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Erasure, List, and Detection Zero—Error Capacities
for Low Noise and a Relation to Identification

Rudolf Ahlswede, Ning Cai, and Zhen Zhang, Senior Member, IEEE

Abstract—For the discrete memoryless channel (X,)Y, W) we
give characterizations of the zero—error erasure capacity Ce.
and the zero—error average list size capacity C,; in terms of
limits of suitable information (respectively, divergence) quantities
(Theorem 1). However, they do not ‘“single-letterize.”” Next we
assume that X C )Y and W(z|z) > 0 for all z € X, and we
associate with 17 the low-noise channel W, where for )7+(r) =

{v : W(ylz) > 0}

1, ify==zand Y (2)|=1
VVE(wa)z 1—87 ify:zand |y+(z)| >1
v (i)|—1’ ify # .

Our Theorem 2 says that as ¢ tends to zero the capacities
Cor(We) and C,;(W.) relate to the zero—error detection capacity
Cae (W).

Our third result is a seemingly basic contribution to the theory
of identification via channels. We introduce the (second-order)
identification capacity C,;a for identification codes with zero
misrejection probability and misacceptance probability tending
to zero. Our Theorem 3 says that C,q equals the zero—error
erasure capacity for transmission Ce,.

Index Terms—Zero—error erasure capacity, zero—error average
list size capacity, zero—error detection capacity, identification with
zero misrejection probability, low-noise channels.

[. INTRODUCTION

E study a discrete memoryless channel (DMC) with

input alphabet X, output alphabet ), and transmission
matrix W. By adding letters, if necessary, we can always
assume that X C Y. Recall that for two words z" € &A™
and y™ € Y"

t=1

Our studies are devoted to cases with zero-error probabilities
for decisions (see [1]). They concern the performance of this
channel for transmission codes under two criteria, namely,
the erasure probability and the average list size. We also
introduce identification codes with zero-error probability for
misrejection.
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Let us fix any blocklength n. A code C for the channel is
simply a subset of X™. M = |C| is the size of the code. For

y© ey
L(y™,C)={ceC:W"(y"|c) > 0} - (12)
are the lists associated with C and
y",C) = L3y C)l (13)

are their sizes. We use the short-hands £(y™) and £(y™), if it
is clear which code C is used.
The set of erasures is

Ver = {y" € Y™ : £(y™) > 1}. (1.4)

The associated erasure probability is

l n n
Por = MZ > Wyt (1.5)
c€C Yy EVer
and the associated average list size is
T 1 n(,n n

= MZ > WryrloLy™). (1.6)

ceC yneyn
Define M(n,\) as the maximal size of a code of block-
length n with erasure probability at most A and define the
(zero-error) erasure capacity

C., = lim lm —Iog M(n, X). (1.7

A—0 n—oco
Similarily, define M(n, ») as the maximal size of a code of
blocklength n with average list size at most y and define the
(zero-error) average-list size capacity

Cy= lim lim —logM(n ). (1.8)-

p—14+ n—oo n
Our first result, Theorem 1 in Section II, gives a character-
isation of both quantities, C,; and Cj;, in terms of limits of
suitable information (respectively, divergence) quantities.
However, they do not “single-letterize:” already for

3 1
S 20
4 4
3 1
W = 0 — —
4 4
1 3
Z 0 =
4 4

a two-letter optimization is better than the one-letter optimiza-
tion: rate value 0.6156 ... versus 0.6128.. ..
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Next we analyze our formulas for C,, and C,; for low-noise
channels W,. They are defined by the properties that for every
z € X C Y there is a nonempty S(z) C Y\ {z} with
Wz|lz) =1—¢

and
We(ylz) = e|S(z)| Y,
W.(z|z) =1,

if y € S(z)
if S(z)=¢ (1.9)
where ¢ is small.

We establish relations to the capacity Cy4. of zero-error
detection codes for W.. Recall that a detection code for a
channel W of blocklength n is simply a subset C C X™ C V™.
The associated probability of undetected errors is

Pa;%z S wrdo.

ceC c'eC\{c}

(1.10)

In the classical AWAC system the receiver asks for retrans-
mission, if his received word is not in C, that is, if he detects
an error.

C is a zero-error detection code, if Py, = 0, that is

W™(d|c) =0 forall ¢, €C,c# ¢ (1.11)

(More familiar are {-error detecting codes in algebraic coding
theory.)

Our third result is a seemingly basic contribution to the
theory of identification via channels ([11], [12]).

Recall that in identification the role of codewords is taken
by probability distributions from P(X™), the set of all PD’s
on X*. Thus C = {P; : 1 < i < N} C P(X") is an
identification code.

We are now interested in a decoding rule {D; : 1 <i < N}
which guarantees for all 7 € {1,---, N} with probability one
that ¢ is accepted, if it is present. Therefore, necessarily

D; > {y" DY WY ") Pi(a™) > 0}.

Furthermore, we are interested in having the maximal
probability of misacceptance

(1.12)

Py = max max Y W™(y"|z")Pi(z")
‘ i y"€D;

small. Obviously, the best choice for the D;’s is with equality
in (1.12). We call {(P;,D;) : 1 <4 < N} an identification
code with zero misrejection probability and misacceptance
probability Pr,. Let N(n, ) be the maximum size of such a
code of length n and with P, < A.

In short, we speak of the zero-error identification capacity
Coids if
. .1
inf lim -~ loglog N(n,A) 2 Coid

— 1
> inf lim —loglog N(n,A). (1.13)

A>0 n—oo 7

Our Theorem 3 says that C,;q equals the zero-error erasure
capacity for transmission Ce,.

II. NON-SINGLE-LETTER
CHARACTERIZATIONS OF C,, AND Cj;

We need some new definitions. For an input distribution
P and a given channel W let the pair of RV’s (X,Y) have
the joint distribution P x W. Y has the marginal distribution
PW. We write for two matrices W < W and say that W
is absolutely continuous with respect to W, if for all z,y
W (y|z) = 0 implies W (y|z) = 0. We call

I(P,W) = inf I(P,W) @0

WW,PW=PW
the ‘‘lower information’’ of X and Y (or for P and W). We
write this quantity also as I(X AY’) and introduce the ‘‘upper
conditional entropy’’ by

H(X|Y)=H(X)- (X AY). 2.2)

Theorem 1: For every DMC with transmission matrix W
1) Cor = limy, oo mMaX p(m) %l(P(m), Wm)

1i)

Cy = lim max—

min I(P(™) W™ + D(W™||W™|P™)

wm Wwmwm g wm
p(m)wm=p(m)ym

where we use the conditional divergence

DWW |jw™|ptm))

1 (m)(,m|.m
PP S C
111) Cer 2 Calv
Remarks:

1) We have been informed of independent work ([15]-[17])
by I. E. Telatar and Robert G. Gallager. The formula for
Ce: and the fact, that it does not “single-letterize,” are
also established in [17].

2) We are especially grateful to I. E. Telatar for drawing
our attention to the fact that, quite amazingly, originally
we used instead of our correct (2.8) a wrong formula
for |X(y™)| in (2.15).

Proof: 1) We begin with the direct part. Select M code-
words independently according to the uniform distribution on
T3 (or T3}), the set of words z™ of type P~ = P. Let this
selection be described by the random variables Uy, ---,Upy.
Its analysis requires a few auxiliary results. It proceeds via an
upper bound on the mean value of 4(y™).

Set first @ = PW and consider 75,5» that is, the set of

words y™ € V", whose type Py~ satisfies

|Pyn(y) — Qy)| < e fory e V.
It is well known that for every W with PW = Q

W((T5.0)12") < exp{~f(e)n}

for some f(e) > 0, if z" € TF. (2.3)

It suffices therefore to consider any y™ € T5_ and to
consider for it the set

X(y") ={a" € Tg : W"(y"|z") >0}. (24
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Let the joint type of (z™,y™) be denoted by P x W, and
define

Xpyw = {m” : Pyn = P,Wyn = W} (2.5)

It is well known that

|Xp | = exp {nH(X|Y) + o(n)} (2.6)

if the pair of RV’s (X, V) has distribution P x W,
Since
X(y™) = U Q2.7

PW=Q WKW

XP,VV

and since there are only polynomially many types, (2.6) and
(2.7) imply
|X(y"™)| = exp {n

max

) H(X|Y)+ o(n)}. 2.8)
PW=QW<W

Now, a codeword is selected from X' (y™) with a probability
smaller than |X(y™)||7/#|~", which in turn is smaller than
exp{—nL(X AY) + o(n)}.

For the expected value of the random erasure probability
P (Uy,---,Uy) we get with (1.5) by symmetry

EPu(U1,---,UN)=E ) W'(y"[h),
Y™ EVer (U1,--,UnN)

where Ve (Ui, - ,Up) is the random erasure set for the
random code (Ui, --,Uy).
Therefore, with (2.3)

EPu(Ur,--,UN) < > Pr(U; =2")
zn €Ty

Z PI‘({Ug,-“,UN}ﬂX(yn) # ¢)
W (") + exp {—f(e)n)
<(M-1)exp{-nL(XAY)+o(n)}

Z PI'(Ul ———.’En)

zn €T}
. Z W"(y“|m“)—|—exp{—f(£)n}.
y“ET&S

If now M < exp {nI(X AY) — nd}, then

EPer(Uy, -+, Un) < exp {—ng} + exp{—f(s)n}

for n large enough.

The direct part is proved for m = 1 and can be proved for
general m in exactly the same way.

We continue with the converse part. If C is a code of
blocklength n and erasure probability A, then '

1

1 n

where X "A has uniform distribytion P™) over C, and since
for any W™ <« Wn, POOW™ = PCIW™, the erasure
probability is not increasing, we obtain from Fano’s Lemma

H(X™[Y™) < h(X) + Alog|C|. (2.10)

57

Finally, (2.9) and (2.10) yield
1 1
~log[C] < ~I(X™ AY™) +0() < Cex + o(A).

We complete the proof by letting A go to zero.
i) For the direct part we select M codewords at random
as before.

Let the chosen code be C = {c1,---,cam}. Its average list
size¢ L = L(c1, --,cpm) is
T 1 n n
L= MZ > Wy ey,
ceCyneyn

This can be written in the form

T=L1S00, win I = 3 wrerlo).

ceC ymeyn
. @2.11)
Therefore, for any ¢ € T3
EL(U1,---,Uy) = EL(c,Us, - -+, Usp). (2.12)

We estimate now the last quantity from above.
Let P = P(c,Y,n) be the set of all joint types P, ~. For
every P x V € P define the generated set

Gv(e)={y" €Y' :P.yn = P x V}. (2.13)
Then we have
W™ (Gy(c)|c) = exp{—nD(V||W|P) + o(n)}. (2.14)

We estimate now the average list size for y™ € Gy (c). We
obtain for y™ € Gy(c) by (2.8)
[X(y")[ = exp {n

max

) . H(X[f’)+o(n)}. (2.15)
PW=PV,W&W

or in terms of distributions

|X(y™)| = exp {nP  max H(W|P) + o(n)}.

W=PV,W<W

Each element of this set is selected as a codeword with
probability exp {—nH (P)+o(n) } Therefore, the average list
size for y* € Gy (c) is at most

exp{—'n __ min
W:PW=PV,W<W
This gives with (2.11) and (2.14)

IEE(CvU2a"'7UM)= Z MCXP{—’ILD(VHW/P)
PxVeP

I(P,W) + o(n)}M +1. (2.16)

I(P,W) +o(n)} +1.

- min
W:PW=PV,W&W

If now
< m
M < min_exp {n(D(V|W|P)
I, W)) —en}

+  min
W:PW=PV,W<W
then
EL(c) <1+ exp{—2en} (2.17)

and the direct part is proved.
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For the converse part, let C C X™ be a code with average
list size 1 + X and size [C| =

Z3 Y Wl

c€C yneY(n)

") =14A (2.18)

where Y = {y™ € Y™ : {(y") > i}.

Define X™ as in the previous converse proof and denote its.

distribution by P(™. Then
1 1 1
—logM = —H(X") = —H(P™
Liogar = Lrxmy = Lapoo)

and

Z (n)

rmEAX

) Y Wrytsm)ey

Yy Ey(n)

" =14+A (219)

We establish a connection to information quantities by
showing first that for any W)

D PMEm Y W) logby™)
xn yrey(n)

DWW PM™) +log (1 + X). (2.20)
Clearly, by Jensen’s inequality (Eexp{Z} > exp{EZ})

1+ A=Y PM@E™) Y Wr(y sy

yney(n)
=Y POE) Y W)
™ ymeY(»)

W (e 1
R {'l°g Wy lam) é(yw}

sep{ - TP T W)

yrey(n)

W) (yjzn) 1 }

- log
Wrn(yr|z™) £(y™)
— exp { ~ DWW P™) + Z P (z™)

> Wz log f(y")}

ym ey

and thus (2.20) holds. . A
Next observe that for every W with P(WW™

ZP(”)(ac Z W(")(y"|x")log€(y")

— p™)

yreym
=Y P(z™) Y W(y"|a")logl(y")
™ yreyn
> H(X"|[Y™). 221y

The inequalities (2.20) and (2.21) imply

DWW P +log (14 X) — H(X™Y™) >0

and this yields

1 1 N
< %(H(X") + DWW |Pt™)
+log(14+A) — H(X™V™)

1 N
= ~(I(X" A Yy + DWW ™| |wn| PM))

+ % log (14 ). 2.22)

Minimization over W) (which corresponds to W™y and
wn completes the proof.

iii) This follows directly from the two definitions of the
kinds of codes. Namely, if C has average list size 1 + A then
Yeor has probability at most A.

Remark 3: Notice that (2.19) is the substitute for Fano’s
inequality.

ITI. CAPACITIES FOR LOW-NOISE CHANNELS

For small e, W, defined in (1.9), is the prototype of a low-
noise channel. We know that for its erasure capacity Ce(€)
and for its average list capacity C,;(e) we have only the
characterizations in terms of “non-single letter” information
quantities of Theorem 1 in Section IL

However, if we know the limits

K., = gl_rﬂl) Cor(e) and Ky = g% Cai(e) 3.1
then we have a certain knowledge also about the unknown
quantities.

Let us use the abbreviations

1
max — I(P(") w2

C:r( ) P(n) 1

(3.2)

Cli(e) = max min —(I(P(") wm)
P Wi gwp P WM =P W (m) T

+ DWW P™)). (3.3)
Then Theorem 1 says that
Cex(e) = nll)m Ch(e) and Cyle) = nlLrI;O Cile) (G4
and by (3.1) we have
Ko = lim lim Cg(e), Kar = lim lim Ci(e).  (3.5)
We study also the auxiliary quantities
K. = lim lim C"(¢), Koy = lim 11m (). (3.6)

n—oo e—0 T-—00 &

These two quantities exist, because by the definitions (3.2)
and (3.3)

. n+m > . n : m
('ﬂ + m) gl_rﬁl) C'er (5) Zn ;1_% Cer (E) + m ;1_% C’er (E)
and

(n-+m) lim O™ () > n lim CTi(e) + m lim C73(g):
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However, the existence of the limits in (3.1) or (3.5) is not
at all obvious. We introduce therefore the lower limits

Ker = li_InCer(E) and Ka.l = ﬁ@cal(f‘-‘)

e—0 e—0
and the corresponding upper limits Ko and K .

Finally, let Cye(¢) be the (zero-error) detection capacity of
W_. Since it is independent of  for e € (0,1) we simply write
Cye. It is the key quantity for our limits.

Theorem 2:

1) Ka.l = Kal - Cde-
il) Ker > Ker = C‘(de-
Remarks:

3) We conjecture that K, exists and equals Cy.. Sufficient
for this would be the continuity of Ce; in € or that C¢, (¢)
is nonincreasing in &, because then Ko < Ke,r

4) Inspection of the proofs below shows that all lower
bounds by Cy4e remain valid, if we replace W, by any
matrix V; with V, « W, and V (z|z) > 1-eforz € X.

Proof: We conclude with iii) in Theorem 1 that

CL(e) > Chie) Cer(e) > Cale) 3.7
and therefore also that
Ker > Ky, Ker > Ka, and Ker > K. (3-8)

We have by (3.2) and (3.3) the mohotonicity properties

Cgr () is nondecreasing in % 3.9
and

C? (¢) is nondecreasing in i. (3.10)
These properties imply that

K, >K, and K,; > Ka. (3.11)

In the light of (3.11) the proof of i) in Theorem 2 is complete
after we have shown that

1) Ra.l > Cde and 2) ?al < Cde-

After we have established i), by (3.8) and (3.11) it suffices
for the proof of ii) to show that

3) ker < Cde-

Proof of 1): Recall that

Chi(e).

For any null sequence (6;)$2,, 6; > 0, there is a sequence
(n;)$2, of positive integers with C! > Cge — 6;. There is a
corresponding detection code C(™) of rate Ch(i=1,2,--).
Its average list size Lo(C(™)) under W satisfies

K., = lim lim

n—oo £—0

L(CM)<(1-e)" 1+ (1-(1—e)M)[Cc™)|  (3.12)
and

lim Z.(C™)) = 1.

e—0

59

Using (2.22) in the converse proof for average list size codes
we obtain for every ¢ and 7

1 N 1
Cie —6; < - log [C(™)] < C™ (&) + P log (1+ (e, ni))

where

Meyna) = (1 =)™ + (1= (1 -e)™)[C")| -1

Since
1i116 Ae,n)) =0
this yields

Cae — 6; <11mCl(5)

and thus
Cae = lim (Cye — ;) < lim lim Cjjf(e) = K.

Proof of 2): We know from the proof of Theorem 1 (see
(2.16) and (2.17)) that there are codes C(™)(¢) with average
list size 1 4+ «(n) and rate

" 1og [C(e)] > Kt = 6a(e)

where

nli_}n;o a(n) =0
and

nli)ngo on(e) = 0.

The probability of the output set C(™)(¢) is

o) - ¥ ¥

() (e) ymeC™)(e)
>(1-¢e)™.

1 n k)
T(Z(—")@W (¥"e)

Therefore, the average list size over this set is
o) o o W
c€C(M) () ynECm (¢)
<A -e)(1+a(n) =A.
Let C; be the subset of C(™)(e), which has list size at most

2A. The cardinality of C; is at least 1|C()(¢)|. Randomly
select a subcode of C; of cardinality

b“’

C (n) )

%]C(")(e)l(l —e)"(1+ a(n)) texp{—en}.

The list size of a codeword in this subcode is not 1 with
probability exp {—en}. Deleting those codewords whose list
size is greater than 1 results in a code of cardinality in average
at least

21 @11~ )" (1 +a(n) ™ exp {~en} (1~ exp {~en}).
This is a detection code and this leads to
Cae > K a1 — 6, (e)Hog (1—e)—fraclnlog (1+a(n))—e—o(1).
Letting n go to infinity and then e go to zero gives
Cae > Kar.
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Proof of 3): For fixed n let PE(") be the optimal distribu-
tions and let W(") be the optimal stochastic matrices in the
definition of C{™)(g). By compactness there exists a null-
sequence (ex)32; such that

Jim P{Y = P™ and lim W) =w®.  (3.13)
By the continuity of the mutual information function I we
obtain

€k 3

Jim I(P™, wim) = 1(P™), W ™)

and since for fixed n, C§p is continuous in &

lim O (e) = [(P™, W),

It is also easy to see that

pmwh) = pl) (3.14)

Also, any W™ with POW™ = P satisfies
I(P™, W) < I(P™, W™,

We find now a blocklength nN' detection code by randomly
and independently selecting M codewords in XV according
to the PD (PM)N

We choose

M =exp {NI(P™, W) — §nN}.

The list size for a codeword selected is in average
M exp {~NI(P™ W™)4o(Nn)}+1 = 1+exp{—6nN}

because (2.16) holds. By deleting codewords with list size at
least 2 we obtain a detection code of size at least M (1 —
exp {—6nN'}). This concludes the proof.

IV. THE IDENTIFICATION CAPACITY FOR
ZERO-ERROR PROBABILITY OF MISREJECTION

We recall the definitions given at the end of the Introduction.

Theorem 3: For every DMC the zero-error second-order
identification capacity Co;q equals the first-order zero-error
erasure capacity for transmission Co;.

Remark 6): The results about C,, in the previous sections
are now also of interest for identification.

Proof: Let C(™ be an optimal erasure code of length n

with maximal erasure probability P, of the order 1/n. We
know that

lim —log Ic™| = C,,.

n-—-—=0oo

Let {C; : 1 < i < N} be a collection of subcodes of C(™
with the following properties:

1) [Cf——JC—(:)—forizl ,N.
2) |CnC|<—2—n—3—f0rZ7é_]

By the same reasoning as in [11] one can show that N can
be made as big as exp { exp { log |C™)] — o(n)}}.
Let P; be the uniform distribution over C; and set

D; = {y": 3z™ € C; such that W (y"|z") > 0}.
Apparently
Zﬂ(z ) Z W™(y"™|z"™) =
" ymeD;

By the properties of C(™ and the C;’s, one gets for the
second kind of error probability

n n n 1
) > W z") £ Pt o

Poa < maxZPj(m
R y"eD; 2n

To prove the converse part, we consider again
= {z" : W"(y"|z") > 0}.

We have for any P € P(&X™) and any V with PV = PW™
and V <« W™

ZP W(y™)z" )log?%l))
_ 2™ Jog YW 2 Pa")
—W;wn)f’( "V a™) 108 s B
PV (y™)
22 PV e B @ )

(by the log—sum inequality)

1 1
Jog By

Therefore
ny __ . n n|,..n
IPWY= _ min Zy P(a™)V (y"|a")
V(y"|z")
- log PV(y™)

> ZPW“

By Chebychev’s inequality and (4.1)

) log m. (4.1)

PW™({y" : P(X(y")) < exp{-L(P,W") - ne})}
= IPW™) +ne @2
Define
Vo ={y": P(X(y")) > exp{-L(P,W") - ne}}
and notice that by (4.2)
n ne a
PW™(Y*) > BW™) tne 6, say.

Now randomly select a code C* of cardinality

exp {L(P,W") + 2ne}
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according to the PD P such that different codewords are
selected independently. Associate with the random set C*

V(C*) = {y" : =" € C* with W"(y"|z") > 0}.
Notice that for any y" € Y*
Pr(y"€V(C*))>1—(1-exp (P, W™) —ne)) *PHEWH2ned
>1— exp { —exp {ne}}.
Therefore, there exists a codé C* such that
yr cycr).
We can always assume that
D; = Y(supp (F;))
where supp (P) = {z" : P(z") > 0}. Since for any i
I(P;,W") < nCe + o(n)
we get for
Vi ={y": P(X(y")) 2 exp {~nCl —ne}}

€
Ceo +€

BWH(YE) > =5, say.

Since for every ¢ we can find a subcode C; of supp(P;) with
Yi cY(G)
we conclude that
PW™(Y(C;)) > 6.
We see that for i # j also C; # C;, because otherwise
PW™(D;) > BW™(V(C)) = PW"(V(C) > 6
and this contradicts the fact that
PW™(D;) < %

The total number of codes of cardinality exp {n(Cer +2¢)}

is at most [X"[exp{"(09'+25)}. Since
. 1 n exp{n(C’e +26)}
nll)ngo - log log |X™] : = Cor + 2¢

letting £ go to zero proves the converse.

V. CONCLUDING REMARKS

We mention here some connections to other work and also
further directions of research. '

1) Ttis clear from (4.1) that our characterization of Ce, (W),

in particular its “direct part,” is better than Forney’s [2]

bound
Cox (W) > > Pa.
W (yn|zn)>0

-y PW™y™1
o SN

It should be noted, however, that Forney’s bound is tight
in the limit (n — o0). A rigorous and simple proof of
the converse was shown to us by I. Telatar.
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2) The quantity I(P, W) defined in Section II is not convex
in P, whereas I(P,W) is. We therefore alternatively
suggest to take the upper envelope

I (P,W) = max { Zaji(Pj, W)
jeJ

PSP 0< 0 Y 0 - 1}
jeJ jeJ
5.1)

and call it “lower information.” It is a quantity of some
operational significance, which naturally arises in time-
sharing arguments. In terms of random variables X,Y
we write for it also I5,(X AY). It can be shown to be
symmetric in X and Y.

Hy(X|Y) = H(X) - I(X AY)

is then the “upper-conditional entropy.” For an extension
of our work to multiuser models one can use a calculus
of these quantities.

3) It seems that the study of low-noise channels should be
rewarding also, if the usual probabilistic error criteria
are used. In some instances non-single-letter characteri-
zation may become computable in the limit ¢ — 0.

4) In [3] it was shown that C, equals the ordinary channel
capacity C, if the following condition holds: For £ > 2
there do not exist 1,zg, - ,2¢ € X, Tey1 = z1, and
Y1, ,Ye € Y with

W(yllml) > O,W(yi|ﬂ'}i+1) >0 fori=1,--- €. (5.2)

This condition is not necessary for C,, = C to hold. We
have a complete characterization of this equality for the
case min(|X|,[V]) = 2.

Since in [4] the zero-error capacity of a DMC has
been shown to equal the maximal error capacity of an
associated arbitrarily varying channel (AVC) with 0-1-
matrices only, there have developed more connections
between zero-error problems and AVC theory. One line
of investigations, starting with the discoveries of the
“worst channel” for binary-output AVC’s in [5] and
the “maximum probability decoder” in [6], studies the
performance of seemingly simple decoding rules such
as minimum-distance decoding in [7]-[9]. There the
“distance” is actually a distortion function d,, : X™ x
yr - R+ with

5

~—

dn(z",y™) =Y d(me, ) and d: X x Y - Ry, (5.3)
t=1
In [8] the maximal rate of codes for the DMC W with
an error probability tending to zero under d-distance
decoding is called d-capacity and denoted as Cj. The
most known example of such a decoding rule is the
maximum-likelihood decoder d(z,y) = —log W(y|z).
Another one is the “mismatch decoder” d(z,y) =
—log V(y|z), where V' corresponds to another DMC.
It is on another line of investigations. Furthermore, for
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suitable d : X x ) — {0,1} one obtains problems
equivalent to the classical zero-error problem and the
zero-error problem for erasures.

The lower bound for Cjy stated in [8] is not tight for
Shannons zero-error capacity, but it is also not tight in
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