
1(O) - l(eC
r1=10=HALEE oy oy 49)
and
{C)NI(cC)=R. (4.10)
LEmMMA 2. Suppose that (4.6) holds. Then:
@ I(C)=CUA3UG(B))UR,  |(C)=2|C|+|A3l+|B3,
I(6C)=0a(C)U a(A3)UB3UR, [l(aC)| =2|C| + |A3| + |BL).
(ii) (143 +1B3D(IASI + [B3) =2 |C| - |A1| +2-|C] - |B4] +|C]

X (D] + 1Dy| + |D3| + | Dy)).

Proor. (i) Let us introduce T =C U A} U o(B3), S = o(C)U o(43) U B} and show
that Tolc S. Since A* o= B* and o(A*) ol o(B*), we have Coc o(C), Colc B),
Coc o(A3), Alokco(C), AlSc=B), o(B3)d=a(C) and o(B3) Sk o(A3). Also,
according to Lemma 1, A} S 0(A3) and o(B5) o= B}. Hence Tk S.

We now consider I(T) and /(S). Clearly, /(C) €I(T) and I(a(C)) < I(S).

Let (T)=TUW, and [(§)=SUW, for some W;,, W,c L. Let us prove that
W, U W, c R. For this it is sufficient to show that

HSHUITHNLN(TUSUR))=,  since T3 S.
One has
L\(TUSUR)=FUA,;Ud(4;)UB,Uo(B,)UAIUBZUD,UD,UD,.

Since TNF =, here (T)NF=Q.

Suppose that a € A;Ua(A;) and a e (T)=I(C)VI(A)UI(c(BS)). Then a¢
I(C)U I(a(BY)), because (A, U o(A;)) = CU o(B,). If a € I(A}), then there exists an
a, € A} and an a<a; with o(a)> o(a;). This is impossible, because o(a) e A; U
o(A,) = A* and o(a,) € 0(A}) c F. Hence, I(T) N (A, U o(A,)) =D. Similarly, /(T)N
(B1U a(By)=12.

Suppose that a € A3 and a € I(T) =I(C) U I(A}) U l(c(BS)). This means that there
exists an a; e C U A} U o(B3) for which a <a, or (equivalently) o(a) > o(a,), which is
impossible, because o(a) e 0(A3)<E and o(a,) e o(C)Uc(A})UB5< L\E.
Therefore we have [(T) N A3 = and, similarly, /(T) N B3 =.

Suppose that @ € D; and a € I(T). This means that there exists an a; e CUALU
o(B3) for which a<a;. Clearly, a; ¢ CUa(B3), because D, (CUc(C)UB,U
o(By)). If a,e A} and a<a,, then o(a)>o(a;), which is impossible, because
o(@)=a e D,cA* and o(a,) € 0(A}) = F. Therefore I(T)N D, = and, similarly,

Thus I(T) N (L\(T US U R)) = and hence W, = R. Similarly, it can be proved that
I(S)YN(L\(TUSUR))= and W, c R. Therefore we have

KT)NIS)<R.
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However, since I(C) = [(T) and l(o(C)) ={(S), from (4.10) we conclude that
KT)nl(S)=R.
Now we apply (4.9) and obtain

HC) - IO _ DL K
Ty L OLLO

=[(C)NI(a(C))| =R =IC]

Therefore JI(C)| = I(T)], (o (C)l=I(S)| and since {(C)<{(T) and (a(C)) = 1(S),
necessarily '

IClI=IR|=

I(C)=U(T)=CUA}Ua(B))UR,  [I(C)|=2|C|+|A3}+|B3
and
I(a(C)) = U(S) = o(C)Ua(A5)UBJUR,  [(oC)=2|C| +|A3|+ B

This proves (i).
(i) follows from (4.9) and (i) after simplification. O
LemMA 3. Suppose that (4.6) holds. Then:
@ |A3l- B3| =IC|-|Ddl,  |A3|-1B3=I|Cl| - |Ds,
A3 - |42 =2 - |C| - |4\ + |C] - 1D,
B3 - |B2l =2 |C| - |By| +|C] - D,

A=) B

(ii) H(A*¥) NI(B*)| = |C| +|Dy| +|A3] + B3] = i

Proor. We consider the sets
P,=CUA] P,=CUA;, P,=CUAS, P,=CU a(B3),
Q,=0(C)UB),  0;=0(C)UB;, Q3=0(C)Ucd(A}), Qs=0(C)UB:

It can be verified (using A* o= B* and Lemma 1) that o= Q; (i=1, 2, 3, 4).
We are interested in |I(P,) N I(Q;)| and [u(B) Nu(Q,)|, fori=1, 2, 3, 4. Since P, c A*
and @, < B*, we have

I(P)NI(Q,) cE =0a(AS)Ua(B)UD;UR
and
u(P)Nu(Q,) = F = 0(A}) U o(BL)U D, U o(R).

According to Lemma 1, P, 5= 0(A,) U D; and Q, ok a(B,) U Ds. Therefore
HP)NIQ)I=C  and  [w(P)Nu(Qy)|<|43|+|B3|+|Dj +|C. (411)
Similarly,
I(P)NUQ,) <|A3 + B3 +|Ds| +|C]  and  [u(R)Nu(Q)|=|Cl. (4.12)
We also verify that
I(P)NIQ;3) A Uo(A)U(A5)UAIUD,UR  and  u(P)Nu(Qs)=o(R)
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or
H(Ps) NU(Q5)| <2 |Ay| + 143 + 43| +|Dy| +[C]
=2|A)|+ Azl + Dy +|C]  and  u(P)Nu(Q@s)=ICl. (4.13)
Furthermore
I(P)NIQ)=R and u(P)Nu(Qs)<=B,Ua(B)UB3Uc(B)UD,
or
HPINUQ)I=IC] and  |u(P)Nu(Qs)<2|By|+|By| +|Dyf +|C]
4.14)
Now, since L is a distributive lattice, we can apply the AD inequality and obtain
\Pl- Qi <|Piv Qi - IPAQil <|u(P)Nu(@)| - IP)NIQ)  fori=1,2,3,4
From (4.11)-)4.14) we have that
|43l - [B2I<IC|-|Dd,  |A3|-|B3|<|C|-|D4,
|43] - 1421 <2|C| - |4\ +|C| - IDi|,  |B3- [C3I<2]|C|-|Bi| +|C| - |Do].

Now (i) follows from (4.15) and (ii) in Lemma 2. (ii) follows from (i) after
simplification. O

(4.15)

REMARK. 2. Let us define s*(L) as the smallest real number s* such that
|M| - [N} < S* M N N| for all ideals M, N c L with M¢ N, N¢ M. From (ii) in Lemma
3 we draw a simple conclusion.

CoRrOLLARY. Assume that s* <|L|. Then (4.6) holds iff |A| - |B|=0, i.e. one of A, B
is 3, and the other consists of & non-trivial orbits.

ExamMpLE 2. Let L be any lattice for which (1.1) holds. We consider a new lattice
L' =L U{¢}, where element ¢ is defined to satisfy £=u for all u € L. Clearly, L’ is a
lattice for which |[M] - [N|<|L'| - |[M N N)| for all ideals M, N c L', but s* <|L’|.

We present our last important auxiliary result.

LeEMMA 4. Suppose that (4.6) holds, 0<|A|=<|B| and |S|<1. Then

A*=A.

Proor. Let |D|=0 or, equivalently, D, = D, = D;= D,;=0. We apply Lemma 3:
|43l |B3|=0, |A3|-|B3=0, |43 |4} =2|C|- |44,
|B3| - B3| =2|C| - |Byl.

Suppose that |A;|#0. Then |A3|#0, |A3|#0 (since always C#=J, if |JA|> 0). Hence
|B3| =|BS| =|B,| =0, which contradicts |A|<|B]. Therefore, if [D}=0, then [A,|=0
and hence A* = A.

Now let |D|=1. There are four possibilities:
(i) Suppose first that D; =1 and D, = D; = D,=0. Then Lemma 3 gives

|43+ B2 =0, |43 B3 =0,  |A3|-|A}|=2]|C] |A)] +|C|>0,
|B3| - |BY =2|C] - |B|.
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We have |A3| #0, A3 #0 and hence |B3| = |Bj| = |B,| =0, which contradicts |[A|<|B|.
Therefore this case is impossible.
(ii) Next, suppose that D, =0. D,=1 and D; = D, = 0. then we have

|43 - B3 =0,  |A3}-|B3|=0,  |A3|-|A3|=2]C|-|A4],
B3l - B3l =2|C] - |By| +|C>0.

Hence |BS| # 0 and B} # 0 imply that |A3| = |4} =|A,|=0 and A* = A.
(iii) Now suppose that

D, =D,=0, D;=1, D, =0.
Then we have
A2+ B2l =0,  |A3|-|B}|=|C|>0, |A3-]4} =2|C||A,,
B3l - IB2 =2|C] - |By].

(iv) In the case |A,|#0 necessarily |4}|#0 and |B}=|B,|=0. From |A3-|A} =
2|C|+|A,|>0 and |A3|-|B3=|C|>0 we conclude that |BS=|A}|/2 |A;} <|A}Y and
hence |B| = |C| + |B3| <|C} + A} <|A|, which is a contradiction.

Therefore, |4,{=0 and hence A*=A. Finally, when D, =D,= D, =0, D,=1,
similarly, we have A* = A. a

5. THE MAIN RESULTS

Let L=]I-,[0,1,..., k;_,] be a direct product of n chains and let the polarity o be
complementation,; that is, for a = (a,a,,...,a,) e L,

ol@)=a=(k,—1-ay,..., k,—1—a,). 5.1
Obviously, if 2 | [I} k;, then D = & (there are no trivial orbits), and if 2 4 [T} k;, then

o~{(i52... )

and [D|=1.

THEOREM 3 (equality characterization in terms of numbers, II7 k; even). Suppose
that L=1I7.,[0,1,...,k;_4], 2 | I3 k; and that polarity is complementation. Then there
exist A, B < L, for which (4.3) and (4.4) hold, and

Ll _ IR,

Al+|B| ==
|II|22,

0<|A|<|B|

iff there exist positive integers a and b and partition [n] = Iy U J, such that

lA|=a b, aSILET'“k" and bs—HiEZJ°ki.

Proor. Let (A4, B) be a pair for which (4.3) and (4.4) hold, |A|+|B|=L/2 and
0<|A|=<|B]

Let (A*, B*) be a bisaturated extension of (A, B). Thus, by definition, A* Slc B*
and according to Lemma 4, we have A* = A.

Therefore A = I(A)\(I(A) N I(B*)) and B* = I(B*)\(I(A) N I(B*)).
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We set a = |I(A)], B =|l(B*)|, apply Lemma 3(ii) and obtain

A - 1B _ 2B
IL| L|

and |B*|= B — aB/|L|. Therefore the ideals /(A) and /(B*) minimize |I(A) N I(B*)| for
fixed |I(A)| = « and |I(B*)| = B.
Since |A| + |B| =|L|/2, |A| <|B|, necessarily a <, |A| + |B*|=|L|/2 and hence
ap, . aB_ILI

a——+ - = N
TR

lA| = [I(A)] = [[(A) N I(B*)| = [I(A)] —

which is equivalent to
(IL| - 2a)(L| - 2B) <O.
Therefore
a=<|L|/2, B=|L|/2. (5.2)

Since the ideals /(A) and /(B*) minimize |[/(A)N I(B*)| we apply Theorem 2 to the
cardinalities |/(A)| = « and |/(B*)| = B:

(@) aorBisOor [IX-  k;=|L|;

(b) there exists an I = [n], o <|I} <n, and there exists positive integers «; and B8, with

a=Hki'a1, B= H ki.Bl'
iel ie[n]\]
We omit point (a), because 0 < |A|=<|B|.
With (5.2) we conclude from (b) that

[Tk a=a<iLiz=11k/2,
1

iel

thus

algnki 2, H ki'ﬁl=B?|L|/2

ieln) ie[n]\1
and thus

Blzl—lki/Z, Hki—BlsHki 2.
iel iel iel

Hence, |A|=a — aB/|L| = a; - [licr ki — @181 = a1(Ilic1 ki — B1) and as a, b, L, and J,
we can take

a=a;, b=[lk-B, L=[, J=L
iel

This proves necessity.

Now suppose that |[A|=a- b, [n]=LUJ, LINS=3, a<Il.,ki/2, b=<Ilc) ki/2
and let us construct a pair (A, B) with properties (4.3), (4.4) and with |[A| + |B| = [L|/2.

Let A; be the set of the first a lexicographically smallest vectors of length |f| in
sublattice L, and let A, be the set of the b lexicographically largest vectors of length
Mol = n — || in sublattice L;. We consider A, B* c L, where

A= Al X Az, B*= (Llo\Al) X (LJO\AZ)'

It is clear that:
(a) Al B*,

(b) the sets A, B* are bisaturated with respect to the relation ‘incomparable’;
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(c) lAl=a- b and |B¥ = (ILies, ki — @)(ILics, ki — b).
Since 2 |IIf k;, then at least one of the integers |L,] =ILies ki and |L;|=1IL;c, k: is
even.

Furthermore, since a=<|L,|/2 and b=<|L,|/2, and A; and A, have lexicographic
order, then necessarily at least one of the following holds:
(1) @i e L \A, forall a; € A;;
(2) @; e L\A; for all a; € A,.
Hence A c B*. It is easy to verify that in B* there are exactly (|L,| — 2a)(\L,| —2b)/2
unordered pairs {c, ¢}; ¢, ¢ € B*. Therefore, B* =B U B,, where B, c B, |B,| = (L4 —
2a)(|L,|—2b)/2 and B contains no element and its complement. Therefore (A, B)
satisfies both (4.3) and (4.4), and we verify that

(L ~2a)(Ly = 2b) _|L|

2 5 O

lAl+|Bl=a b+ (L —a)(|Lyl - b) -

THEOREM 4 (equality characterization in terms of numbers, [T%, &, is odd). Suppose
that L=1I}-1[0,1,...,k;—1), 2411 k; and that polarity is complementation. Then
there exist A, B < L for which (4.3) and (4.4) hold, and

ILI—-1
A|+|B|="—"—
A1 +1B] ==

»  lAI=|B]
if:

(i) there exist positive integers a and b and a partition [n]1=LUJ, L, Jo %D such that
|A|=a-b, a<|L.\/2, b<|L,|/2;

or

(ii) |Al= (L, £1)(L,}F1)/4  and |B] = Ly} F 1)L, £ )/4

for all Iy and Jy, IyU Jy = [n), Ly, Jo#=D.

Proor. Let (A, B) be a pair for which (4.3), (4.4), |A|+|B|=(L|-1)/2 and
0<|A|=|B| hold. Let (A*, B*) be a bisaturated extension of (A, B) and again apply
Lemma 4 to obtain A* = A.

As in the proof of Theorem 3, |/(4)] = « and [I(B*)| = B;

lAl=a—ap/IL, |B¥=B-eaB/IL, a=[[k-a;, B= [] k-8B

iel ie[n)\/
Furthermore, |A| + |B*|=|A| + |B| = (|L| - 1)/2, and hence
|A| +|B* = a —aB/|LI+ B — aB/|L|
=iH!k.--a1—a1-Bl+ Il k-Bi—aBi=(LI-1)12

ieln]\u

or, equivalently, (IL;e(uj\s ki — 20,) ([ e s k; — 28,) — 1 <.

This can be true only when:
(@) 20y <ILiepmpr ki, 281> i ki
(®) 2a; =TLicppki— 1, 28, = e/ ki —1;
(©) 2a;= Micpmpu ki +1, 28, = [ics ki + 1.

For the case (a), as in the proof of Theorem 3, we can take integers a = a;,
b=1Leski—B1, Jy=[n]\I and J,= I, and so |A| can have parameters as in (i).
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If (b) holds or, equivalently, @ = (|L| —|L,|)/2 and B = (JL| — |L[xpil)/2, then A and
B can have parameters
Al = (L + 1)(Lpapd — 1)/4,  |BI<|B*|=(IL;| = D)(ILpspd +1)/4
In case (c) one has
= (L] =1)(Lppd +1)/4,  |BI<|B* = (LA +1)(Lispd — 1)/4.

Therefore |A| can have only parameters as in (i) or (ii).

This proves necessity.

To show sufficiency, suppose that |A|=a ‘b, [n]=LVUJ, b, Jo#J, a<|L)/2 and
b <Jyl/2. We construct (A, B*) as in the proof of Theorem 3:

A =A1 XAz, B= (Llo\Al) X (LJO\AZ)-

We note that B*=B UB,U {d}, where B;c< B, |By|=[(ILs| —2a)(IL,|—2b)—1]/2
and d € L is an element with d =d; i.e.

(k-1 k,— 1)
a=(b22, 1)
We verify that A and B satisfy (4.3) and (4.4) and
|Al +|B| = (IL| — 1)/2.

Now let |A,| = (L] +£1)/2 and |A,| = (|L,] ¥ 1)/2 (the sets A, and A, are defined in the
proof of Theorem 3) and consider

A=A; XA, B = (L \Ay) X (L,\A)).
It is easy to verify that (A, B) satisfies (4.3) and (4.4):
|Al= (1Lt £ 1)L F1)/4,  B=(LgF1)(Ly£1)/4  and
Al +|B|=(L|—-1)/2. O

CoRrOLLARY. (i) Suppose that ky=k,=---=k, Then, for all r,r<II7"'k)/2,
there exists a pair (A, B), A, B c L, for which (4.3) and (4.4) hold, |A| + |B|=L|L|/2]
and |A|=r.

(ii) Suppose that k, =k, =---=k, =2 (Hilton’s results in [16]). Then, for all r,
r=<2""1, there exists a pair (A, B) c L for which (4.3) and (4.4) hold,

JA|+[B|=2"' and |A|=r.

Proor. (i) Weputa=1,b=r, Iy={n}, o={1,2,...,n—1} and apply Theorems
3 and 4.
(ii) follows from (i), because min(|4|, |B|) <2"~% O
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