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For finite sets A, B< N, the set of positive integers, consider the set of least com-
mon multiples [ 4, B]={[a, b]:ae A, be B}, the set of largest common divisors
(A, BY={(a,b)aec A, be B}, the set of products AxB={a-b:ac A. be B}, and
the sets of their multiples M{A)= A4 x N, M(B), M[ 4, B], M(A. B). and M( A x B).

resp. Our discoveries are the inequalities

dM(A, B)AM[ A, B] = dM(A). dM(B) = dM(A x B),

where d denotes the asymptotic density. The first inequality is by the factor
dM(A, B) sharper than Behrend’s well-known inequality. This in turn is a
generalisation of an earlier inequality of Rohrbach and Heilbronn, which settled a
conjecture of Hasse concerning an identity due to Direchlet. Our second inequality

does not seem to have predecessors. " 1995 Academic Press. Inc.

[. INTRODUCTION

In addition to the notions presented in the abstract we need the follow-
ing. For the numbers u, ve N we write u|v if u divides v. In case (u, v)=1
u and v are said to be relatively prime. If u<v, then we set {u, v =
{u,u+1, .., v}, and for any Ae N we set 4,=4n{1,n) and |4] for the

cardinality of 4.
The asymptotic density dA4 of 4 is defined by

d4 = lm Lfi’»'

n—ow N

if the limit exists.
We associate with A the set of multiples

M(A)y={meN:a|mforsomeaec 4}

and the set of non-multiples

N(A)=N\M(A).
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This naturally leads to the concepty of primitive sets (or sequences). Bc N
is said to be primitive, if

bbb for b.b'eB,b#Db. (1.3)

Clearly, every 4 < N contains a unique subset P(A4), which is primitive and
satisfies

M(P(A))= M(A). (1.4)
Actually,
PlA)={aeA:3d' € A, a' #a, and &' |a}.

For a finite set A =N dAM(4) exists and with the principle of inclusion-
exclusion can be written in the form

1 i 1
dM(A4) = -— — ——— — 1.5
( ) ug»{ a u;:' [u“ C(’] " u<§:<u" [(l, (l’, (l”] ( )
Similarly,
dN(A4) =1 ZLLZ 1 (1.6)
B e A a u<u’[a‘ a’] h »

In this terminology Behrend's inequality ([47]; see also [5], [6]) takes the
form

dN(A v B)=dN(4)dN(B) (1.7)

for any finite sets 4, B< N.
The equality holds exactly if for the primitive sets P(A4) and P(B)

(a,b)=1 forall aeP(A) and be P(B) (1.8)

In conclusion we reformulate Behrend’s inequality. Clearly, (1.7) is
equivalent to

1 —dM(A v B)= (1 —dM(A))(1 —dM(B)). (1.9)
Using the identity
dM(A U B)=dM(A4)+dM(B) —d(M{A) M(B)) (1.10)
we get another equivalent form

dM(Ayn M(B)) zdM{A) dM(B). (L.1n
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Since
d(M({A)~ M(B))=dM[ A4, B], (1.12)

we get the desired form
dM[ A, B] =dM(A4) -dM(B). (1.13)

It was this form, which inspired us also to look for an anology to the
AD-inequality [7] (and its generalisation [8]) and which led also to our
first inequality stated in the abstract. In terms of Behrend’s original for-
mulation (1.7) the path to our sharper inequality is more hidden. It then
takes the form

dN(A U B)2dN(A)dN(B)+dN(4, B)(1 —dN[ A4, B}). (1.14)

2. AUXILIARY RESULTS

The two lemmas of this section are used in the proofs of the inequalities.
Equivalent formulations are presented, because they may be used else-
where. We adapt the notation

mA={ma:aeAd}. (2.1)

Lemma 1. For any finite sets A, B< N and any number me N
) d(M(A)AM(B)) <md(M(mA)~ M(B))

) dM(mA U B)< (1/m)dM(A v B)+ ((m—1)im)dM(B)
(ii) d(N(mA)~N(B)) Z2d(N(A)n N(B))+(m—1) N(B)

) dN(mA U B)Z= (1/m)dN(A U B) + ({m—1}/m)dN(B).

Equalities hold iff M(mA)~ M(B) c M(mB).

A sufficient condition for equality is ({m}, B) = 1.

Proof. (1) Obviously  {(I/m}(M(mA) n M(B)) > (1/m)(M(mA) n
M(mB))=(M(A)nM(B)) and therefore d({1/m)(M(mA)n M(B))=
md(M(mA) " M(B))) zd(M(A)~n M(B)). Furthermore, equality holds
exactly under the specified condition. Also, this condition holds, if
({m}.B)=1, because then [md, B] =[mA, mB] and M(mA)n M(B)=
M[mA, Bl=M{mA, mB}] = M(mA)n M(mB).

(11) Since
dM(mA U B)=dM(mA) +dM(B) —d(M(mA) ~n M(B)), (2.2)
dM(A v B)=dM(A)+dM(B) —d(M(A)~ M(B)) {2.3)
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we can write (i1) in the form dM(mA)+dM(B)—d(M(mA) M(B)) <
(I/m)ydM(A)+ (1/m)dM(B)—(1/m) d(M(A)~ M(B))+((m—1)/m)dM(B)
or in the form d(M(A)~ M(B)) < md(M(mA)~ M(B)) + dM(A) —
ndM{imA)=md(M(mA)~ M(B)), which is (i).

(iv) We use the equivalent formulation 1—dM(mAuw B)z=(1/m)
(1 —dM(A U B))+({m—1)/m)(1—-dM(B)). This is obviously equivalent
with (ii).

(iii) d(N(A)AN(B))=dN(AUB)=1—dM(AUB), and by (ii)
]l —dM(AuUB)< ] —mdM(mA U B)+{(m—1)dM(B).

Therefore d(N(A) " N(B)) <1 —m(l —d(N(mA) n N(B)) + (m — 1}
(1 —dN(B))=d(N(mA)n N(B)) — (m — 1)dN(B), and thus (1u1i).

LEMMA 2. For finite sets Cc AN, Dc Be N we have
dM[ A, B] +dM[C, D] 2dM[ A, D] +dM[ C, B] (2.4)
with equality if and only if M[ A, B] =« M(C)u M(D).
Proof. The inequality (2.4) is equivalent to
d(M(A)n M(B)) +d(M(C)n M(D))
2d(MA) A M(D))+d(M(C)n M(B))
or
d(M(A)n M(B))—d(M(A) M(D))
2d(M(C)n M(B)) —d(M(C)nM(D)).

Since (M(A)nM{B))>M(A)nM(D) and (M(A)n M(B)\(M(A)}~

M(D))=M(A) M(B)\M (D)) and 51mllar1y (M(CYn M(BYN(M(C)
M(D))=M(C)n B)\M )), (24) is equivalent to d(M(A4) N (M(B)\
M(D))) z2d(M(C ) M(BA\M(D))). and this holds, because M(A)} > M(C)

and d is monotonlc

3. PROOF OF THE INEQUALITY dM(A, B)dM[ A, B] 2dM(4)-dM(B)

We proceed by induction on T=3% ,_,a+Y,.zb. For T'=2 the result
holds. Now, if

(a,b)=1 forall aeA4 andall beB, (3.1)

641 5523
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then dM(A4, B)=1 and also by the formula (1.5)
dM{ 4, B] =dM(A)-dM(B).

We can assume therefore that for some prime p 4, ={aed:pla} #¢ and
B ={beB:p|lb}#¢. Set 4,=A4A\A, and B,= B\B, and observe that
A=pA\ A, B=pB\UB,, (p, A,)=1, and (p, B,) =1, where

a

b
A’,={~:aeA,} and B’,={A:beBl} (3.2)
14 14

We consider
A'=AYUA, and B '=B\uUB,. (3.3)

By Lemma 1(11)
dM(A)=dM(pA',uA2)=1—17dM(A’)+<1—})) dM(A4,) (34)

and also

1

dM(B)—l dM(B’)+<1—;> dM(B,). (3.5)

p
Next we calculate dM[ A, B] and dM(A4, B). Now,

(4. B)=[4,,B,]Jul4,,B,]Ju[A4,,B,]Ju[4,. B,]
=p[A4\,BiluplA). B.lup[A,, Bi]lu[4.. B,].

Again by Lemma 1(11)
dM([A.B])%dM([A',B']>+&;;1dM([Az,Bz]). (36)

Also,

(A.BY=(A,,.B))u(Ad,, B))u(A4,,. B,)u(A4,. B,)
=p(A}, By\)u (A4}, B,)u(A,, B\)u(4,, B,)and by Lemma 1(i1)

dM(A. B) = dM(A". B +”—;1 dM((A4,, B,) U (A4, B))U(A4,. By)). (3.7)
P

We use the abbreviation

L=(A, B,)u(4,, B))u(4,, B,). (3.8)
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In the light of (3.4), (3.5), (3.6), (3.7), and (3.8) we have to prove that
1 ,oop—1 1 .op—1
—~dM(A' ) +———dM(A,} )| -dM(B') +——dM(B,)
14 14 14 14

1 —
< <; dM[ A", B'] +”—p—1 dM[ As. Bz]>

.<1dM(A', B')+’5—1dM(L)>. (3.9)
p p

By induction hypothesis we have

l I |
—dM(A') - —dM(B')<—dM[ A’ B'] -ldM(A’, B
p P p p

and also

_1 _1 —1 _1
P ama P dm(By) <L am{ 4., B,1-2——dM(4,. B,)
p P P p

—1 —1
<L Lamr4,. 8,1 2" am(L),
P p

Therefore, sufficient for (3.9) is

dM(4') - dM(B,) +dM(A,) dM(B')
<dM[A'. B1dM(L) +dM[ A,, B,] - dM(A'. B').  (3.10)

Since by induction hypothesis

dM(A') dM(B,) <dM[ A'. B,] -dM(A', B,)
and also

dM(A,)dM(B')<dM[ A,, B'] -dM(A4,, B')
sufficient for (3.10) is in turn

dM[ A', B,] dM(A4', B,) +dM[ 4,. B'] dM(4,, B')
<dM[ A", B 1dM(L)+dM[ A>. B,] -dM(A". B').  (3.11)
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Since dM(A4’, B') zdM(L) =z max(dM(A4’', B,), dM(A,, B')), of course, suf-
ficient is also

(AM[ A, B,1 +dM[A,, B']) - dM(L)<(d[ A", B | +dM[ 45, B,]) dM(L).

After cancellation of the factor dM( L) this last inequality holds by Lemma 2.

4. PROOF OF THE INEQUALITY dM(A)dM(B) > dM(A x B)

We proceed again by induction on T=3, . ,a+>,.5b In the case
(3.1) clearly 4 x B=[ A, B] and since here also dM[ A, B]=dM(A4) dM(B)
we have even the equality dM(A4)dM(B)=dM(A x B).

Otherwise we define sets 4,. B,, 45, B,, A}, B}, A’, and B’ again as in
Section 3. In addition to (3.4) and (3.5) we calculate now

AxB=p* A\ xByupA\xB,upA,xB,uA,xB,
and with Lemma 1(11)

—1
dM(AxB):idM(C)wL%dM(Aszz), 4.1)

where
C=p-A\xBiUA xB,uAd,xB,UAd,xB,. (4.2)

We derive first an upper bound for dM(A x B). Again by Lemma 1(ii)

dM(C) <})dM(A' x B') L=t dM(D),
where
D=(A\xB,)u(4,x B|)u(4,x B,).
Consequently
dM(A4 x B) <117 G) dM(A' x B') +1—]%1dM(D)> +ll—;~ldM(A2 x B,)

1 ~1
—— dM(A'x B +1~)—;5~(dM(D) +dM( 4, % By))

+(p;21)h dM(A, x B,). (4.3)
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We compare this quantity with

1 _ _

dM(4)dM(B) < (—dM(A')+’i——‘dM<A2>> : (1dM(B’) Rl dM(BZ)>
p p p p

1 , . (p=1)°

—dM(4")ydM(B )+-—;}—,———dM(A2) dM(B,)

s
+Pp—2l (dM(A') dM(B,) +dM(A,) dM(B')). (4.4)

By induction hypothesis we have

dM(A' x B')<dM(A')dM(B') (4.5)
and

dM(A,x B,y <dM(A,) dM(B,). (4.6)
It is now sufficient for us to show that

dM(D)+dM(A,x B,) <dM(A'ydM(B,) +dM(A4,) dM(B'). (4.7)
Again by induction hypothesis for this it is sufficient to show that
dM(D)+dM(A, x B,) <dM(A' x B,) +dM(4, x B)

or (equivalently) that

d(M(A) x By) U M(A,x B))U M(A:x B>))
—dM(A' x Bo) <AM(A,x B') —dM(A4, x B,). (4.8)

Since M(A' x B5)> M{A'| x B)u M(A4,xB,) and M(A4,xB'Y>M(4,x
B,), this in turn is a consequence of

d(M(A4;x B)\M(A) x By) u M(A, % B,)))
<d(M(A; x BY\M(A; x B,)), (4.9)

which obviously holds, because d is monotonically increasing in sets.

5. ON THE CHARACTERIZATION OF EQUALITY IN
dM(A)dM(B)<dM[ A, B]-dM(A, B).

For many of the basic inequalities in mathematics conditions are known,
which completely specify the cases of equality. We have mentioned that this
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15 also the case for the predessor of the inequality stated above. However,
for itself it turns out that the characterization of equality constitutes a for-
midable task. Comparable instances are discussed in [9].

In the present case, however, we do have a necessary condition or in
short a criterion for equality. It is stated as Lemma 3 below.

We denote by & the set of pairs for which equality holds. It is clear that
instead of pairs {4, B} it suffices to consider pairs {P(A4), P(B)} of
primitive sets (see (1.4)). Let &, be the set of those for which equality holds.
Consider now any { 4, B} € &,. Clearly, 1 (4, B) implies dM(A4, B)=1. By
Behrend’s result discussed in the Introduction we know therefore that in
this case

{4, BYeé&, il (4,B)={1). (5.1)

The case 1 ¢ (A4, B) is much more complicated. It is convenient to use for
finite sets C={c¢,, ... ¢;} =N the notation

(C)=(c\, ¢, nc)=ged. of ¢, crsuscy. (5.2)
LEMMA 3. For {A, B} € & with 1 ¢ (A, B) we always have
(A} B)>1.

Proof. Assume to the contrary that (4) =(B) =1 and that { 4, B} mini-
mizes T=3,.,a+>,c5b

Under our assumptions there is a prime p such that we have the
representation 4 =pA4, v A,, B=pB,uB,; A,, B, #¢; A,, B, #¢, and

(p. A2)=(p, By)={1}. (5.3)

(Here and elsewhere (¢, C) means ({c}, C)).
An inspection of the proof of our inequality in Section 3 shows that
{ A, B} € & occurs exactly if the following six relations hold.
) {4,uAd,,BUB,}Ed
) {4,0A4,, Bled
) {A,,BUB, €&
4) {A4,,B,}eé

(5) dM[A, U A>. B, U By] +dM[A,. B,] =dM[A4, U 4,, B,] +
dM[ 4., B, U B,]

(6) dM(Azs Bz)zd(M(Ah B,)u M(A4,, B))u M(A,, B,)).

(
(
(
(

We start with the pair {4, U A,, B, U B,} €& and look at the associated
“primitive pair” {A* B*} = {P(4, v A4,), P(B,uB,)} €&
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Since the original sets A =pA4, U A, and B=pB, U B, are primitive, we
can write

A*=A, v A%, B* =B, v B¥, (5.4)

where A¥c A4, and B¥c B,.
Since Y, 4 ad+ 2.5 b<T, the minimality of {4, B} implies that
either

(a) dM(A* B*)=1 or (b) dM(A* B*)< 1 and (4*)(B*)>1.

In the case (4*)>1 necessarily (4,uA4,)>1 and therefore (A4)=
(pA; uA4,)>1, which contradicts our assumption (A4)=(B)=1. This
excludes the case (b).

Suppose now that (a) holds. Since 4*, B* are primitive, Behrend’s
equality characterisation implies

(A% B*)={1). (5.5)

Suppose now that 4¥s£¢ (or B+ ¢).

Then in particular (4% B,)={1} and consequently (A% pB,)= {1},
because (A’l“,p):{l}. Moreover, since A¥c A, 4 and pB, = B, we get
le(4, B) in contradiction to our assumption dM(A, B)#1. Hence,
A¥= B¥+# ¢. Equivalently, since {4, B} is primitive,

Va,€ A-tb,e B,) da, e A((b, € By): a;|as(b,|b,). {5.6)

Moreover, a; <a,, b, <b,.
Now we use (6) and observe that it is equivalent to the set equation

M(A,, B))=M{(A,, B.)uM(A,;, By)uM(A., B,). (5.7)
Let ¢ =(a,, b,) > 1 be the smallest number in M(A4,, B,}. By (5.6} we have
a>=1-a,;bs=rb;a,e6A4,,b,eB;r>1.
From (5.5) we know that {a,, b,) = 1. Therefore
S=la,, by=U-a,,b))=(,b))e M(A4,, B,),
g=la,,b))=(a,,rb;)=(a,, r)eM(A,, B,).

We have /=10, b,=f-b), a,=gda|, r=g-r and f,g>1 (because
otherwise dM(A4, B)=1).
Now we conclude that ¢ =(a,, b,y =({-a;,r-b))=(fl-g-d),g-v - f- b))

= f-g>max{ f, g} and that therefore fe M(A4,, B|), g€ M(A,, B,), and
Jg<e
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di

Since ¢ 18 minimal in M(4,, B,) we have f,g¢ M{(A,, B,) in contra-
ction to the definttions of f, g and (5.7).

Remark. An algorithm for deciding on equality for a given pair {4, B}

can be found in the preprint [ 1]. It is based on the criterion in Lemma 3.
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