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Abstract For positive integers k, n let f(n, k) be the maximal cardinality of subsets
of integers in the interval < 1, n > , which don’t have k + 1 pairwise coprimes. The set
E(n, k) of integers in < 1, n > , which are divisible by one of the first k primes, certainly
does not have k + 1 pairwise coprimes.

Whereas we disproved in [1] an old conjecture of Erdös ([4], [5], [6], [7]) by showing that
the equality

(1) f(n, k) = |E(n, k)|

does not always hold, we prove here that (1) holds for every k and all relative to k
sufficiently large n .

2



1. Introduction

We continue our work of [1], in which an old conjecture of Erdös [4] was disproved. There
also some cases were settled in the positive and related questions were investigated. For
further related work we refer to [8], [9], [10], [11], and [14]. While restating now the
conjecture of Erdös in its original form and its general form of [7], we also introduce our
notation and some basic definitions. Here we follow [1] as closely as possible.
N denotes the set of positive integers and P = {p1, p2, . . . } = {2, 3, 5, . . . } denotes the set
of all primes.

For two numbers u, v ∈ N we write u|v iff u divides v , (u, v) stands for the largest
common divisor of u and v, [u, v] is the smallest common multiple of u and v . The
numbers u and v are called coprimes, if (u, v) = 1 .

We are particularly interested in the sets

(1.1) Ns = {u ∈ N : (u,
s−1∏

i=1

pi) = 1}

and

(1.2) Ns(n) = Ns∩ < 1, n >,

where for i ≤ j, < i, j > equals {i, i + 1, . . . , j} .

Erdös introduced in [4] (and also in [5], [6], [7], [9]) f(n, k, s) as the largest integer r for
which an

(1.3) A ⊂ Ns(n), |A| = r,

exists with no k + 1 numbers in A coprimes.

Certainly the set

(1.4) E(n, k, s) = {u ∈ Ns(n) : u = ps+i v for some i = 0, 1, . . . , k − 1}

does not have k + 1 coprimes.

The case s = 1 , in which we have N1(n) =< 1, n > , is of particular interest.

Conjecture 1.
f(n, k, 1) = |E(n, k, 1)| for all n, k ∈ N.

It seems that this conjecture of Erdös appeared for the first time in print in his paper [4] of
1962.

General Conjecture.

f(n, k, s) = |E(n, k, s)| for all n, k, s ∈ N.

Erdös mentions in [7] that he did not succeed in settling the case k = 1 . We focus on this
special case by calling it
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Conjecture 2.
f(n, 1, s) = |E(n, 1, s)| for all n, s ∈ N.

Notice that
E(n, 1, s) = {u ∈ N1(n) : ps |u; p1, . . . , ps−1 ∤ u}.

Whereas in [1] Conjecture 1 was disproved for k = 212 , Conjecture 2 was almost settled
with the following result.

Theorem 2 ([1]). For every s ∈ N and n ≥
∏s−1

i=1 pi/(ps+1 − ps) ,

f(n, 1, s) = |E(n, 1, s)|

and the optimal configuration is unique.

After the presentation of these results on his 80th birthday at a conference in his honour
Erdös conjectured that with finitely many exceptions ”Erdös sets” are optimal or, in other
terminology, that for every k ∈ N f(n, k, 1) 6= |E(n, k, 1)| occurs only for finitely many
n .

We call this Conjecture 1 ∗ . Analogously we speak of Conjecture 2 ∗ (which is settled in
the affirmative by Theorem 2 of [1]) and of the General ∗ Conjecture, which is established
in this paper.

Actually the main step is the proof of Conjecture 1 ∗ . It can easily be extended to the
general case with a bulk of notation. To simplify notation we write in the case s = 1

N(n)
∆
= N1(n), f(n, k)

∆
= f(n, k, 1) and E(n, k) , E(n, k, 1) .

We climed the mountain to Conjecture 1 ∗ in 3 steps by going through a series of weaker
conjectures of increasing strength:

Conjecture 1A.

The infinite Erdös set
E(∞, k) = {mpi : 1 ≤ i ≤ k, m ∈ N}

has maximal (lower) density among subsets of N without k + 1 coprimes.

Conjecture 1B.

lim
n→∞

f(n, k)|E(n, k)|−1 = 1 for every k ∈ N.

A few more definitions and known facts are needed.

For A ⊂ N we define

A(n) = A∩ < 1, n > and |A| as cardinality of A.

We call dA = lim
n→∞

|A(n)|
n

the lower and dA = lim
n→∞

(A(n))
n

the upper asymptotic density

of A .
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If dA = lim
n→∞

|A(n)|
n

exists, then we call dA the asymptotic density of A .

Erdös sets can be nicely described in terms of sets of multiples. The set of multiples of A
is

M(A) = {m ∈ N : a|m for some a ∈ A}

and the set of non–multiples of A is

N(A) = N\ M(A).

Thus E(n, k) = M({p1, . . . , pk})∩ < 1, n > and also for any finite A = {a1, . . . , at} ⊂ N

and a =
t∏

i=1

ai N(A)∩ < 1, a > the set of integers in < 1, a > not divisible by any

member of A . Already Dirichlet knew that

|N(A)∩ < 1, a > | = a
t∏

i=1

(1 −
1

ai

),

if the elements of A are pairwise relatively prime.

For general A by inclusion–exclusion

|N(A)∩ < 1, a > | = a(1 −
t∑

i=1

1

ai

+
∑

i<j

1

[ai, aj ]
− . . . )

and therefore

(1.5) dN(A) = 1 −
t∑

i=1

1

ai

+
∑

i<j

1

[ai, aj ]
− . . . .

2. The main results

It is convenient to introduce the family S(n, k, s) of all subsets of Ns(n) no k+1 elements
of which are pairwise relatively prime. In case s = 1 we also write S(n, k) and S(∞, k)
in the unrestricted case n = ∞ .

Theorem 1A.

sup
A∈S(∞,k)

dA = dE(∞, k) = 1 −
k∏

i=1

(1 −
1

pi

).

Theorem 1B.

lim
n→∞

f(n, k)

|E(n, k)|
= 1 for every k ∈ N.
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Theorem 1. For every k ∈ N there is an n(k) such that f(n, k) = |E(n, k)| for all
n > n(k) and the optimal set is unique.

After the example of [1] this is the strongest statement one can hope for.

A key tool in the proof of Theorem 1 is a combinatorial result of independent interest.

For a subfamily A ⊂
(
[m]
ℓ

)
, that is a set of ℓ –element subsets of an m –element set, the

(lower) shadow ∆A is defined by ∆A = {B ∈
(

[m]
ℓ−1

)
: B ⊂ A for some A ∈ A} and the

(upper) shadow of B ⊂
(

[m]
ℓ−1

)
) is δB = {A ∈

(
[m]
ℓ

)
) : B ⊂ A for some B ∈ B} .

With any function g : A → R+ we associate the function h : ∆A → R+ , where h(B) =
max

A∈δ{B}∩A
g(A).

Theorem 2. Let A ⊂
(
[m]
ℓ

)
have the property that no k+1 elements of A are disjoint.

Then for any function g : A → R+ and its associated function h : ∆A → R+ (defined
as above) ∑

B∈∆A

h(B) ≥
1

k

∑

A∈A

g(A).

In particular

|∆A| ≥
1

k
|A|.

Eventhough Therem 1A follows now from Theorem 1, we give our original proof, because
it is much simpler than that of Theorem 1, which is based on Theorem 2.

It also shows how the ideas developped. The original proof of Theorem 1B is not based on
Theorem 2, but since it is rather technical, it is not presented in this paper.

It should be mentioned, however, that Theorem 1B implies

sup
A∈S(∞,k)

dA = sup
A∈S(∞,k)

dA = sup
A∈S(∞,k)

dA.

Finally we remark that inspection of our methods and proofs shows that they apply also
to the general case of f(n, k, s) for s > 1 . Only some extra notation is needed. Therefore
we just state the results.

Theorem 1’. For every k, s ∈ N there exists an n(k, s) such that for all n ≥ n(k, s)

|E(n, k, s)| = f(n, k, s)

and this optimal set is unique.

3. Reduction to left compressed sets

The operation ”pushing to the left” is frequently used in extremal set theory, but to our
surprise seems not to be as popular in combinatorial number theory, perhaps because its
usefullness is less obvious. Anyhow, our first (but not only) idea is to exploit it.

6



Definition 1. A ⊂ Ns is said to be ”left compressed”, if for any a ∈ A of the form

a = pi
r · a1, (a1, pr) = 1

and any pℓ of the form

ps ≤ pℓ < pr, (pℓ, a1) = 1

it follows that a∗ = pi
ℓ · a1 ∈ A as well.

For any n ∈ N ∪ {∞} we denote the family of all left compressed sets from S(n, k, s) by
C(n, k, s) .

Lemma 1. For n ∈ N

max
A∈S(n,k,s)

|A| = max
A∈C(n,k,s)

|A| = f(n, k, s).

Proof: For any A ∈ S(n, k, s) and ps ≤ pℓ < pr we consider the partition of A

A = A1∪̇A2∪̇A0,

where
A1 = {a ∈ A : a = pi

r · a1(i ≥ 1), (a1, prpℓ) = 1; pi
ℓ · a1 ∈ A},

A2 = {a ∈ A : a = pi
r · a1(i ≥ 1), (a1, prpℓ) = 1; pi

ℓ · a1 /∈ A},

A0 = A\(A1 ∪ A2).

Define A2
∗ = {u ∈ Ns : u = pi

ℓ · a1, pi
r a1 ∈ A2} and notice that by our definitions

A2
∗ ⊂ Ns(n) . Consider now A∗ = (A ∪ A2

∗)\ A2 and observe that |A∗| = |A| and also
that A∗ ∈ S(n, k, s) .

Finitely many iterations of this procedure to primes ps ≤ pℓ < pr give the result.

The operation which led from A to A∗ can be denoted by Ls,ℓ,r . This is a ”left pushing”
operation:

A∗ = Ls,ℓ,r(A).

Moreover, by countably many left pushing operations one can transform every A ∈ S(∞, s)
into a left compressed set A′ such that

(3.1) |A(n)| ≤ |A′(n)|

and therefore also that

(3.2) dA ≤ dA′, dA ≤ dA′.

For the left compressed sets C(∞, k) in S(∞, k) we have thus shown the following.

7



Lemma 2.
sup

B∈S(∞,n)

dB = sup
B∈C(∞,n)

dB

and
sup

B∈S(∞,n)

dB = sup
B∈C(∞,n)

dB.

Next we mention two useful observations.

Any optimal B ∈ S(n, k, s) , that is |B| = f(n, k, s) , is an “upset”:

(3.3) B = M(B) ∩ Ns(n)

and it is also a ”downset” in the following sense:

(3.4) b ∈ B, b = qα1
1 · · · qαt

t , αi ≥ 1 ⇒ b′ = q1 . . . qt ∈ B.

Finally we introduce for any B ⊂ N the unique primitive subset P (B) , which has the
properties

(3.5) b1, b2 ∈ P (B) ⇒ b1 ∤ b2 and B ⊂ M(P (B)).

We know from (3.4) that for an optimal B ∈ S(n, k, s) P (B) consists only of squarefree
integers.

Remark 1: We could use also the following concept of left compressedness:

Definition 2. A ⊂ Ns is left compressed, if for any a ∈ A of the form

a = pαi

i · a1, αi ≥ 1, (a1, pi) = 1

it follows that for any pj , ps ≤ pj < pi , in case αi ≥ 2

a∗ = pj · p
αi−1
i a1 ∈ A

and in case αi = 1
a∗ = pj · a1 ∈ A, if (a1, pj) = 1.

While the two definitions are different in general, it can be easily seen, that if the considered
set A ⊂ Ns is also “upset” and “downset”, then both definitions of left compressedness
coincide.

Besicovitch has shown in the thirties (see [9]) that M(A) need not have a density for
general A . Erdös [15] has given a characterisation for sets A for which dM(A) exists.

Here we have the following

Conjectures. The set of multiples M(A) of any left compressed set A (in the sense of
Definition 2) possesses asymptotic density. We conjecture this even for left compressed sets
in the sense of Definition 1.

Moreover, we think that even a stronger statement is true. For any left compressed set A
in the sense of Definition 1 or 2 dA exists.
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4. Proof of Theorem 1A

We remind the reader of the abbreviations f(n, k), E(n, k), N(n), S(n, k), C(n, k) for
f(n, k, 1), E(n, k, 1), N1(k), S(n, k, 1) , and C(n, k, 1) resp. We also introduce

(4.1) O(n, k) = {B ∈ S(n, k) : |B| = f(n, k)}.

By the remarks at the end of Section 3 we know that for A ∈ O(n, k) we have properties
(I):

(a) P (A) ⊂ N∗ , the set of squarefree numbers

(b) A = M(P (A)) ∩ N(n) .

We also know from Lemma 1 that

(c) O(n, k) ∩ C(n, k) 6= ∅ .

For infinite sets A ⊂ N we choose the lower asymptotic density dA as a measure and
define

(4.2) O(∞, k) = {A ∈ S(∞, k) : dA = sup
B∈S(∞,k)

dB},

which is not automatically non–empty. C(∞, k) are the left compressed sets in S(∞, k) .

Again it suffices to look at A ∈ C(∞, k) with the properties

(a) P (A) ⊂ N∗

(b) A = M(P (A)) .

Sets of multiples have been studied intensively in the thirties (c.f. Halberstam and Roth
[12]).

Let P (A) = {a1, a2, . . . } , where the elements are written in the usual lexicographical (or
alternatively in natural) order. It is easy to show (see [12]) that

(4.3) dM(P (A)) =

∞∑

i=1

b(i),

where

(4.4) b(i) =
1

ai

−
∑

j<i

1

[aj , ai]
+ . . .

is the density of the set B(i) of those integers in M(P (A)) , which are divisible by ai

and not by a1, a2, . . . , or ai−1 . We can say more about b(i) , if we use the prime number
factorization of the squarefree numbers ai .

Lemma 3. Let ai = q1 . . . qr, q1 < q2 < . . . < qr and qj ∈ P for j = 1, 2, . . . , r . Then

(i) B(i) = {n ∈ N : n = qα1
1 · · · qαr

r · q with αj ≥ 1, (q, Π
p≤qr

p) = 1}

(ii) dB(i) = b(i) = 1
(q1−1)···(qr−1) Π

p≤qr

(1 − 1
p
) .
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Proof: Since A is left compressed and P (A) is written in lexicographical order q is
of the described form and (i) holds.

To verify (ii) just observe that from (1.6)

dB(i) =
∑

αj≥1

1

qα1
1 · · · qαr

r

∏

q≤qr

(1 −
1

p
)

=
∏

p≤qr

(1 −
1

p
)

∞∑

α1=1

1

qα1
1

∞∑

α2=1

1

qα2
2

· · ·
∞∑

αr=1

1

qαr
r

=
∏

p≤qr

(1 −
1

p
)

1

(q1 − 1) · · · (qr − 1)
.

We are now ready to prove Theorem 1A.

Suppose to the contrary that there exists an A ∈ S(∞, k) with

dA > 1 −
k∏

j=1

(1 −
1

pj

).

We know already that we can assume A ∈ C(∞, k), P (A) ⊂ N∗, M(P (A)) = A and that
P (A) = {a1, a2, . . . } is in lexicographical order.

By

(4.3)
∞∑

i=1

b(i) > 1 −
k∏

j=1

(1 −
1

pj

)

and hence for a suitable m(A) also

m∑

i=1

b(i) > 1 −
k∏

j=1

(1 −
1

pj

) for m ≥ m(A).

We can consider therefore A′ = M({a1, . . . , am}) , because A′ ∈ S(∞, k) and still

(4.5) dA′ = dA′ =

m∑

i=1

b(i) > 1 −
k∏

j=1

(1 −
1

pj

).

Write P (A′) = {a1, . . . , am} in the form

(4.6) P (A′) = R1∪̇R2∪̇ · · · ∪̇Rt,

where Rs is the set of all aj ’s with greatest prime factor p+(aj) = ps . Notice that in
case t > k we have by left compressedness that necessarily pt /∈ A′ and also pt /∈ Rt ,
because otherwise A′ /∈ S(∞, k) . Hence

dM (P (A′)) =

m∑

i=1

b(i) =

t∑

s=1

τ(Rs),
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where

(4.7) τ(Rs) =
∑

a=q1···qrps∈Rs
q1<···<qr<ps

1

(q1 − 1) · · · (qr − 1)(ps − 1)

s∏

i=1

(1 −
1

pi

).

We consider now Rt = {aℓ, aℓ+1, · · · , am} for some ℓ ≤ m .

We have

(4.8) τ(Rt) =
m∑

i=ℓ

b(i).

By the pigeon–hole principle there exists a subset R′
t = {ai1 , . . . , ai1} ⊂ Rt such that

(4.9)
r∑

j=1

b(ij) ≥
τ(Rt)

t − 1
and (

ai1

pt

, . . . ,
air

pt

) > 1.

Now we replace the set A′ by the set A′′ = M(R1 ∪ · · · ∪ Rt−1 ∪ R′′
t ) , where

R′′
t =

{aij

pt

: aij
∈ R′

j

}
.

One readily verifies that A′′ ∈ C(∞, k) .

We estimate now dA′′ from below. The contribution of every element
aij

pt
∈ R′′

t to

M(R1∪· · ·∪Rt−1∪R′′
t )\ M(R1∪· · ·∪Rt−1) are the elements in the form u = qβ1

1 · · · qβr
r ·q ,

where aij
= q1 · · · qr pt, βj ≥ 1 , and (q,

t∏
i=1

pi) = 1 .

The density of this set of integers equals

b
′′(ij) =

1

(q1 − 1) . . . (qr − 1)

t∏

i=1

(1 −
1

pi

)

and hence
b
′′(ij) = (pt − 1) b(ij).

Therefore, using (4.9) we have

dA′′ ≥
t−1∑

s=1

τ(Rs) + (pt − 1)
τ(Rt)

t − 1
>

t∑

s=1

τ(Rs) = dA′, because pt > t.

We notice that P (A′′) ⊆ R1 ∪ · · · ∪ Rt−1 ∪ R′′
t and hence

max
a∈P (A′′)

p+(a) ≤ pt−1.

Continuing this procedure we arrive after finitely many steps at the set M({p1, . . . , pk})

and by (4.5) to the statement that its density 1−
k∏

i=1

(1− 1
pi

) must be bigger than itself.

This proves that
max

B∈S(∞,k)
dB = dE(∞, k).
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5. A finite version of Lemma 3

We work now in N(n) and need sharper estimates on cardinalities than just bounds on
densities. It suffices to consider A ∈ C(n, k) ∩ O(n, k) . We know that P (A) = {a1 <
a2 < . . . < am} ⊂ N∗ and that A = M(P (A)) ∩ N(n) . Define B(i)(n) = {u ∈ N(n) :
ai|u and aj ∤ u for j = 1, . . . , i − 1} and write

(5.1) A =
m
∪

i=1
B(i)(n).

Lemma 4. Let ai = q1, . . . , qr, q1 < q2 < . . . < qr with qj ∈ P .
Then

(i) B(i)(n) =
{

u ∈ N(n) : u = qα1
1 . . . qαr

r · T, αi ≥ 1 and (T,
∏

p≤qr

p) = 1
}

.

(ii) lim
n→∞

|B(i)(n)|
n

= 1
(q1−1)...(qr−1) ·

∏
p≤qr

(1 − 1
p
) .

(iii) For every ǫ > 0 , every h ∈ N and every ai = q1 . . . qr, q1 < q2 < . . . < qr ≤ ph

there exists an n(h, ǫ) such that for n > n(h, ǫ) we have

(1 − ǫ) n ·
1

(q1 − 1) . . . (qr − 1)

∏

p≤qr

(1 −
1

p
) < |B(i)(n)|

< (1 + ǫ)n ·
1

(q1 − 1) . . . (qr − 1)
·

∏

p≤qr

(1 −
1

p
).

Proof: (i) immediately follows from the facts that A is compressed, “upset” and “downset”.

(ii) We know that for m ∈ N

d Nm =
∏

p≤pm

(1 −
1

p
)

and hence

lim
n→∞

|B(i)(n)|

n
=

∑

αi≥1

1

qα1
1 . . . qαr

r
·

∏

p≤qr

(1−
1

p
) =

1

(q1 − 1) . . . (qr − 1)
·

∏

p≤qr

(1−
1

p
).

(iii) follows from (ii), because the constant number of sequences converges uniformly.

6. Combinatorial result for shadows and a proof of Theorem 2

For A ⊂
(
[m]
ℓ

)
and B ⊂

(
[m]
ℓ−1

)
the lower shadow ∆ A and the upper shadow δ B were

defined in Section 2.

We begin with a special case of Theorem 2.
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Lemma 5. Let A ⊂
(
[m]
ℓ

)
have the property that no k + 1 of its members are pairwise

disjoint, then

|∆ A| ≥
1

k
|A|.

Proof: The standard left pushing operation preserves the ”no k + 1 disjoint”–property
and only can decrease the shadow. We can assume therefore that A is left–compressed.

We distinguish two cases.

Case m ≤ (k + 1)ℓ − 1

Counting pairs (A;B) with B ⊂ A in two ways we get

|∆ A| ≥
ℓ

m − ℓ + 1
|A| ≥

ℓ

(k + 1)ℓ − 1 − ℓ + 1
|A| =

1

k
|A|.

Case m ≥ (k + 1)ℓ

We consider the following partition of < 1,m > :

I1 =< 1, k >, I2 =< k + 1, 2k + 1 >, . . . , Ij =< (j − 1)(k + 1), j(k + 1) − 1 >, . . . ,

Iℓ =< (ℓ − 1)(k + 1), ℓ(k + 1) − 1 >, Iℓ+1,=< ℓ(k + 1),m > .

At first we show that for every A ∈ A there exists an index j, 1 ≤ j ≤ ℓ , for which

(6.1) |A ∩ (I1 ∪ I2 ∪ . . . ∪ Ij)| = j.

To see this, let us assume to the opposite that it does not hold for some A ∈ A . Then
necessarily |A ∩ Iℓ+1| ≥ 1 , because otherwise |A ∩ (I1 ∪ . . . ∩ Iℓ| = ℓ since |A| = ℓ .
Therefore we must have |A∩ (I1 ∪ . . .∪ Iℓ| ≤ ℓ− 1 and a fortiori |A∩ (I1 ∪ . . .∪ Iℓ−1)| ≤
ℓ − 2, |A ∩ (I1 ∪ . . . ∪ Iℓ−2| ≤ ℓ − 3, . . . , |A ∩ (I1 ∪ I2)| ≤ 1, |A ∩ I1| = 0 .

However, since A is also left compressed, we can choose then k + 1 elements from A
(including A ), which are pairwise disjoint. This contradicts our assumption on A .

Now, for every A ∈ A define jA, 1 ≤ jA ≤ ℓ , as the largest index j for which (6.1)
holds. This can be used to partition A into disjoint subsets:

(6.2) A =

ℓ
·
∪

i=1
Ai, where Ai = {A ∈ A : jA = i}.

Some of the subsets may be empty. Consider now the shadows ∆ Ai (1 ≤ i ≤ ℓ) and its
sub–shadows ∆∗Ai = {B ∈ ∆ Ai : |B ∩ (I1 ∪ . . . ∪ Ii)| = i − 1} .
It follows immediately from the definition of the Ai that

(6.3) ∆∗ Ai1 ∩ ∆∗Ai2 = ∅ for all i1 6= i2.

Moreover, using left compressedness of A it can be shown easily that

(6.4) ∆ A =
ℓ
∪

i=1
∆∗Ai.
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In the light of (6.2), (6.3), and (6.4) it suffices to show that

(6.5) |∆∗Ai| ≥
1

k
|Ai| for i = 1, 2, . . . , ℓ.

We look therefore for fixed i at the intersections

Ui = {A ∩ (I1 ∪ . . . ∪ Ii) : A ∈ Ai}

and partition Ai as follows:

(6.6) Ai =
·
∪

U∈Ui

AU
i , AU

i = {A ∈ Ai : A ∩ (I1 ∩ . . . ∩ Ii) = U}.

Also, we introduce the intersections

Vi = {B ∩ (I1 ∪ . . . ∪ Ii) = B ∈ ∆∗Ai}

and partition ∆∗Ai as follows:

(6.7) ∆∗Ai =
·
∪

V ∈Vi

(∆∗Ai)
V , (∆∗Ai)

V = {B ∈ ∆∗Ai : B ∩ (I1 ∪ . . . ∪ Ii) = V }.

Now counting for the ∆∗ –operation pairs again in two ways we get the inequality

i ·
∑

U∈Ui

|AU
i | ≤

∑

V ∈Vi

(i(k + 1) − 1 − (i − 1))| (∆∗Ai)
V | ≤ ik

∑

V ∈Vi

|(∆∗Ai)
V |.

Together with (6.6) and (6.7) it implies (6.5).

The next result is for a more general structure. It enables us to get immediately Theorem
2 from Lemma 5. Let G = (V,W,E) be a bipartite graph. With σ(S) for the set of
vertices adjacent to vertex s and σ(s) for the set of vertices adjacent to vertices in S .
We assume that

σ(V ) = W.

Lemma 6. Suppose that for some α ∈ R+ we have for every S ⊂ V

(6.8) |S| ≤ α|σ(s)|,

then for every function g : V → R+ and associated function h : W → R+ , where
h(b) = max

a∈σ(b)
g(a) for all b ∈ W ,

(6.9)
∑

a∈V

g(a) ≤ α
∑

b∈W

h(b)

holds.

Proof: Let {γ1 < γ2 < . . . < γr} be the range of g . Then we have the partition
V = V1 ∪̇ . . . ∪̇ Vr , where

Vi = {v ∈ V : g(v) = γi}, 1 ≤ i ≤ r.
14



Clearly

(6.10)
∑

a∈V

g(a) =
r∑

i=1

γi |Vi|.

By the definition of h obviously

(6.11) h(b) = γr for all b ∈ σ(Vr).

We proceed now by induction on r .

r = 1 : Here h(b) = γ1 for all b ∈ W and hence by (6.8)

∑

a∈V

g(a) = γ1 · |V | ≤ γ1 · α · |W | = α ·
∑

b∈W

h(b).

r − 1 → r : We assume that (6.9) holds for every function g′ : V → R+ with r − 1
different values.

With our g under consideration we associate the function g∗ : V → R+ defined by

g∗(a) =

{
γi for a ∈ Vi, i ≤ r − 1

γr−1 for a ∈ Vr.

Denote by h∗ : W → R+ the usual function corresponding to g∗ . We verify that

(6.12)
∑

a∈V

g(a) =
∑

a∈V

g∗(a) + (γr − γr−1)|Vr|,

(6.13)
∑

b∈W

h(b) =
∑

b∈W

h∗(b) + (γr − γr−1)|σ(Vr)|.

From the condition (6.8) and the induction hypothesis applying to g∗ we know that

|Vr| ≤ α|σ(Vr)| and
∑

a∈V

g∗(a) ≤ α
∑

b∈W

h∗(b).

These inequalities and (6.12), (6.13) give (6.9).

Proof of Theorem 2: Consider G = (V,W,E) = (A,∆A, E) , where (A;B) ∈ E iff
A ⊃ B , and A satisfies the hypothesis of Theorem 2 and hence also of Lemma 5. Since
every subfamily A′ ⊂ A also satisfies this hypothesis, we know that

(6.14) |∆A′| ≥
1

k
|A′|.

Since ∆A′ = σ(A′) (6.14) guarantees (6.8) for α = k .
15



The conclusion (6.9) says now

∑

A∈A

g(A) ≤ k
∑

A∈∆A

h(A)

and Theorem 2 is established.

Remark 2: One might consider instead of the (maximal) associated function h an
(average) associated function h̄ : ∆A → R+ , where h̄(B) = |δ(B)∩A|−1

∑
A∈δ(B)∩A

g(A) .

Obviously h(B) ≥ h̄(B) for all B ∈ ∆A .

While for the case m ≤ (k + 1)ℓ − 1 one can replace h by h̄ in Theorem 2. This is not
possible in general.

Example 1: ( h cannot be replaced by h̄ in Theorem 2)

Choose m = 6, ℓ = 3 , and k = 1 and define

A = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}} ∪ {{1, 3, 4}, {1, 3, 5}, {1, 3, 6}}

∪ {{2, 3, , 4}, {2, 3, 5}, {2, 3, 6}}.

No two sets in A are disjoint and A is left compressed. Choose

g(A) =

{
1 for A = {1, 2, 3}

0 otherwise

and use the notation f(C) =
∑
c∈C

f(C) .

Then 1
k

g(A) = g(A) > h̄(∆A) , because |δ({1, 2}) ∩ A| = |δ({1, 3}) ∩ A| = |δ({2, 3}) ∩
A| = 4 , and thus

h̄(∆A) = 3 ·
1

4
< g(A) = 1.

7. A numbertheoretical consequence of Theorem 2

We present now a basic new auxiliary result for every S ∈ C(n, k) with properties (I) in
Section 4. S need not be optimal, that is, it can be in C(n, k)\ O(n, k) . Define

(7.1) Si = {d ∈ S : pi|d, but (p1 . . . pi−1, d) = 1}.

Clearly,

(7.2) Si ∩ Si = φ(i 6= j) and S =
·
∪

i≥1
Si.

16



Lemma 7. For every k, n ∈ N and every S ∈ C(n, k) with properties (I) we have

(i) |Sr| ≥
1
k

∑
i≥r+1

|Si)| for every r ∈ N

(ii) For every α ∈ R+ and for k(α) ≥ k · α (independent of n !)

k(α)∑

i=1

|Sk+i| ≥ α
∑

j≥k+k(α)+1

|Sj |.

Proof: (ii) follows from (i), so we have to prove (i).

We consider the set ∪
i≥r+1

Si and let for every ℓ ∈ N

(7.3) Tℓ = {d ∈ ∪
i≥r+1

Si : d has exactly ℓ different primes in its factorization }.

Obviously

(7.4)
·
∪

i≥r+1
Si =

·
∪

ℓ≥1
Tℓ

and for d ∈ Tℓ

(7.5) d = qβ1

1 . . . qβℓ

ℓ , pr < q1 < . . . < qℓ; βi ≥ 1.

Since S ∈ C(n, k) , we have

(7.6) di = pβi
r qβ1

1 . . . q
βi−1

i−1 q
βi+1

i+1 . . . qβℓ

ℓ ∈ Sr for i = 1, 2, . . . , ℓ.

Define

(7.7) σ(d) = {d1, . . . , dℓ} and σ(Tℓ) = ∪
d∈Tℓ

σ(d).

Since σ(Tℓ) ⊂ Sr and σ(Tℓ)∩σ(Tℓ′) = φ(ℓ 6= ℓ′) , sufficient for proving (i) is to show that

(7.8) |σ(Tℓ)| ≥
1

k
|Tℓ| for all ℓ ∈ N.

Let T ∗
ℓ = Tℓ ∩N∗ be the squarefree integers in Tℓ . Then σ(T ∗

ℓ ) = ∪
d∈T∗

ℓ

σ(d) is the set of

all squarefree integers of σ(Tℓ) .

For an a ∈ T ∗
ℓ , a = x1 . . . xℓ, x1 < . . . < xℓ, xi ∈ P we consider

(7.9) T (a) = {d ∈ S : d = xβ1

1 . . . xβℓ

ℓ ; βi ≥ 1}

and for a b ∈ σ(T ∗
ℓ ), b = pr · y1 . . . yℓ−1 ; pr < y1 < . . . < yℓ−1, yi ∈ P , we consider

U(b) = {d ∈ Sr : d = pγℓ
r yγ1

1 . . . y
γℓ−1

ℓ−1 ; γi ≥ 1;(7.10)

yγ1

1 . . . y
γℓ−1

ℓ−1 · xγℓ ∈ Tℓ for some x ∈ P}.
17



It is clear that

(7.11) Tℓ =
·
∪

a∈T∗

ℓ

T (a) and σ(Tℓ) =
·
∪

b∈σ(T∗

ℓ
)
U(b).

Next we observe that for any b ∈ σ(T ∗
ℓ )

(7.12) |U(b)| = max
b

pr
·x∈T∗

ℓ

|T (
b

pr

x)|

and this has brought us into the position to apply Theorem 2 to the sets A ∼ T ∗
ℓ and

∆ A ∼ σ(T ∗
ℓ ) , where ” ∼ ” is the canonical correspondence between squarefree numbers

and subsets. We indicate the correspondence by using small and capital letters such as
a ∼ A .

We define g : A → R+ by

(7.13) g(A) = |T (a)|.

The associated function h : ∆ A → R+ is defined by

h(B) = |U(b)|.

We see from (7.12) that this definition is appropriate.

Theorem 2 therefore yields (7.8) and thus (i).

8. Further auxiliary results

We state first the only auxiliary result, which is not derived in this paper and is not trivial.

It is the weaker version of De Bruijn’s strengthening [3] of Buchstab’s result [2], that can
be found in [12].

Theorem. For the function

(8.1) φ(x, y) = |{a ≤ x : (a, Π
p<y

p) = 1}|

there exist positive absolute constants c1, c2 such that

(8.2) c1 x Π
p<y

(1 −
1

p
) ≤ φ(x, y) ≤ c2 · x Π

p<y
(1 −

1

p
)

for all x, y satisfying x ≥ 2y ≥ 4 .

Furthermore, the right side inequality in (8.2) remains valid also for x < 2y .

We need also
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Lemma 8. For positive constants c1, c2, κ there exists a t(c1, c2, κ) such that for
t > t(c1, c2, κ)

c1

c2
· pt ·

∏

p≥pt

(1 −
1

p
) > κ.

Proof: Trivial.

Finally, we need a result on ”bookkeeping”.

We have two accounts at time 0 :

x0 = x and y0 = y where x, y ∈ R+ .

In any step i, i ≥ 1 , we arbitrarily remove ai, bi; 0 ≤ ai ≤ xi−1, 0 ≤ bi ≤ yi−1; and add
a∗

i ≥ 0, b∗i ≥ 0 , where
a∗

i + b∗i > β(ai + bi), β > 1.

The new accounts are

xi = xi−1 − ai + a∗
i , yi = yi−1 − bi + b∗i .

Lemma 9. If for some ℓ ∈ N the account yℓ = 0 (resp. xℓ = 0 ) occurs, then we have
xℓ > x + βy (resp. yℓ > y + βx ).

Proof: Beginning with accounts x and y at the end the amount y has been removed
and transferred to the first account with an increasing factor β .

9. Proof of Theorem 1

We can assume that — as in Section 7 — S ∈ C(n, k) satisfies (I) and additionally is
also optimal, that is, S ∈ O(n, k) . Define Si as in (7.1) and recall (7.2). Notice also that
P (S) = P (S ∩ N∗) . Equivalent to Theorem 1 is the statement that for big n always

(9.1) ∪
i≥k+1

Si = φ.

Henceforth we assume to the opposite that

(II) ∪
i≥k+1

Si 6= φ for infinitely many n.

Let k0 ∈ N, ko > k be an integer to be specified later.

By the disjointness property (7.1) we can write

(9.2) S0 = S\ ( ∪
i≥k0+1

Si) = (
k
∪

i=1
Si) ∪ (

k0

∪
i=k+1

Si).

From (i) in Lemma 7 we know that

∣∣∣
k0

∪
i=k+1

Si

∣∣∣ ≥
k0 − k

k

∣∣∣ ∪
i≥ko+1

Si

∣∣∣
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and hence also that

(9.3) |S| ≤ |
k
∪

i=1
Si) + γ · |

ko

∪
i=k+1

Si|,

where γ = 1 + k
ko−k

.

Let P (S0) be the primitive subset of S0 , which generates S0 .

We notice that by the properties of S

(9.4) P (S0) ⊂ P (S),

because d′ ∈ P (S0) and d|d′ for some d ∈ S would by compressedness imply the
existence of an e′ ∈ P (S0) with e′|d′ .

Let pt be the largest prime occuring in any element of P (S0) . In other words, (pt, d) = pt

for some d ∈ P (S0) and

(9.5) (pt′ , d) = 1 for all t′ > t and all d ∈ P (S0).

By assumption (II) we have pt > pk .
We consider now

(9.6) pt(S0) = {a ∈ P (S0) : (a, pt) = pt}.

From Lemma 3 (i) we know that the contribution of every element a ∈ P t(S0), a =
q1 . . . qr · pt and q1 < q2 . . . < qr < pt , to M(P (S0)) is the set of integers

(9.7) B(a) = {u = qα1
1 . . . qαr

r · pβ
t · Q : αi ≥ 1, β ≥ 1, (Q,

∏

p≤pt

p)) = 1}.

We use the abbreviation

(9.8) Lt = ∪
a∈pt(S0)

B(a).

We consider also the partition

(9.9) P t(S0) =
·
∪

1≤i≤k0

P t
i (S0), P t

i (S0) = P t(S0) ∩ Si.

By the pigeon–hole principle for some ℓ, 1 ≤ ℓ ≤ k0 ,

(9.10) | ∪
a∈P t

ℓ
(S0)

B(a)| ≥
|Lt|

k0
, if t > k0

and for some ℓ, 1 ≤ ℓ ≤ t − 1 ,

(9.11) | ∪
a∈P t

ℓ
(S0)

B(a)| ≤
|Lt|

t − 1
, if k < t ≤ k0.

Basic transformation

We consider for this ℓ corresponding to t the set (of squarefree numbers)

(9.12) P̃ (S0) = (P (S0)\ P t(S0)) ∪ Rt
ℓ(S

0),

where

(9.13) Rt
ℓ(S

0) = {u ∈ N : u · pt ∈ P t
ℓ (S0)}.

It can happen that P̃ (S0) is not primitive, however, always P̃ (S0) ⊂ S(n, k) !

We state the main result for P̃ (S0) as
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Proposition. For n > n(k) suitable

(9.14) |M(P̃ (S0)) ∩ N(n)| > |S0| + γ|Lt|.

Proof: For an a ∈ Rt
ℓ(S

0), a = q1 . . . qr, q1 < q2 < . . . < qr < pt we consider the set

D(a) = {v ∈ N(n) : v = qα1
1 . . . aαr

r · T1, (T1,
∏

p≤pt−1

p) = 1).

Since pt was the biggest prime, which occured in P (S0) , we observe that

(9.15) M(P (S0)\ P t(S0)) ∩ D(a) = ∅ for a ∈ Rt
ℓ(S

0).

Moreover,
D(a) ∩ D(a′) = ∅ for a, a′ ∈ Rt

ℓ(S
0), a 6= a′.

Hence, in the light of (9.10) and (9.11) sufficient for showing (9.14) is that for n > n(k)

B(a · pt) = {u ∈ N(n) : u = qα1 . . . qαr
r · pβ

t T, αi ≥ 1, β ≥ 1 and (T,
∏

p≤pt

p) = 1}

(9.16) |D(a)| >

{
γ · k0 |B(a · pt)|, if t > k0

γ · (t − 1) |B(a · pt)|, if t ≤ k0.

Three cases in proving (9.16)

We have always a = q1 . . . qr, q1 < q2 < . . . < qr < pt .

Case: n
a·pt

≥ 2 and t > t(c1, c2,k0)

Using the right side of the Theorem in Section 8, which is valid without restrictions, we get

(9.17)

|B(a · pt)| ≤ c2

∑

αi≥1,β≥1

n

qα1
1 · · · qαr

r pβ
t

∏

p≤pt

(1 −
1

p
)

< c2 · n ·
1

(q1 − 1) · · · (qr − 1)

∏

p≤pt

(1 −
1

p
)

1

(pt − 1)
.

For D(a) we have

D(a) ⊃ D′(a) = {u ∈ N(n) : u = q1 . . . qr · T1, (T1,
∏

p≤pt−1

p) = 1},

and since n
q1...qr

≥ 2pt , we can apply the left side of the Theorem and get

(9.18)

|D(a)| > |D′(a)| ≥ c1 · n
1

q1 . . . qr

∏

p≤pt−1

(1 −
1

p
)

= c1n
1

q1 . . . qr

pt

pt − 1

∏

p≤pt

(1 −
1

p
).

Comparing (9.17) and (9.18) we get

|D(a)|

|B(a · pt)|
>

c1

c2
pt

(q1 − 1) · · · (qr − 1)

q1 · · · qr

≥
c1

c2
pt

∏

p≤pt−1

(1 −
1

p
) > κ = γ · k0,

where in the last step we used Lemma 8. Thus we established (9.16) in this case.
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Case: n
apt

≥ 2 and t ≤ t(c1, c2,k0)

At first let us specify k0 and hence γ . We choose k0 so large that

(9.19) pk+i > γ(k + i − 1) = (1 +
k

k0 − k
)(k + i − 1) for all i ∈ N.

This is of course possible. Next we choose ǫ > 0 such that

(9.20) pk+i ·
1 − ǫ

1 + ǫ
> γ(k + i − 1).

Let n(ǫ) be a positive integer so that for n > n(ǫ) we can apply Lemma 4 (iii). So we
have

|B(a · pt)| < (1 + ǫ)n
1

(q1 − 1) · · · (qr − 1)(pt − 1)
·

∏

p≤pt

(1 −
1

p
),

|D(a)| > (1 − ǫ)n
1

(q1 − 1) · · · (qr − 1)

∏

p≤pt−1

(1 −
1

p
)

= (1 − ǫ)n
1

(q1 − 1) · · · (qr − 1)

pt

pt − 1

∏

p≤pt

(1 −
1

p
),

and hence by (9.20)
|D(a)|

|B(a · pt)|
>

1 − ǫ

1 + ǫ
pt > γ(t − 1).

This establishes (9.16) in this case.

Case: 1 ≤ n
apt

< 2

In this case B(a · pt) consists only of one element, namely q1 · · · qr · pt . Let now t1 ∈ N
satisfy

(9.21) pt1 > (p
k0

)γk0

and let

(9.22) n >
∏

p≤pt1

p.

Notice that in our case necessarily pt ≥ pt1 , because a pt <
∏

p≤pt

p and pt1 > pt would

imply

2 apt < 2
∏

p≤pt

p <
∏

p≤pt1

p < n ( by (9.22) )

and this contradicts our case 2a pt > n .
Now by (9.21) pt ≥ pt1 > (pk0)

γk0 and since q1 ≤ pk0 we get finally

qγk0

1 < pt.

Therefore

D(a) ⊃ {q1 . . . qr, q2
1q2 . . . qr, . . . , qγk0

1 q2 . . . qr, q1q2 . . . qr · pt},
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|D(a)| > γ · k0 , and again (9.16) holds. k0, γ , and ǫ are already fixed and depend only
on k . Then for

(9.23) n(k) = max
{ ∏

p≤(pk0
)γk0

p, n(ǫ)
}

and n > n(k) (9.16) holds in all three cases and the proof of the Proposition is complete.

Final iterative procedure and its accounting

We have already noticed that P̃ (S0) may be not primitive. Moreover, M(P̃ (S0)) may
even not be left compressed.

Let now S1 ⊂ N(n) be any set which is obtained from M(P̃ (S0)) by left pushing and is
left compressed. We know that

(9.24) S1 ∈ C(n, k), |S1| ≥ |M(P̃ (S0)) ∩ N(n)|

and therefore we know from the Proposition that

(9.25) |S1| > |S0| + γ|Lt|.

We notice that (a,
∏

p≤pk0

p) > 1 for every a ∈ S1 and the last prime pt1 , which occurs

as a factor of any primitive element of P (S1) is less than pt .

If S1 6⊂ E(n, k) , then we repeat the whole procedure and get an S2 for which

|S2| > |S1| + γ|Lt1 |,

where Lt1 is defined analogously to Lt with respect to the largest prime pt1 occuring
in a member of P (S1) .

By iteration we get an Si ∈ C(n, k) with

(9.26) |Si| > |Si−1| + γ|Lti−1 |

and again in analogy to the first step we define now Si
j and the partition

Si = (
k
∪

j=i
Si

j) ∪ (
k0

∪
j=k+1

Si
j)

and also sets Rti

ℓ (Si) .

It is clear that the procedure is finite, i. e. there exists an m ∈ N for which

(9.27)
k0

∪
j=k+1

Sm
j = ∅, Sm ⊂ E(n, k).

Now we do the accounting via Lemma 9.

The integers x, y are here

x = x0 = |
k
∪

j=1
Sj |, y = y0 = |

k0

∪
j=k+1

Si|
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and β = γ > 1 . Furthermore

xi = |
k
∪

j=1
Si

j |, yi = |
k0

∪
j=k+1

Si
j |, ai = |Lti−1 ∩ (

k
∪

j=1
Si−1

j )|, bi = |Lti−1 ∩ (
k0

∪
j=k+1

Si−1
j )|,

and so
ai + bi = Lti−1 and a∗ + b∗ = | ∪

a∈Rti−1

ℓ

D(a)|

count the new elements in the i–th step.

We know from the Proposition that

a∗ + b∗ > γ(ai + bi)

and from (9.27) that ym = 0 .

Hence, by Lemma 9

(9.28) |E(n, k)| ≥ xm = |Sm| > x+γy = |
k
∪

j=0
Sj |+ |

k0

∪
j=k+1

Sj |+(γ − 1)|
k0

∪
j=k+1

Sj | ≥ |S|,

because γ = 1 + k
k0−k

, S = |
k
∪

j=1
Si| + |

k0

∪
j=k+1

Si| + | ∪
j≥k0+1

Sj | , and

|
k0

∪
j=k+1

Sj | ≥
k0 − k

k
· | ∪

j≥k0+1
Sj |.

However, (9.28) says that E(n, k) > |S| , which contradicts the optimality of S . Therefore
(II) must be false and Theorem 1 is proved.

Remark 3: For fixed k, s and every n let H(n, k, s) ∈ S(n, k, s) be a set with

|H(n, k, s)| = max{|B| : B ∈ S(n, k, s), B 6⊂ E(n, k, s)}.

We know from the counterexample in [1] that |E(n, k, s)|− |H(n, k, s)| < 0 is possible and
that |E(n, k, s)| − |H(n, k, s)| > 0 for all n > n(k, s) (Uniqueness).

However, by the method of proof of Theorem 1 one can derive

lim
n→∞

(|E(n, k, s)| − |H(n, k, s)|) = ∞

for all k, s ∈ N .
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