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Abstract. We consider the partially ordered set ([k]", <), which is defined as n-th product
of the chain [k] = {0,1,2,...,k — 1}, and study pairs (4, B) of incomparable sets 4, B = [k]",
thatis,a £ b,a % bforall ae 4, b € B or (in short notation) 4 == B.

We are concerned with the growth of the functions f,: {0,1,...,k"} = {0,1,...,k"},
ne N, defined by f,(«) = max{|B|: 4, B < [k]" with |4]| = a and 4 =}= B} and a charac-
terisation of pairs (A, B), which assume this bound.

In the previously studied case k = 2 our results are considerably sharper than earlier
results by Seymour, Hilton, Ahlswede and Zhang.

1. Introduction, Basic Results and Problems

Let us be given the partially ordered set 2,([k]", <), where [k] ={0,1,2,...,
k—1} and a=(ay,a5,...,4,) < b=(b,b,,....h,) iff a,<b fort=1,2, ..., n
In the terminology of our earlier work ({13,[81,[9]) we call a pair (4, B) with
A, B = [k]" a cloud-antichain of length 2, if

ath, a%b forall ae 4, beB. (1.1)

A short expression for (1.1} is: A D= B.
We denote the set of these pairs by €=/%(n). The objects of our investigation
are the functions f,: {0, 1,...,k"} = {0, 1,...,k"}, n € N, defined by

fi(@) = max{|B|: 3(4, B) € €/ %(n) with |A| = a} (1.2)

and a characterization of pairs (4, B) which are optimal, that is, assume this
bound. We denote by @(n) the set of all those optimal pairs.

In case where we emphasize the dependence on parameter k we also write
A%, (n), On), £, .(a), etc. instead of B/%(n), O(n), f,(a), ete.

Previous work is discussed in [9], where the best results prior to those in this
paper can be found. They are all for the binary alphabet, i.e. k = 2. Familiarity
with this paper may be helpful but is not necessary for an understanding of the
present results and proofs. We extend here first the key result of that paper to the
case of general k.
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Theorem 1. For every y,0 <7y < k™2, a pair (4, B) € O(n) with |A| = y exists, such
that for some component all a in A have a 0 and for some other component all a in
Ahaveak -1

From here we derive by an approach similar to (but not identical with) that of
[9] the main recursion.

Theorem 2. For everyy,0 <y < k"2,
@ £ == DE"™ + ko) — (k ~ 1)y
({)  frras) = (k° = DK™ — y) + k°£,(y) for s 2 0.

The explicit characterization of all pairs (y, f,(y)) given in [9] does not seem to
allow a reasonably simple extension to general k. Therefore results concerning
aspects of this characterization problem are already of interest.

Theorem 8 of [1] states that in the case k = 2 for (A4, B) € €/%(n)

() |A]|B| < 274
(b) min{|4},|B|} <22

and that these bounds are best possible.

The key observation was that for (4, B) € ¢/ (n) we have the disjointness
properties (A A BYN(A v B)=@, (AABNAUB) =g, (4 v BIN(AUB) =g,
and ANB = g.

Therefore -

(1.3)

[A|+|B|+|4Av B|+|AAB 2"
and since by the arithmetic-geometric means inequality

([AHBHAVBIIAAB|)1/“_<_IAI+‘B| + |4 v B| +|A A B|

4
we get
on 4 .
|A||B||4 v Bl|4 A B| < (2-> . (1.4)
Now we use the AD-inequality
|A]|B| <|A v B||A A B| (see [6]) (1.5)

and get
|A||B| < 2",
(b) is an immediate consequence.

Inspection shows that the same derivation is valid for all k and thus for
(4, B) € €4%,(n)

1A]|B] < (’5‘)418"-4. 16

This is tight only for even k.
In [9] the arithmetic-geometric means inequality was applied to two terms
and so do we now for general k. Hence,
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k"> |A| +|B| + |4 A Bl + |4 v B

- > |4+ |B} + 2./]4 A B{|A v B|
> |A| + |B| + 2./14[1B] = (/]4] + /IBI)? 1.7

and therefore
[A|Y? + |B|Y* < k™2, (1.8)

Theorem 3 of [9] states two consequences in case k = 2:
Forall,0<I<?2"

(©) faull®) =@ = 1)?
(d) fanee(21%) = 22" = I

Problem 1. For every k describe all (A, B) € $4%,(n) with equality in (1.8). In the
terminology of [10] this is an equality characterization problem.

Problem II. How does f, ,(«) behave asymptotically in k, n, and «? Next we try to
generalize statements of type (a) and (b) to general k.

Problem IIL. Determine

G(n)=  max  min(|A}|B|).
(4,B)e € 5 Gn)

Problem IV. Determine

Q(n)=  max  |A]||B].

(4, BY € 6 A/ (n)

Finally we solve

Problem V. Let A4 be any integer, —k" < 4 < k", flnd ays(n) = max{|A}: (4, B) e
€%, (n),|B| = |A| + 4}.

We completely solve problems III and IV and provide partial results for the
other problems.

2. Auxiliary Results

We use for the proofs of our Theorems 1 and 2 results of Daykin, Kleitman and
West [5]. They are described in the abstract of [5]. Except for a reference to these
Theorems in brackets, we literally repeat the main part of the abstract:

“Let L be a lattice of divisors of an integer (isomorphically, a direct product of
chains). We prove |4||B| < |L||A A B| for any A, B « L where || denotes cardi-
nality and 4 A B={a A b:ae A,be B}. |A A B| attains its minimum for fixed
|Al, |B] when A and B are ideals (Theorem 2). || can be replaced by certain other
weight functions (Theorem 3). When the n chains are of equal size k, the elements
may be viewed as n-digit k-ary numbers. Then for fixed |4}, | B, |4 A B| is mini-
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mized when A4 and B are | 4| and | B| smallest n-digit k-ary numbers written back-
wards and forwards, respectively (Theorem 4).! |4 A B| for these sets is deter-
mined and bounded (Theorem 5).”

We don’t need Theorem 3. Whereas Theorems 2, 4 are selfexplanatory, we
have to give the details of Theorem 5.

Theorem 5. [ 5] Suppose L is a product of n chains of sizek,0 < a < k" 0 < f < k"
Let w(n,o,f) =min{|4 A B|:[A| = o,|B| = B} and g(n, o, B) = m(n o B) — %g.
If pk" ' <o < (p + Dk™! and f = rmodk, then

0 ; p=0

: a1 | B—
(1) #k(n’a’ﬂ)=#k(n“13a_pk l’l-“_l;—p])'{- ;'1-1 I.E__:_J_‘l, P>0

(i) &(napB) =g (n - la—pk"™, [T

a
' r(l—-—); 0<r<p
- k"
B pD+

(k—-r)-f“; ; p<r<k
k
Furthermore,
(iii) g k" — o, k" — B) = g (n,a, B)
(iv) k™ — o k™ — B) = py(n, 0, B) + k" — o — B
and, finally,
(V) O < Ek(na arﬁ) < 'kzn"
(vi) (Immediate from definitions and added for the ease of reference)

0,8 =0 p(nk"p) =B &(n0,p)=elnk"p) =0,

3. A Connection Between Optimal Cloud-Antichains and Pairs Extremal
in the Meet "

In the Introduction we have defined the set @(n) of optimal cloud-antichains of
length 2 in [k]". Now we define the set &(n) of pairs (C, D) with C, D = [k]" which
are extremal in the meet C A D, that is,

|C A Dj=min{|C" A D'|: C,D’ = [k],|C’| =|C|,|D'| = |DI}. G.1

! For any ¢ =(c,,...,c,) € [k]" we define a forward and a backward value by ¥(c) =
Yr k" c; and B(c) = Y 7=, k"¢, resp.. U and ¥ evaluate elements as k-ary numbers when
the components are written in natural order or in reversed order.
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Within O(n) there is the set .#(n) of those pairs (4, B) which are maximal in the
sense that for all (C, D) e ¥/%(n) with |C| > | A| necessarily |D{ < |B].

Finally, we call (4, B) € ¥/%(n) A-saturated (resp. B-saturated), if there is no

(A, B') e 64%(n) with B = B', B # B’ (resp. (4, B) e ¥/4(n) with A « A", A # A')
and we call (4, B) saturated (or bisaturated), if it is 4-saturated and B-saturated.
We denote the set of all these saturated pairs by &(n).

Actually, fewer definitions would suffice for the proofs of our Theorems. How-
ever, clarity is gained by analysing in which generality properties used hold. We
establish therefore first simple properties of the classes defined. It is immediately
clear that

M) = O N Fn). (3.2)

Our first result is of general nature.

Lemma 1.

(i) For A, B = [k]" we have (A\(A A B),B\(4 A B)) e €4%(n).
(i) For (A,B)e%</4(n) we have AN(AA B)=BN(AAB)=AN(Av B)=
BN(A v B) = .

Proof. (i) Suppose that for ae A\(4 A B) and b € B\(4 A B) we have a > b, then
b=a A be A A B, contradicting that b ¢ 4 A B (the case a < b is symmetrically
the same).

{ii) If for instance ae AN(A v B), then a b e B exists with b < a. This con-
tradicts the assumption (4, B) € ¥/%(n).

For any C < [k]" we define

p(C)={ce[k]c¢C,3c’ e Cwithc<c'}. (3.3)

Clearly, CU ¢(C) is an ideal (“downset”).
With any pair (4, B), 4, B < [k]", we associate a pair

(A% B*) = (4U ¢(A), BU ¢(B)). (34

Lemma 2. For (A4, B) € %(n) we have
A* A B* = A*N B* = ¢(A4) = ¢(B). (3.5)

Proof. If for instance a € ¢(4) and a ¢ ¢(B), then either a > b for some b € B and
for an a’ e A with a’ > a the inequality a’ > b contradicts (4, B) € ¥/%(n), or a
is incomparable with all members of B, which contradicts the saturation of (4, B).
In any case we have ¢(4) = ¢(B) and A* A B* = A*() B* because A* and B* are
ideals. Finally, since AN B = AN p(A) = BN ¢(B) = @, we have

A*N B* = ¢(A) = ¢(B).
Actually we need a related result. For any («, f,(¢)) there is a pair (4, B) € O(n),
(1AL1BI) = (o, f()),
with minimal total weight ZA W(a), where W(a) = 5 ", a,. We denote the set of

all such pairs by 0, (n).
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Lemma 3. For (4, B) € C,(n) (3.5) holds.

Proof. Since (4, B) is A-saturated the previous argument gives ¢(B) <= ¢(A). For
a € @(A), a ¢ o(B) the case in which a is incomparable with all members of B is to
be discussed. Here A’ = (4U {a})\{a'}, @’ = a, has smaller total weight than A4
and since (A', B) e ¥/%(n) we get a contradiction. The remaining identities in
(3.5) are established as previously.

Proposition 1. For (A, B) € 0,(n) we have (A*, B*) € &(n).
Proof. Set a* = |A*| and * = | B*|. Now clearly
[A* A B*| = u(n,a*, p*) (defined in Section 2)

and suppose that here strict inequality holds. By Theorem 2 [5] there are ideals
A,, B, with cardinalities |A4,|=a* |B;|=p* and |4, A B;| = y(n,a*, §*).
Therefore ,
|A1\(4; A Byl = o* — p(n,a*, f*) > a* — |A* A B¥|
= |A*| ~|p(4)] by Lemma 3.

By definition of A* |A*| — |@(4)] = |A| and thus |4;\(4; A B;)| > |4|. Symmet-
rically |B;\(4, A By)| > |B|.

Since (4,\(4; A B;),B;\(4, A B,)) € ¢4%(n) (by (i) in Lemma 1) we obtain a
contradiction to the optimality of (4, B).

4. A Formula for f, via &(n)

Let us definefor 0 <y < k"
= {(%p)0< 0o, <k" o~ minap) =7y} (4.1)
Here all numbers are non-negative integers. Note that M, # @, because (y,0) € M,.

Lemma 4. For0 <y < k"
f;u(y) = max (ﬁ - /—"k(n’ %, ﬂ)) (42)

(@, B)eM,
and the maximum can be achieved for a pair of ideals.
Proof. Let (4, B)e O, (n) satisfy | A| = y, | B| = f,(y). By Proposition 1 (|4*|,|B*|) =
(7 + mln, 1 A*1,1B*]), fo() + m(n, | A*1,1B*|)) and hence (|4*|,|B*|) € M,. There-
fore,

fa@) = |B*| — p(n, A%, IB*l)< max (f — m(n o B)).

(2. B)e M,

To establish the reverse inequality, suppose the maximum is assumed at
(@,B) e M, and let (4, B') satisfy |A'| = «, |B'| = f and |4 A Bl = w(n,o,B'). By
Theorem 2 [5] A’ and B can be assumed to be ideals. Then 4 = A'\(4’ A B') and
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B = B'\(A" A B') satisfy (4, B) e €/%(n) (by Lemma 1), 4| =« — w,(n, o, f) =
y, and |B| = ' — wdn, o, f') < f,(y). Therefore

Ja(0) = 1B*| — py(n, |A*|,|B*|) = max (B — p(n,a,B)).

(@, preM,

Since A* and B* are ideals, the maximum in (4.2) at (&, §') is assumed for a pair
of ideals. Actually, with the aid of Theorem 4 [5] a stronger conclusion can be
drawn

Lemma 5. If the maximum in (4.2) is assumed at (a*, §*), then it can be attained by
letting A* be the a* smallest and written backwards, B* be the f* smallest n-digit
k-ary numbers.

Next we establish a relation between y and a pair («*, *) at which the maxi-
mum occurs.
Lemma 6. If the maximum in (4.2) is assumed at (x*,f*) and if y < k"2, then
o* < k" and B* > (k — k"L

Proof. This is the first argument, which not just generalizes that of [9]. However,
it starts as previously. Let us consider the pair (ky, (k — 1)k"*) and derive with (i)
in Theorem 5 [5] (for p = k — 2) and y(n, o, f) = . (n, B, ) that (ky, (k — 1)k" 1) e
M,, because

ky — w(n, ky,(k — k") = ky — p(n — 1,9,k") — (k — 2)y
=ky—y—~k—-2y=1.
Therefore

max (B — p(n,a,B)) 2 (k — Dk"™' — (k — 1)y
(@B eM,

=(k—Dk" —(k— 1) — p(n,e, ) forall («,8)e M,.
In particular we get at a maximum («*, f*)
B* — o, B*) = (k — k™™ — (k — 1)(* — py(n, %, f*))

or equivalently

B* + (k — Do* — kp(n, o, f*) = (k — k", (4.3)
Since for any C, D < [k]"|C||D| < |C A D}|C v D| <|C A DIk we also have
* 2%
Y L (44
Combination of (4.3) and (4.4) yields
a*ﬂ*
B* + (k — Da* — > (k — kL 4.5)

kn—l -
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Write now f* = (k — 1)k"™! + §, a* = k"' + ¢ and verify that

B* + (k — Da* — %‘;f; = (k — DK™ + 6 + (k — 1)k
PP Lk a)((l;n :1)k"—1 +0)
&
= (k — k" — kﬁ_l.

We conclude from (4.5) that 6 < 0. In view of (4.2) f* > a*, but if k — 1 > 1 this
does not imply (as in the case k = 2) that 6 > 0 and ¢ < 0.

Suppose, for contradiction, that either d <0 and ¢> 0, or <0 and e = 0.
By definition of («* B*), fi(y) = B*— wna* p*) and (@*p*)eM,, so
o* — w(n,a*, f*) = y. Thus f,(y) — y = f* — o* From the preceding verification
it follows that f* — a* < (k — 1)kt — k"™ = (k — 2)k"*. Thus

Sy — v < (k= 2k (4.6)
Next observe that the pair

(4,B) = ({0} x {k = 1} x 1’[3 [KL {L,.... k= 1} x {0,....k — 2} x 113 [k])

is a cloud antichain with |4]| = k"~ % and |B| = (k — 1)%k""%, s0
Sulk" ™) = (k — 1)%k"2, 4.7)
It follows from (4.6) and (4.7) that
Fulk™2) — k"2 > (k= 12k — k"2 = (k — 20k > £ () — 7.

But f,(-) is a decreasing function and y < k"% by hypothesis so we have the
contradiction

Sul&"2) = k2> ) — v 2 £k = k"R

5. Proof of Theorem 1

Starting with (4,B)e O,(n), |A| =7, |Bl = f,(y) we know from Proposition 1
that (A* B*)e &(n) and that a* = |[A*| =y + w(n,a* f*), f* = |B*|=f(y) +
e (n, a*, B*). The same parameter values can be obtained with A*, B* being ideals
and having the numberings of Lemma 5. Then the sequences in 4 = A*\(A* A B*)
are all zero in the last component, because |A*| = a* < k"™ by Lemma 6, and
they are all kK — 1 in the first component, because |B*| > (k — 1)k*™! again by
Lemma 6 and thus all elements of 4* beginning with an element of {0, 1,...,k — 2}
are also in A* A B* and thus not in 4. This means that only elements of 4*
beginning with a k — 1 can be members of A4.
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6. Proof of Theorem 2

We make use of the notation

o(D)={de[k]"d¢D,3d eDwithd <d'}, (6.1)
¥(D)={de[k]"d¢D,3d' e D withd > d'}, (6.2)

and
o(D)={ce[k]"c £d,c# dforalldeD}. (6.3)

Let now (4, B) € 0, (n) have an A structured as in Theorem I: a = (a,,4,,...,4,) €
A implies a; =k — 1, a, = 0. Necessarily B = ¢(4) and it can be described as a
union of four disjoint sets:

Imagine b € [k]" to be written in the form (b,,...,b,) and set
B, ={be[k]"b, e{0,....,k—2},b,e{1,....k = 1},(bs,...,b,_;) € [K]""?},
B, ={be[k]" b, €{0,....k —2},b,=0,(b,,...,b,_1) € P(Ao)Ua(4o)},
where A = {(ay,...,a,~,) € [k]" % (k — La,,...,0,-,,0) € 4},
By={be[k]mb =k—1,b,e{l,....k — 1},(b..., buy) € @(4g) U c(4o)},
By ={be[k]" b, =k —1,b,=0,(b,,...,0,-1) € 6(4p)}.
Then
|B| =B, UB,UB3UB,| = (k — 1)’k""% + (k — 1)(|P(4o)] + |9(Ao)])
+ 2k — Dio(4o)l,
and since
|P(Ao)l + [@(Ao)l + |o(Ao)] = k"% — | 4| = k"2 —y,
we conclude that
Ju0) = 1Bl = (k = 1Yk""% + (k — (k"2 — y) + k|o(4,)|
< (k= %2 + (k= DE"2 = 9) + kf-a()
= (k— DK™ + kfo 5 () — (k = 1)y.

Conversely, if we choose A4, < [k]"7%, |4o| =7 such that (4,,0(4,)) e
0, (n — 2), then [o(4,)| = f,-2(y) and constructing 4 and B as before, we obtain

|Bl = (k — Dk™! + kf,—a () — (k = D)y.
Writing (i) in the form

Jar2() = (k = DE™ =) + kfy(y)

(ily follows by induction on s.
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7. A Corollary

Since there exists (4, B) € 4¢%€(n) with (4] =y and |B| = f,(y), it is immediate
that

Sl =y (7.1)
Since the function f, is decreasing we have therefore
L) £ £0)- (7.2)

On the other hand there exists (4', B') € ¥/%(n) with | 4’| = f,(f,(y)) and |B'| =
f.(3). Hence

Sl 2 £,0), (7.3)

and from (7.2), (7.3) we conclude
LALLM = fy)  forall y <k~ (7.4)

Fory + 1 < k"2 the recursion (i) in Theorem 2 applies and, since f,—,(y + 1) <
fo-2(), we have fily+1) = (k=DM +kf 0+ D-Gk-DO+D) <
(k — D)k"™" + kfy-z() = (k — )y — (k — 1} = f,(y) — (k — 1), and hence

filp+ )< fily) forall 0<y<k"2 (7.5
Suppose for some y, 0 < y < k"2, strict inequality in (7.1) holds, i.c.
ML) =nzr+1,
then, applying (7.4), we have
FG L) = £u(n1) = Lu0)s

which contradicts (7.5).
We summarize these findings

Corollary.
@) Sl 2y forally <k

(i) f(A0)=7yfor0<y<k™?

(iil) fu(fl(l)) = £o(¥) for all y < K™

8. On Problem I: an Equality Characterization
What can we say about (4, B) € %,(n) for which

JE = /141 + /1B (8.1)
holds?

First we derive an auxiliary result.
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Lemma 7. For an (A, B) € €/%,(n) satisfying (8.1) necessarily we have

(i) A and B are convex.

(i) (4,B)e O(n).

(iii) (A, B) is bisaturated.

(iv) o(A4) = @(B) = A A B and (symmetrically) P(A) = ¥(B)=A v B.

Proof. Statements (i), (ii) and (iii) are trivially true, because otherwise we could

increase \/|A| + +/|B|. '

Lemma 2 implies
@(A)=@(B)=A* A B¥*> A A B. (8.2)
Also we have by the disjointness properties and the inclusion #(4)> A v B
k™ > |A|l + |Bl + |p(4)] + |P(4)| = 14| + |B| + |A A B| +|A v B|
> (/141 + /B? oy (1L.7)
and (8.1) yields
lp(4)| + 1¥(4)| = |4 A B{ + |4 v B|.

Thus (8.2) gives finally (iv).
Lemma 8. If (8.1} holds, then ,

O a+f=k ad Jo—pnep)+ /- unep) =k

or

(i) a+p=4k" and wn, o, B) = z—é.

Proof. By Lemma 4 we know that for (A4, B) € O(n) we can assume that

Al =a— mmep), |Bl=p— mnaop)
and there are ideals A*, B* with |4*| =«, |B*| = f§, |A* A B¥| = u(n,e, )
(0 < a,f < k™). Since (8.1) holds, by (iii) in Lemma 7 (4, B) € S(n) and hence by
Lemma 2 . (n,a, f) = |A* A B*| = |p(A4)|. Now by (iv) in Lemma 7 we conclude
that

m(na, B) = |p(A)| = |4 A BI. (8.3)
Also |A v B| = w(n,a,f), because |A A B|+ {4 v B|=2./|4A A B||A v B, iff
|{AAB|=|4 v B|
Recall also that under (8.1) k" = |A| + |B| + |4 A B| +|A v B} and by (8.3)
we have

|A| + |A A B} = q, |B|+|A v B| = 8.

Theorem 3. \/|A| + \/|B| = /k" holds for (4, B)e ¢4%,(n) if and only if, for
some integer L0 <1< k™
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G n=2m |A|=1%  |B|=(k"—I)>
or
() n=2m+1, |A|=k? |B|=kk"—I>

Proof. Sufficiency of (i) or (ii) follows by a construction, which generalizes that of
Section 8 in [9] from k = 2 to general k. In case (i) it goes as follows.

Let 4,,(s) (resp. 4,,(s)) be the s smallest (resp. largest) weight elements of [k]™.
Set

A={ae[k]®™ a=/(a,,a,),a, € A,(I)a, € 4,,(D},

B = {be[k]*™: b = (b,,b;),b, € A, (k™ — 1),b, € A, (k™ — )},
and verify that (4, B) € ¥#/%(n), |A| = 1%, and |B| = (k™ — )2 In case (ii) choose
(4',B') = (4 x [k], B x [k]).

To see the necessity we use the following result, which is a special case of our
forthcoming Theorem 2 in [10], which corrects Theorem 6 of [5]: ¢ (n, o, B) =

we(n, o, B) — z—f = 0 iff (i) k'|e, k'** o = k™| B or (ii) « or B equals k" or 0.

n__ 2
“lk o i = —-% is possible only

In our case y,(n, a,f) = p(n, o, k" — o) =
when k"|a? and we can use the relations
kila, k*'ta=k|f, B=k"—a.

However, we have also kf|a, kI*! fa = k""!|k" — ¢ and k"*! } k" — « and there-
fore necessarily i > n — i. Hence (ii) in Lemma 8 holds iff k| where

1yizm,ifn=2m
2)izm+ lifn=2m+ 1,

a2
Now we have |4] = « — w(n, o, f) = Fand

1) n=2m,« = k™ 1(l integral), |A| = [, |B| = (k™ — I)?
2) n=2m+1,a= k" |4 = ki, | B = k(k™ — I)2.

9. An Asymptotic Result

The recursive formula of Theorem 2 in conjunction with Theorem 3 allow to
estimate the growth of f,.

Theorem 4. s
(i) For anyye N (the natural numbers) such that \/; + VL) < \/I?
lim (/K™ — /3~ fraas) = co.

S0
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(ii) ForanyyeN
RN/ NG
VU =1,
lim ==

Proof. (i) We choose n such that y < k™ and let &,(y) = (/K" — /7> — f,(y) > 0.
The recursion (i) in Theorem 2 can be written in the form

Foras®) = (K — S — (K" = /9 = £,0)),

which implies

(JHFE = S92 = frrasd) = ke,(9)

and k%, (y) = co(s = 0).
(i) For any y and n so large that y < k" we write

WEE - e

ferasl) (= DE =)+ E,0)

and notice that

lim (\/P'E \/_)2

o (B — DI —7) + B0

10. A Divisibility Property of Optimal and Bisaturated Pairs
We present here a result, which we later use and which is interesting in itself.

Theorem 5. Let (A, B) be optimal and bisaturated, that is, (4, B) € O(n)N & (n) = H(n).
Then a maximum pair (&*, B*) with o* — . (n,o*, f*) = |A|, B* — w(n, a*, f*) = | B|
has the properties k|a and k|B. In particular

KI(1A] — |B). |
Proof. Since by definition of optimality for a y |4] = y and |B| = f,{y) we know

from Lemma 4 that

f)= max (B = puln. . B)) (10.1)

(2, B)e M,

where

M,={(f):0< 0B <k"a—puinep)=1}
We also know from Lemma 5 that at a maximum assuming pair («*, f*) there
is a realisation (A4, B) = (A*\(4* A B*),B*\(A* A B¥*)), where A* are the o*
smaliest and written backwards, B* are the p* smallest n-digit k-ary numbers.
First we show that integer a* — 1 represented lexicographically backwards
does not appear in the list of B*. Namely otherwise we have

,le(n,a* - 15 B) = #k(n’a*"ﬂ*) -1
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and thus
a*—1— I'lk(n’a* - 19ﬂ) =o* -1 (.uk(n’a*:ﬁ*) - 1) =7
Hence (a* — 1, f*) € M,. But we then have the contradiction

B* — m(moe* — LB =N+ 1> f,(0) = ( r;l)afw (B — wn, o, B)).

Also f* — 1 written lexicographically forward does not appear in A*, because
otherwise w(n, a*, f* — 1) = y(n,o*, f*) — 1 and thus

ﬂ* -1- uk(n’a*aﬁ* - 1) =f;|(7)9 a* — ﬂk(n’a*9ﬁ* -=y+1

in contradiction to bisaturation.

We interpret now these properties in terms of the structures of A* and B*
under the assumption k | f* and derive a contradiction. By our supposition k } f*
for the last digit d,(8* — 1) (i.e. the n-th component of * — 1) of integer f* — 1
(the biggest number in B*) we have

df* -1 #k—1. (10.2)

Let integer f* — 1 be the I-th lexicographic element, when it is read back-
wards (as the numbers in 4*). We just proved that it does not appear in A* and
so I > a* Since d,(f* — 1) # k — 1, we get d,(f*) = d,(f* — 1) + 1 and so integer
B* is the (I + k*")-th element when read lexicographically backwards. Therefore
integer f* is also not in the list A*. This means that p,.(n,«*, f* + 1) = p(n, a*, *)
and thus

o* — (o f* + 1) =y, B* + 1 — p(mo*, f* + 1) = £,0) + 1,
which contradicts optimality and completes the proof.

Remark. The relation k|(|4| — | Bl) need not hold, if we require only (4, B) € O(n)
or only (4, B) € #(n).

Example 1. n=4,k=2,y=38, f,(8) =1 because f,(8) <2 by (1.7) and f,(8) =
f.(9) =1 by Theorem 3 (i), but 2/ 8 — 1.

Example 2.n = 6,k = 2,(A, B) e &(6) (by inspection), |A| = 3,|B| = 20,2} (20 - 3).
A ={111100,110011,001 111}, B =B, UB,,
B, = {101010,101001,100110, 100 101,011 010,
011001,010110,010101,111010,111 001},
B, = {110110,110101,101 110,101 101,011 110,
011101,101011,100111,011011,010111}.
Note also that here ¢(4) = ¢(B) # A A B, because (000000) ¢ A A B.



Optimal Pairs of Incomparable Clouds in Multisets 1
11. Solution of Problem III

It suffices to study the set
Z(G(n) = {(4, B) & 64%(n): | 4| = G(n) < |B|}, (1L.1)

where G(n) is defined in the Introduction.

Lemma 9. The set Z(G(n)) consists only of pairs (4, B) for which |A| = |B| = G(n)
or equivalently f,(G(n)) = G(n).

Proof. Clearly there are (A, B) € Z(G) which are optimal and bisaturated. It suf-
fices to show that for such a pair |A| = |B|.

We know from Lemma 5 that there exist integers a*, f*, 0 < a*, f* < k" such
that

o — py(n,a*, f*) = 4| = G, (11.2)
B* — m(n,o*, f*) = |B| = f,.(lAI), (11.3)

where A and B are the not intersected parts of ideals A* and B* w1th |A*| = o*,

|B*| p*. Here A* are the o* smallest and written backwards, B* are the f*
smallest n-digit k-ary numbers.

Then |B| > |A} would mean f* > a* and from Theorem 5 f* > a* + k. At
first we claim that

t(n, o, o) = p(n, a*, B*). (114)
Otherwise, since w(n,a, f) is(_an ing)easing function of f, we’d have
iy o®, a*) < w(n,a*, B*). Then if A* and A* denote respectively the first wntten
backward and the first written forward o* elements of [k]", and 4’ = A*\A* A A*
A*\A* A A* then (A',B)e¥%«4%(n) and min(j4’},|B'|)=]|A| = a* —
uk(n o*, a*) > o* — p(n,a*, f*) = G, contradicting the maximality of G.
We also claim that

p(n, o, B*) — a* = p(n, B*, f*) — p*. (11.5)
Otherwise, since p,(n,o*, f*) — a* is a decreasing functlon of oc* we'd have
w(n,a*, B*) — a* > w.(n, f*, f*) — p*. Then with A’ = B*\B* A B* and B =

E“\E“ A B?", where B* and Ei are respectively the first written backward and the
first written forward f* elements of [k]", we’d have

min(|4'],|B'l) = |A'| = B* — w(n, B*, f*) > «* — p(n,0*, p*) = G

again contradicting the maximality of G.
From (11.4) and (11.5) it follows that for every [, 0 € i < f* — a*,

wna* +ia* + i+ 1) = p(na* +i,0* + i) and

wn,o* +i+ Lo*+i+1)=pno* +ia*+i)+ 1.
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Therefore, for every i, 0 <i < f* — a*, the (a* + i + 1)-th forward lexico-
graphic element is simultaneously the {a* + i + 1)-th backward lexicographic

element, i.e.

- — —p — —_— L Smanad
a*=oa* aF+l=a*+1, Pr-1=p*~-1

N It E easy to ve_ri_)fy, that Do two consecutive integers o*, a* + 1; a* < k”; satisfy
a*=qg* and a*+ 1=0a*+ 1. Also, we note that o«*+ 1< p*—1, since
p* — a* > k > 2. This is a contradiction and hence a* = §*.

Theorem 6.

(@) Fornz=22k

k" Ky kK
G(n) = 'Z' and f;. (—Z—) = —4—
@) Forn=2mm=>12}k
k" —1

k1) k=1
) and f,,( y )— 7]
(i) Forn=2m+ L,m> 1,2}k

k(k*™ — 1 k(k*™ -1 k(k*™ — 1
Yy (20)

Proof. (i) Recall (1.6), which was obfained by the Ahlswede/Zhang method:

kn
Gm<7, nz2 (11.6)

G(n) =

G(n) =

This bound is achievable for all even k and all n > 2 by the following construc-

tion:
k k
A= {(al,az,...,a,,): a, e {0,1,...,5—- 1},a2 e{-z—,...,k-—- 1}},

B = {(bl,bz,...,b"): bl E{"zf,.-.,k— 1},b2€{o, 1,-..,;— 1}}.

m

(i) It follows from (11.6) that G < k and this bound is achievable by

this construction:

k™ —1
A=<(50Qpyy Qpys-e oy o) @y ..,a,)ER 5 )

=(k™+ 1
(a,,,ﬂ,...,az,,,)eR( 3 )},
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(k™
B={(bl,...,b,,,,b,,,+1,...,b2,,,):(bl,..,,bm)eR( 2“)

km—1
(bm+1""9b2m)e.g( 2 >}’

where R(s) (resp. R(s)) is the set of s lexicographic smallest (resp. largest) elements
of [kI™.
(iii) From Lemma 9 it follows that G(n) = max(x — y(n,o,«)) and from
-4
Theorem 5 it follows that if G(n) = a — p(n, «, B), then k|a.
Let us denote g(a) = o — p(n, o, a).

k™ —1 Kt +1
Lemma 10. If a < ———2~—-k'"“ ora> T_{_k"‘“, then

km =10\ (km ) k(KE~1)
g(a)<g(—5—k )~g<——2———k ==

a-f
&
2

gla) = a — u,2m + Loa)<a— ﬁ% = P(a), say.

Proof. We use from Theorem 5 in [5] . (n, o, ) > from where we get

Also from our Theorem 2 in [10] it follows that g(x) = P(«) if and only if k™*}|a.
Hence,

km—1 k™ — 1 k(k*™ — 1) k™ +1
km+1 = m+l ) _ = m+1
o) p (e < MR (T
k™ +1
— ___km+1 .
(53
Let us note that the function P(¢) is monotonically increasing in the interval

2m+1 k2m+1
l:O, 5 :l and monotonically decreasing in [ 3 ,kz"'“] Therefore, if a <

k™ — k™
5 ik"‘“ (or o > +1

gla) < P(a) < P(E—-—{—i k”'”) = g(k—z—lk"‘“)

So Lemma 10 shows, that max, g(o) = G is achieved, when
km—1 k™ + 1
2

k™*1), then

km+1 <a<

k1, © (117

Proof of (iii). Let us proceed by induction on m.

m = 1: We need to consider only o divisible by k {since (4, B) is bisaturated) and

1k2_<_as-k;—1k2.

satisfying 3
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-1
Ifa= kaz oro = {(——-—;—l—kz, then we have

k=1, k41, k(k2—1)
(1510 =o(e) =15

If E—;—lkz <a< k—‘l-—k2 then we apply Theorem 5 of [5] and get

2

o — (3, a,a)_a—[uk<2 o:—--_-_--k2 k)+£_;__£.%:]

¢ k=1 o k-1 k-1«
[""(’E bt~ 3 k)+ 7k

-1
K2 +kss=01,..k

m—l_l

k(k?® — k
and G(3) = gla) = ( 3 1)for all ot =
+km™les,5=01,...,k

Suppose it is true for m — 1 and for o =

( 2m-2 __
max, (¢ — p(2m — Lo,a)) = —
If max(oz —u(Zm+ 1o, )) = o — u(2m + 1,a,a), it follows from Lemma 10

m k™ + k—1 k
that ——— K 5 k"'+1 Log— —5 k”‘+1 and therefore BPm<a< %kz"'

and let us prove it for m.

Now
_ _ -t k—1le
o—w2m+ Lo,g)=a [u(?.ma k k>+ 3 k:l

k-1, o k-1, _
”k( m — 1 ___ k2m 1,i€__ 5 k2 1)

2
—la k—1fa k-1,
= ) E+ ) (E' 5k )]
_a _1 2m—1 & k—l 2m—1
—E—Tk [lk<2m 1,— 3 k

o k_lz-l k—ll—l (k ) 2m—-1
AT am T p2m = gam
7k >+ 5k S

k- k—172 , _
- uk(2m - 1,a1,oc1) + _2_k2m-1 + (—‘4‘—)'k2m 1,
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where o, = % - k—é——lkz'“‘l, and, since —Z——I—k"‘“ <a< k—;ik’"*1 we get
L. k" <ay < R+l

==
o, — i (2m — 1,a,,0,) is maximum. According to the induction hypothesis
k(k2m—z _ 1)

k™ It follows that « — u,(2m + 1,a,a) is maximum iff

max, (¢; — pm(2m — Loy, ) = and it is achieved for o, =

4
km—l —1 -
—————2——k"‘ +k™t-s; s=0, 1, ..., k. Hence, max,(¢— u(2m + 1,0,0)) =
k(k®™ — 1 " . - kmt—1
—(—4———land it is achieved for « = <a1 + ET-I—kZ'"'I)k = (—2— k™ + k™t

k-1 k™ —1
s+ —2——k2”"1>k = ——2———k"'+1 +k™s;5=0,1,..., k. Finally, we give a con-

struction of (4, B) achieving this bound:

k™ -1
A={(al,...,a,,,,a,,,+1,...,a2,,,,a2m+1):(al,...,am)eg( 3 ),
(k™ + 1
(am+17""a2m)ER< 3 ),02m+15[k]}

= (k™ +1
B= {(bl,...,bm,bmﬂ,...,bz,,,,bz,,,ﬂ): (bl,...,b,,,)eR< ),

2

k™ —1
(bm+19' "stm) € B( 2 >’b2m+l € [k]}

12. Solution of Problem IV

Theorem 7. The function Q(n) =  max  |A|]|B| satisfies

(A,B) e € A% (n)

2n

(i) Forn=22lkQ(m= "1_6

(i) Forn=2mm=>1,2/k Q(n) = (knl?)z

(A,,B;) and (A5, B,); | 4| < |B,}, |A;| < |B,| with the cardinalities

and this value is assumed only for

(k™ — 1) C(km 1y K kem
o Bil= e =, Byl =

|4, ] =

Zm __ 2m+2
(i) For n=2m+1, m> 1, 21k Q@) = & 1)§1; !

assumed only for (A5, B;) and (A4, B,) |A5] < |Bsl, |44] < |B,| with the cardi-
nalities

and this value is
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(k™ — D)(k™t + 1) k™ + k™t = 1)

IA3I = IB3| =

4 ’ 4
km — 1 km+1 —_ 1 km 1 km+1 1
ALl _ )(4 )’ IB,| _ ™+ )(4 +1)

2n

Proof of (i). By the Ahlswede/Zhang method, |A{|B| £ I;—6, so (i) follows from

Theorem 6 (i). The remaining cases are more complicated. We need further auxil-
iary results.

Lemma 11. Let (A, B) e $4%.(n); |A| <|B|, n=2m, 2}k and let | be a positive
integer.

2m __

k ,
(@ If|A|<I?> < , then

Al 1 fom(1A]) < B~ fou(12) = 12+ (k™ = 12,

2m

b) If 12 < |A| < k , then

v AL+ | ol ()] < PP+ fou1?) = 12 + (k™ — 1%,
Proof. (a) We use inequality (1.8), that s,

N RN N =

Hence

VIAl+ Fanl A < /2" = 1P + Sk = D)2 (12.1)
From Theorem 3 we have
fomll?) = (k™ = 12,
Therefore, from the condition

14l < 2 < fou(I?) < fomll AD)

and (12.1) one has (a).
(b) In this case we have

2 <Al < fou(lAD < foa1P). (12.2)
Inequality (12.1) is equivalent to
|A] + | fam(14D) + 2 /141 fam(|AD) < P + f2u(1P) + 2/ P fon(?). (123)

Now, if |A| + fo,,(|A]) = 12 + fo,(1?), then from (12.2) and by arithmetic-geo-
metric mean inequalities we have [A|* f5,.(|4]) > 12 fym(I*). Hence |A| + |B| +

VAL fam(1A]) > 12 + fou(1?) + /12 f2m(1?) which contradicts (12.3).
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Proof of (it). Suppose Q(n) is achieved for some pair (4, B) with |B| = f,,.(|4]);
2m
|A] £ f3,(|A}). From (1.8) we have |4} < k

k™ — 1\? k™ —1
< <
() <22

> |A| would contradict (a) in Lemma 11.

and we have also

m__ 1 2
2

because [ =

"+ 1

2
If 4] = , then by Theorem 3 f,,(]A4]) =(
the cardinalities |4, |, | B,| of the Theorem.

) k™ — 1\?
Now, if |A]| > ( ) , then from Lemma 11 (b) we have

2
> and this gives

2
k™ — 12 k"‘—l2 k™ — 1\ [k™+1\* k*™+1
k2m 1 k2m -1
or equivalently [A]+ f.(/4]) < 2+ —-1= 7 from where |A]

k2m . 1\2 k2m 1
with possible equality only for |A| = f;,(|4]) = o

k*m—1 S |
H r =
owever, fz,,,( 2 > 3

cardinalities of (4,, B;).
Clearly an (A, B) € ¢£%,(n) with |A||B} = Q(n) is optimal and bisaturated.

Therefore for some a, 8
= mnof)=14L, B — w(naB)=IB| (12.4)

and by Theorem 5

L fom(4D] <

follows from Theorem 6 (ii) and this gives the

kia, k| . (12.5)
Lemma 12. Suppose that n =2m + 1, |A|-|B| = Q(2m + 1), |4| < |B| and |A} =
o—w(2m+ L, B), 1Bl =8 — w(2m+ 1,0,B). Then
k-1 k+1
—k2 a0 < _— 2m
2 bk

Proof. Let us introduce

Gomr(@ B) = (@ — m(2m + 1,0, B)) (B — 1 2m + 1,2, B)).

Since p,(2m + 1,0, 8) > Efm—/il (by (v) Theorem 5 [5]), stated in Section 2, we

have

G2m+1 a, ﬁ)<( k1m+1> E%B.ﬁ>=a<1 —E'z%'f)ﬁ<1 _kz:;ﬂ)

say.
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It is easy to see that

2m+1 k2m+1
Py, B) < P(ay,B), if oy <a,< 5 or o, >da, >
and
. k2m+1 k2m+1
P(a, ) < P(w,B,), if By <fB,< 3 or fy>p,>
k—
Suppose that a < —-é—lkz"' (or o> lc—;—lkz"'), then

QQm+4)=GMH@J)SPwﬁ)<P(£§1Wﬁﬁ)

On the other hand since k{f by (12.5), then P(E-_lekz"',ﬁ) =

2

k-1

Gz,,.+1( k*m, ﬁ), (we apply Theorem 2 of [10]) and hence Q(2m + 1) < -
k —

G2m+1( 5 1kz"‘, B), which contradicts maximality.

Proof of (iii). Let us proceed by induction on m.
m = 1: From Lemma 12 one has

k-1 k+1
——kr<a< B < ——k2
5 <a<gf< 3 k

- k
Case.a=k—2—1—k2(or/3=——;—1k2).
L k-1, —-18
Since k*|a« and k|f, we have g, 3,———2—k B =—2——~Eand
k=1 ,,\_(k=1, k—18 k-18 _(kz—l) , B
Ga( 2 k’ﬁ>‘<“i_k BRI A T Y e et A

(12.6)

Let us consider the function T(f) = § (kz - g) We verify that T(B,) < T(8,) if
K k3
B <ﬁ2<70f/31 >ﬁ2>?-
k(k? — (K + 1
Hence, taking account of 2 | k, k| one has maxy; ,px T(B) = ( i( )
k3 —k K +k
5 B, = 3 only.

and the maximum is achieved for 8, =
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lkz,ﬂ) ® - -1

k —
So, max; G, (

16
k- k—1 k — 1)k + 1)
IA3I = Tkz h ﬂk<3 Tkz ﬂ1> g——-—li—_
k k+ 1Dk*~1
|By| = By — #k(3——-——k2ﬁ1> E._#
o (12.7)
k-1 k—1)(k? 1
RIS AR
k k+ 1)(k* + 1
|By| = B, — uk(3———k2 52) %
Case. 5 k2< <ﬁ<¥k2
We apply Theorem 5 of [5]:
_ k-1 ,8 k—-1DgB
#::(3,0:,/5')-—#,‘(2,0(—71(,%)4_ —
« k=18 k-1
Lk=Dp (k-Da (k-1 Dk
2 k 2 k 4
a k=1, k=18 k—1la (k—17%
R R R i
k1 (k=1 kK1)
=5 PP 7 (12.8)
and hence

Gs(@ B) = (& — m(3, 0, B (B — (3,2, B))
=<k—1 k-1 k(k2—1)>_(k+1 _k+1 +k(k2—1)>

Tk el A Tl 4
R =17 (k-1 -
- (16 ot ; %B—-a)(l—%). (12.9)

Now let us define § — « = x and consider the function L{x) = x ( 1 - ku—> We

2 2

k k
verify that L{x,) < L(x,), if x; < x; < 5 Or Xy > X, > 5 With regards to 2}k,
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k* —k K2—k\ (k-=1Dk+1) .
kle, k| one has max,, L(x) = 3 <1 3 ) = 2 and it is
2 _ K2
achieved only for x, = k 5 k, X, = - k. Therefore from (12.9)
Rk =12 K=-Dk-1Dk+1) (EK—=1E —1)
Glah)=—p—+ 74 STTTe

Furthermore, substitution of § — « = x; (or § — a = x,) in (12.8) give us

— D(k2 B 2
/‘tk(3aa7ﬁ)=a——@-———)—(k———ﬂz or a_w
4 g
and hence the same parameters for (43, By) and (4,, B,) occur. Now suppose that

2m-2 _ 2m _
the statement is true for n = 2m — 1 that is @,,_; = * llé(k D and it

assumed only for

(k™ — 1) (k™ + 1) k™t — 1)(k™ — 1)

(45, B3), (44, BY) . o T ’
VIR ) km = 1) T Em D)

(12.10)
According to Lemma 12 one has

k-1, k+1,,
e m< < —— m.
5 Pr<a<pf< 3 k

k-1 k
Case. o = —2—-k2"' (or B = ——;—1k2"‘)

Since k*"|a, k|8 then ,ik("gl km B _(k —k DB .4 G, k; 1 k2m,ﬂ> _

((k_ D am_ (k= l)ﬁ)(ﬁ_(k - 1)_B_> _ (k=1 + 1),ﬂ(k2m_é> We verify
).

2 2 k 2k ak
-1 R k2m+1 —k k2m+1 k
3 k* B} is assumed for 8, = 5 or = 2 +

k—1 k—1 k2 — ™™ + 1)(k* — 1
and Gy, <—2~—k2m’ ﬁl) = Gypeg (T k2m, ﬁ2> _ ) = ) )<

(kZm _ l)(k2m+2 - 1)
16

k-1
k2“<asﬁ<%——lk“‘

that max G;ppq

k —
,ifm>1andsoa>~2—lk2"'.

Case.

We apply again Theorem 5 of [5]:
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= k-1 2mﬁ k~ :B
yk(Zm + l,d,ﬁ) “Nk(zm,d '_—Z‘k ,‘]z) +—Z—‘—E

— 2m—1 ‘ m-
_— kz 1
ﬂk <2m 1, k k k

k—lﬂ+k—1a_(k—1)2
2 & 2k 4

k2m-—1

and so

k+1
3 (o0 — w(@m — 1,0y, B1))

% - uk(zm + I,Q,B) =

(k-1 &>~ 1)

- T(Bl - luk(zm - I’alsﬁl» + k?.m—
(12.11)
and
k + 1
8- mm+ Lo =53 D — pem — 1,2, 8)
k-1 -1 -
- ( 5 )(ax — w(@m ~ Lay, B,)) + (* 4 )kzm
a (k=1 .- B k-1,
where o, =T T3 ——Z k™t B, -————Tkz L
Substituting (12.11) in G+, (e, B), after simplification one has
k? — 1)?
Gom1(% B) = Gypy oy, y)- K+ g—-—‘l—gl_k“m—z
(k*—1)
+ 3 (g + By — 2 2m — 1,04, 8,))

.(1(2"1"l — (al 4 Bl —_ 2;;,‘(2771 - l; a}’,Bl)))'
Therefore,

(kl - 1)2 kz —

max Glm-bl(aa ﬁ) < 16 k4m-2 + max G2m—1(a1!)81)' k2 +

1
‘max R(y),
¥y

where y = a; + B, — 2u,(2m ~ 1,a,,8,) and R(y) = y(k*™* — y). By the induc-
(kZm—z - 1)(k2m — 1)
16

tion hypothesis max G,,,-, (¢, B;) =
(see (12.10))

{1'1 — w2m — Lo, By) = | 45 {a'{ — (2m — 1,47, By) = |44
Y ’ y Y 3nd ” " 0" 8
By — w(2m ~ 1;“1>B1)=IB3] 1 = m(2m = 1,21, BY) = | By}

and is achieved only for

(12.12)
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(kZm-l — 1)(k2m-—l + 1)

Also we verify that max, R(y) = and the maximum is as-

4
2m-1 __ 1 k2m-1 1 . )
sumed for y; = — Y2 = and they are compatible with (12.12).
Hence
k2(k2m-2 . 1)(k2"' _ 1) kz — 1)2k4m—2
Gamen () < . Ttk

+ (kz _ 1)(k2m—1 — 1)(k2m—1 + 1) _ (k2m - 1)(k2m+2 _ 1)

16 B 16 '

On the other hand we take a* = («xl + E—;—Ekz"'“l) k g= <ﬂ1 + Ii:—-l—kz""1> k

2
(kZm — 1)(k2m+2 — 1)
~ 16 ’
The optimal constructions are:

and verify Gyp+1(2, f) =

‘ k™ — 1
A3={(als-'-’aﬁ’am+1""sa2m+1): (al:'--aam)el_zm( 2 )’
- km+1 +1
\(am+11--'aa2m+1)ERm+1( 2 )}

' = (k" +1
33={(bl,...,b,,,,b,,,ﬂ,...,bz,,,,,l):(bl,...,b,,,)eR,,,< 3 )

km+1 -1
(bm+1s [EXF b2m+1) € Bm-i'l ('——_'2—_>}

and

| km— 1
A4={(al""9am’am+1"--1alm+1):(aly'-"am)E£m< 2 )’
- km+1 _1
(@mt1s-->Aame1) € Ry < 3 )}

— (k™ +1
B4={(bli"'9bm’bm+11""b2m+1):(bls"-sbm)eRm( 5 ),

km+1 + 1
(bm+1’ rees b2m+1) € Bmi—l (—2—)}

13. Solution of Problem V

From Lemma 4 in Section 4 we conclude that

ay(n) = max (o0 — p(n,ao+ 4)). (13.1)
O<a<kn
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It is convenient to introduce the function

Fn(as ﬂ) =0a- uk(ny &, ﬁ) (132)
and write forany 4, —k" < 4 < k"
a,(n) = max F (o, a + 4). {13.3)

Theorem 8.

(i) n=2m: For any 4 and t with —k*>™ < k*™ — 2tk™ — k™ < 4 < k*™ — 2tk™ +
km S k2m

a,(n) = F,,(tk™ tk™ + A).

(i) n=2m + 1: For any A and t with —k*™*1 < 2m+1 _ 2gfm*t — km+t < 4 <
k2m+1 — 2tkm+1 + km+1 < k2m+1

ay(n) = Fypy  (tk™, ™ 4 4).

The proof uses three auxiliary results (Lemmas 13, 14, and 15 below) concern-
ing the function F,, which are obtained by a thorough analysis. Essential use is
made of properties of the function y,, which were obtained by Daykin, Kleitman,
and West. We rely upon their Theorem 5 in [5], which is restated in Section 2
and from now on will be refered to as Theorem DKW.

We present and prove now our auxiliary resuits.

Lemma 13. Assume that 0 < s <k, <s-k" ", and B < (k — s)k"™*. Then

() FixB)= Fyoa—rk,f—rk) forall ;0 <r< minl(:" )

(i) If k|a, then F,(a, B) > F,(a — 8, — &) for all 6;0 < § < min(a, B).

Proof. (i) From Theorem 4 in [5] (see Section 2) it follows that u,(n,«, B) can be
assumed for a pair of ideals 4, B with |4| = a, | B| = B, where A are the & smallest
and written backwards, B are the § smallest n-digit k-ary numbers. Further, we
continue to denote by X (resp. X) the x-th lexicographic vector written backwards
(resp. the x-th lexicographic vector).

Now let

B=B,UB, with |B|=f8—rk and |By|=rk,

where A, (resp. B,) is the set of the (¢ — rk) smallest lexicographic vectors written
backwards (resp. (B — rk) smallest lexicographic vectors). Then F,(«, )=
|4, UAy| = (A, UA)N(BUB,) = |4,| + [4,] — |4,NBy| — [4;NB,] —
|A;N(B,UB,)| and F,(« — rk, —rk) = |A,| — |4, N B,|.

We notice in view of the bound on « that the last component of a vector in
the ideal A4 is never one of the (k — s) integers 5,5 + 1, ..., k — 1 while each of the

- B . .
digits 0, 1, ..., k — 1 must occur exactly l_kz_l = r times in the last component of a
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vector in B, because the vectors in B, are consecutive. It follows that |4, N B,| <
[B,| — r(k — s). Similarly, in view of the bound on f, it follows that the first com-
ponent of a vector in the ideal B is never one of the s digits k —s, k —s5 + 1,
. . A .

..., k — 1 while each of the digits 0, 1, ..., k — 1 must occur exactly % = r times
as a first component of a vector in A, since the vectors in A, are consecutive -
(in the backward order). It follows that |4, N (B, UB,)| < |A4,| — rs and therefore
Fy(,B) = |4,| = 1A, NB,| = F,(a« — rk, f — 7k).

(ii) Suppose that A = AT U A% with |4¥| = « — §, |A%| = § and B = Bf U B¥ with
|B¥| = f — 6 and |Bf| = 6, where Af (resp. Bf) is the set of (¢ — §) smallest
lexicographic vectors written backwards (resp. (x — &) smallest lexicographic
vectors). From (i) it follows that it is sufficient to consider §; 0 < § < k.

We consider the first components of vectors A3. As k|« the first component of
the a-th vector is equal to k — 1. Hence, the first components of vectors A% are
k—d6,k—6+1,....,k—1.

We consider separately cases a) 6 < sand b) § > s.

a) d < s: Then A3N(B¥UB}) = g, since f < (k — s)k"™! implies that the first
components of vectors B = BfU Bf are smaller than or equal to k —s—-1<
k—s<k- 4. Also, clearly {4} N B¥| < |B¥| =|A%| = 4. Therefore, F,(x,f) =
|ATU AS| — [(ATUAZ)N(BYUBE)| = |AT| — |[ATNBY| + |43 — |AT 0 Bf| —
|A3 N (BF UBY)| = |AY] — |AT N BY| = F(a — 6,8 — d).

b) 6 > s: Then |A¥N(BFUB3)| < d — s since the first components of the § vec-
tors in A¥ arek — 6,k — 0 + 1,..., k — 1 while the first components of vectors in
Bare <k —s—1in view of § < (k — s)k"™*. Now suppose that the last compo-
nents of the § vectors in Bf are i, i + 1, ..., i + § — 1 (mod k). These integers are
distinct because § < k. It follows that |4¥ N B¥| < s since otherwise some vector
in A* would have last coordinate > s, which would imply |A¥| > (s + 1)k"*,
contradicting that |A¥| =a — 6 <o < sk""!. Therefore, F,(o,f) = |A¥| —
|A¥NBY| + |A3] — |4TNBf| — |A3N(BFUBY)| = |Af] — |[AFNBY + 6~
(0 —s)—s=|AY| = |ATNBY| = F(x — 6, — 6).

Corollary. Let 0 < s < k; & > sk" ™ and f > (k — s)k* %, then

(i) Fule,B) = Fylx + rk, B + rk)
(i) k)o implies F,(a, B) = Fyla + 6,8 + 6).

Proof. We use the identity (iv) of Theorem DKW, that is p,(n, k" — o, k" — ) =
llk(", aaﬁ) + k" —o— ﬁ One has Fn(a’ﬁ) = x- I'lk(nﬁaaﬁ) = 6= ,uk(n,k" - a,
k"—B) + k"—a—~8 =k"—f— w(nk”— Bk" —a) = F (k" — B, k" — «) and
F (o + rk,p + rk) = F,(k" —  — rk,k" — a — rk).

We introduce a* = k" — f and f* = k" — ¢ and observe that a* < s-k"7),
p* < (k — s)k"!. According to (i) in Lemma 13 one has F,(a,f) = F,(k" — B,
k* — ) = F,(a*, f*) = F,(e* —rk,p* —rk) = F(k"—B—rkk"—a—rk) =
F(a + rk, B + rk).

Analogously one can prove (ii).



Optimal Pairs of Incomparable Clouds in Multisets 125

Lemma 14. Assume that kfa and a =a, modk, 0 <a; <k Then F,(xf) <
max{F (¢ — o, — o), F,(@ + k —a,, B+ k—ay)}

Proof. As in the proof of Lemma 13 let A4, |A| = «, be the ideal of the o smallest
lexicographic vectors written backwards, and B, |B] = f§, be the § smallest n-digit

k-ary vectors. The first component of aTI, being biggest vector in A, is equal to

o, — 1, since « = o; (mod k). We distinguish two cases: a—1leBanda—1 ¢ B.
— — - . —

1) a—1eB: Then a — 1 =% for some y < . It is easy to see, that o —i =

—— —

y—ik"‘foralli=1,...,a,. Hencea — ie Bforalli = 1,..., «,. Therefore, if we

remove the last «, vectors from A, we decrease AN B by «,. This is equivalent to

w0 B) = w(n, a —ay, B + oy = wn,a — oy, p — a,) + a,, from where one has

Fn(a - alsﬂ - ﬁl) = -y - Iuk(n>a - ahB - ﬁl) =0 “k(n9a7ﬁ) = Fn(asB)'

2) aTl ¢ B: Then clearly aTiéB, i=0, .., k—a, —1. We add the next
(k — a,) lexicographic vectors to the ideals A4 and B: A* = AUB', B*=BUB;
A4 = {&...,0+ k("—_—at1 -1}, B = {B,...,ﬂ + kt)az1 —1}. Let us consider
A*NB* = (A*NB)U(4A*N B'). AsaméBfori= 0,....,k—a, — 1, then

A*NB=ANB.

Also, obviously |A* N B'| < |B'| = k — «,. Therefore, y,(n,00 + k — oy, 8 + k — ;)
= |A*NB*| = |A*NB|+|A*NB| = |ANB|+|A*NB| = pnaopf)+
|A*NB*| < wnaf)+k—u, or equivalently Fla + k—o,,f+k—0o,) =
a+k—-o, —pna+k—a,f+k—o)=a—phap)=Flp)

Now we try to estimate max, F,(¢, o + 4) for arbitrary fixed 4. We concen-
trate on the case n = 2m. Obviously, for any 4, there exists a unique ¢, such that

k2™ — 2™t — k™ < A < KT — 2k™ 4+ k. (13.4)
Lemma 15. (i) If sk™™! <t < (s + 1)k™}, then max, fo.(2, & + 4) can be attained
when
kle, sk '<a<(s+ DK™ and (k—s— D> ' <a+ 4 < (k- s)k>mL,
(ii) If t = sk™!, then in case

(@) k*™ —2k™ < 4 < k*™ — 2k™ + k™
max, fo,{4 & + 4) can be attained, when

kle, sk*™™ ' — k™ <o < sk®™' and
(k=)™ <a+ 4 < (k—s)k¥™ ™t + k™
and in case

(b) k™ — 2k™ — k™ < 4 < k™ — k™t
max, F,(a,a + 4) can be obtained when

kle, sk®™ ' <o <sk®*™ ' + k™ and

(k= s)k?m ! —km <+ 4 < (k — s)k*mL
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Proof. (i) k| follows from Lemma 14. As sk™™! <t < (s + 1)k™%, then

sk 4 k™ < k™ < (s + DK — kT
and using (13.4) one has

k™ —2(s + DK™t 4 k™ < 4 < kP — 25kt — k™
Now, if & < sk?™~1, then
o+ 4 <k —sk*mt — fm = B2k — 5) — k™

and we apply Lemma 13. Thus

Fyp(sk®™ 1, sk?™ 1 4 A) > Fp (o, + 4).

If «>(s+ 1)k, then o + 4 > (k —s— 1)k*! + k™ and we apply the
Corollary above. Thus
Fou(s + DK™ 1 (s + D2 + 4) > F, (a0 + 4).

sk <a<(s+ D™ Lbut(k —s — Qk*™ <o+ 4 < (k — s — 1)k*!
or (k—s)k>™ ! <o+ 4 < (k—s+ 1)k*™ 1, then we apply again Lemma 13 or
the Corollary, respectively.

The proof of (i) is analogous.

Proof of Theorem 8. Suppose that sk™~! < tk™ < (s + 1)k*™"!. We proceed by
induction on m:

m=1:
K =2kt —k<d4<k*-2kt+k (13.5)

From Lemma 15 (i} it follows that max, F,(e,« + 4) can be attained, when
a e {(t — 1)k, tk,(t + 1)k}. Using (i) and (vi) of Theorem DKW we verify

j=0

=2 A—]
Fyle— Dt =Dk + )= = Dk — (= 2 = ¥ [T]

-1 —_ 7
Fy(tktk+ Ay =th—1* — % {iﬁ], and
j=0

Byt + Dh(t + Dk + d) =t + Dk — ¢+ 12 = ¥ l_A;j].
=

From here, using (13.5), one has

>0

Fz(tk,tk-i—A)—Fz((t"’l)k’(t_l)k+d)=k_2t+1—I-A-(Iz—l)—l

and
' ' 4t
F(tk,tk + 4) — Fo((t + Dk, (t + Dk + ) =2t + 1 —k + [Tl > 0.

So, max, Fy(a,a + 4) = F,(kt,kt + 4) for all 4 satisfying (13.5).
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m — 1 — m: Suppose (i) is true for m — 1, with respect to any 4,, t, satisfying
k#2220 k™t — kTl <4 < KPMTE -2 kT kL
That is
max F,,_ (a0 + 4,) = Fyp_,(t, k™1, t,k™ 1 + 4,).
1) Case tk™ = sk™ ' m = 2
(To prove this case we do not need to use induction hypothesis.)
a) k¥ — 2sk*™ Y < 4 < kP — skPmL 4k

According to Lemma 15 (case (a) in (ii)) it follows that max, F, (o, « + 4) can be
attained when

kle, sk*™ 1 —km<a<sk™ ™, (k—)k* 1 <a+4<(k— )kt 4 k™
Ifoa + 4 = (k — s)k*™1, then we verify (using formula (iv) of Theorem DK W) that
Fon(sk®™ 1, sk?™ 1 + A) = F,,((k — s)k*™* — 4,(k — s)k*™71).
Let o 4+ 4 > (k — s)k*™* and hence sk®™™* — k™ < «. Then

kjo: skt —km <a<sk?™ Y (k- )kt <a4+ 4 < (k— kP 4k
(13.6)

We compare values F,,(sk®™1,sk?™ ! + 4) and F,,(%,« + 4), where « satisfies
(13.6). Using formulas (ii) and (vi) of Theorem DKW one has

Fan(sk?™1, k2™ 4 A) = sk2™™L — 1, (2m, sk*™~1, k™! 4 4)

= gk®m~1 _ P <2m — 1’k2m—1’5k2m—2 + {é_%“])

— (s — 1)sk*>™"2 — siz {”"‘“A ; j]

j=0

= sk — kP — i; {A_kjl (13.7)
£

and

Flo,o0+ 4)=0a — w(2m,o,a + 4)

=q —pk<2m — 1,%,0: +4-(k —s)k“"‘) —(k——s)%

A P

k=97 == D46 DE -k Y [—A T j]
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= = k—gkemr =S [ 4
=+ 6= Dk =gk j};o[ - ]

_ 0 et E gz g | 4TSt
,uk<2m 2,7~ (s = DR, 2~ (k = 5)k +[ . .

From (13.6) if follows that k*m"2 — k™! < ; — (s = k¥ < k=2 and

o 4—-s5+1
R - kZm—Z - - -

0< % (k—5s) + T

that k2™~2 — k™ <y < k™2, 0<d < k™! it is true that u,(2m — 2,7,8) = 6.

yd
W

< k™!, Let us show that for all y, § such

It is known that yk(2m—2,y,5)2£ implies y,(2m — 2,,8) > >
k2m 2

(kzm-z —_ km—l)5 _5 P

E2m—2 - -1

>6~—1. So, &= u(2m—2,y,0)>6~—1 implies

1 (2m — 2,7,8) = 5. Therefore, u<2m - z,fz. —(s— 1)k2m-1,% — (k= s)k>™2 &

— 4 -
4 Z +1 ) - f:_ — (k — )k 2 4 [——%j—l-l and hence for all « satisfying
(13.6) one has

s=1 —_7
Fynloa + 4) = s(k — )k*™"2 = Y ’E’J" = F,,,(sk?™1 sk?™1 + 4).

& Tx
b) k™ — 2sk*™ ! — k™ < A < kP — 25k
This case can be treated analogously. So, if tk™ = sk>™!, then
max F,,(a,a + 4) = F,,(sk*™"t sk?™1 + A).

2) Case sk*™™ ! < thk™ < (s + Dk*™\,m> 2
Using again formula (ii) of Theorem DKW one has
F,,(tk™ tk™ + 4)
= tk™ — p(2m, tk™ tk™ + A)
=thk" — (k — s — 1)tk™! — p,2m — L, tk™ 4, tk™ + 4 — (k — s — D)k*™Y)

|k

-1 -1 2m-2 S4-J
=th™ — (k — s — )tk™ ' —stk™™! + sk —s — D22 = ) | ——

4 —
= M (Zm — 2, tk™ ™t — sk?m2 tkm Tt — (k — s — Dk + [ 7 S D

k

i=0

s—1 —1
=kt 4+ sk 2k —s—1) = Y |-———A J]

4—s
k

(13.8)
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Lemma 15 says that in this case max, F,,{a, « + 4) can be attained, when
kle, sk P <a<(s+ Dk ! and (k—s— Dk 1 <a+d<(k—s)k> L

At first let us consider the extremal cases, that is (*) « = sk®™ ' and (**)a + 4 =
(k — s — L)k*mL,

(*) a = sk*™': Using (13.7) and (13.8) one has F,,(tk™ tk™ + 4) — F,(sk*""1,
skt 4 4) = k™t — sk~ p(2mo— 2,kmV — kPR kT —

A—
(k —s— 1)k*m2 4 [Tf-l) > 0, since y,(m,y, 6) < min(y, d) for all y, 4.
(**) « + 4 = (k — s — 1)k?™"1: As k|«, we have k|4 and hence

Fynlth, th™ 4 4) = k™t 4 5273 (k — 5 — 1) ~ %0

- ,uk<2m —2,k™ 1t — sk k™ — (k — s — 1)k2™2 4 %)

(13.9)

and we verify that

Fol(k — s — DE?™ 1 — 4,(k — s — Dk*™1)

4

=(k—s5— Dk 2(s + 1) — (s: )

Therefore
F,(tk™ tk™ + 4) — F,,((k — s — Dk>™™ 1 — 4, (k — s — )k*™™1)
=k — k22— 5 — 1) + %
m-1 2m—-2 .m—1 Zm-2 A
— el 2m — 2,k™ " — sk k" —k (k—s—1)+E > 0.

Now let
kla, sk*™'<a<(s+ Dk*™ ! and (k—s— Dk <a+4d<(k—s)k>™ L
Then {we use (ii) of Theorem DKW)

Folo,0 + 4) = % + sk %k — 5~ 1)

_ ¥ gam-2 % qyp2me2 4—s
/,tk<2m 2,7 = kLT (k— s — Dk +[ ; D

2kl

Now we compare the values F,,,(tk™, tk™ + 4) and F,,(2,o + 4). One has

Fyp(tk™ th™ + 4) = Fy, (0,0 + 4) = k™! — % — ey + Hap  (13.10)
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where

A—
My = M (Zm — 2, k™ — sk?m2 ki — (k-5 — kT2 4 [ 7 S])

o

m-2 % ; m- 4—s
p(2)=yk<2m——2,k sk? Z,E——(k—s-—l)k2 2+[ P —D

We use abbreviations f;, =t —sk™*! and «, = % —sk*™2, Then u,, =
m(2m — 2,k™ k™t + 4,) and pgy = w(2m — 2,0y,a, + 4,), where 4, =
4 —

(2s + 1 — k™2 + [—E—S] We verify that

k2m=2 2t k™ — k™l < A S KPT2 - 2t kT kL
{13.10) can be written in the form:
Fy(tk™ tk™ + A) — Fyp(a, 0 + 4) = Fyp_ 5 (6, k™8™ + 4))
— Fpp-afay, 0 +44) 20,

according to the induction hypothesis. We remark that (ii) can be proved in the
same way.

Finally we introduce now some simplification for the determination of the
value F,,(tk™ tk™ + 4). If A satisfies (i), then

thm + 4 =k*"—k™ + 6 forsome —k™m<éd<k™

Lemma 16.
a) If —k™ <6 <0, then
Fou(tk™ tk™ + 4) = t* + t — p(m, t,k™ + 5)
) If0< 8 < k™ then
F,(tk™ tk™ + 4) = t2 — (m, t,8).

Proof.a) —k™<d <O
Let tk™ = 5, k™™t + 5,k?™"2 4 -+ + 5,,k™ Then

k" + A=k —k"t+d=(k—s, — DE*" P + -+ (k—5, — DE™ + k™ + 6.
We use again formula (ii) of Theorem DKW. One has
w2m, tk™, (k — s — k>t -+ + (k — 5,, — DE™ + k™ + 0)
=1, (2m — Lk™ 1, (k — 5, — DK™ 2 4o + k™ + ) + -

Flk—s, = Dk" == pm k™ +8) + Y (k—s;— D™t
=1

= m(m t,k™ + 8) + k™t —t —t Y k™ = p(m k™ + &) + k™t —t — 12,
i=1
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m
because Y s;k™ ' = t. Therefore we have
i=1

Fo (tk™ tk™ + 4) = th™ — p(tk™ tk™ + 4) = 2 + t — p(m, t,k™ + 5).

(b) is proved analogously.

14. On Optimal and Bisaturated Pairs

Recall that (A4, B) € ¥%,(n) is called optimal exactly if | B| = f,(|A|). An optimal
pair (A4, B) is always A-saturated, but not necessarily B-saturated. We try to de-
scribe pairs of cardinalities (|A4|,|B]) for all pairs (A4, B), which are optimal and
bisaturated. Earlier we denoted this set by .#(n) = O(n) N F(n). Clearly for (4,B) e
EA G, (n)

(4,B) e #m) iff f(L(A4D) =4l (14.1)
We also know (see Corollary (iii) in Section 7), that for all «
L(f(@) = f.(@) (14.2)

and hence for all a

(C,Dye O(n), |C|=f(a), |D|=f(f,(a)) implies (C,D)e .#(n). (14.3)

Theorem 9. Let (A4, B) € O(n), | A] = a, |B| = f,(a). Then

(i) (A, B) e #(n) implies ki(|A] — |B]).

(i) Foralla < k"% (4,B)e #(n)

(i) For all a, k"2 < a < k" 2(k — 1)%, (4, B) € 4(n) iff k|(|A| — |B]).

(iv) For any integer 4; —(k" — sk"™') < 4 < k" — 2k™; with k|4 there is a unique
a; k"% < a < (k — 1)%k™2 for which (A, B) € #(n),

|A|=a, |Bl=f(a) and |Bl—|A4]|=4.

(v) Let M(n) equal the number of different pairs of integers (|Al,|B|), where
|A| < |B] and (A, B) € #(n). Then

M) = k"t — k"2 4 1,

At first let us introduce an auxiliary result.

Lemma 17. Let k"% < a < (k — 1)%k"™! and let
a—pnoap)y=a - unap)=fla) (14.4)
Then k"' <a, B < (k— 1)k™L,
Proof. We know that
fuk" %) = (k — 1)2k""2  (follows from Theorem 3)
and that (4, B) € #(n), where |A| = k"2, |B| = (k — 1)%k"~2. Therefore, for any a,
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k"% <a< (k- 1)%"2,
|f,(a) — al < k" —2k™ = f (k") — k"2,

Suppose, for some a, k"2 < a < f,(a) < (k— 1)%k""2, a < k", We denote
4, = B — o and together with (14.4) let us consider

k"t — (k"L 4, K 4 4, — pn kLK 4 4,). (14.5)
As a <k, 4,=f(a)—a<k"—2k"", then k"' + 4, < (k — 1)k"". There-
fore, from Lemma 13 it follows that
k"t — k"L kT 4) = a - (o0 4+ 4,) =~ p(n,a, f) =a
g+ k"= k" THETT 4 4,) 2 B - mnaa + 4,) = f(a)
Now, if k"t — p (n, k", k" + 4,) = a; > a, then
fl@a) = k™t + 4, — pn k"1 k" + 4,) > fi(a).

This is a contradiction, since f,(-) is a monotonicaily decreasing function.
Hence

kn—l _ ‘uk(n’ k"-",k"—l + Aa) =a,

n—1 _ n~1 pn-1 _ (14.6)
k + Aa #k(ns k ) k + Aa) h f;x(a)

Suppose that 4, = k-r+ 4,,0< 4, <k
If 1) 0 < 4, < k, we verify (using (ii) of Theorem DK W) that

n-1
#k(nmkn_l’ kn-l + Aﬂ) = [L_kﬁg] = #k(n’kn-l,kn—l + Aa + k — Al)

and hence
k't = (k"L kT + 4, + k— 4,) = q,
k"t d, k= Ay — (kLT 4, + k- 4) = fi(a) + k— 4, > f(a),
a contradiction.

If 2) 4,=0, then, as w(naB)> E‘E one has a — yna,a+4)<o—

k*’

4
a(i:—;——“—) = T(a, 4,), say, and we verify that T(«¢',4,) < T(@",4,), if & <o’ <

"4

kg k——é—-f Therefore « — py(n,e,0 + 4,) < T(2,4,) < Tk, 4,y = k"™ —
kn—l(kn—l -+ A)
k" ’
Hence a = a — p(n,a,00 + 4,) < k"™ — p(n, k™1, k"™t + 4,) and this is also a
contradiction, because we assumed (14.6). a, B < (k — 1)k"™! is proved analogously.

e k"L k"t + 4,) and since k|4, we have p,(n, k"L k"t + 4) =
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Proof of Theorem 9.

(i) This restates Theorem 5.
(i) Let us show that for all a < k"2 f,(a) > f.(a + 1), from where the claim
follows. We use our main recursive formula: for a < k"2

fol@) = (k= Dk + kf,5(a) — (k — Da.
Hence, as f,_,(@) = f,_,(a + 1)
fi@) = (k — D™ + kf,_,(a+ 1)~ (k — Da> (k- )k"?
+k a+ )—(k—=Da+ )= fila+ 1)

(iii) Follows from (i) and (iv).
(iv) Let #,(n) = .#(n) be defined by

My (n) = {(4;, B)L,: (A;, By) € M(n), k" = |A,| < |4,] < - <|Ayl
= (k — )% %;(k ~ 1)k*"2 = |B,| > |By] >+ > |Byl = k"7%}.

Obviously, |4, = | By-l.

We show that for all 1 <i< N |A;| —|A4;] <k (or equivalently for all
1 < j < N |Bj| — |B;;,| < k), from where, using (i), (iv) follows. Assume it does not
and there exists i, 1 <i < N for which [A4,,,| — |4;| = k. Suppose that for some

a, B
@ — pln, o, f) = [ A and B — mln, o, B) = |Biri] = full A ])-

According to Lemma 17 k"™ < a, f < (k — 1)k""L. Also, as (A;4,, Bivy) € A(n),
then k|a and k|p.
Now, we consider

a'—k—#k(n:a"'k’ﬂ):a* and ﬂ_.uk(nsa—'kyﬂ):b'

Let us show that p(n,a — k, B) < w(n, o, B) for B > k™1, kia, ki 8.
If B =k"!, then using (ii) of Theorem DKW one has p(noa — k k") =

e (n - 1,% - l,k”‘l) = % —1=p(na, k") ~ 1 < (o k"), Let sk"*!<

B < (s+ k", s>0. Then w(noa—kpB) = u, (n — 1,% - 1L,B- Sk""1> +

(z - 1> < uk(n - 1,%,,8 - sk"“) + s% -5 = mnapB)—s < pnaf).
Therefore,
a*=o—k—wna—kp)>a—-k—pnofp)=|4;nl —k=14,]
and
@) 2b=B—umma—kpB)>p— mnap)=fl4)

We consider (A% B*) e .#(n), where |A*| = f,(f,(a%), |B* = f{a*). Now
[A*| < |4,,,| is impossible, since |A*| = f,(f,(a*)) = a* > |4;| and hence the next
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pair of (4;,B;) is not (A4, B;4;). Also |A*| > |A;,,| is impossible, since |B*| =
f.(@*) > f(A;+,) and hence (A;,,, B;4) ¢ #(n). Finally, (v) follows from (ii) and
(iv),

Now for all 4; —(k" — 2k" ') < 4 < k" —2k™™; and 4|k let us find (4,B) e
M, (n) for which |B| = |A] + 4. From the definition of F,(«,a + 4) it follows that
forall0<a<k”

max Fy(a,a + f,(a) —a) = a.
We formulate a consequence of Theorems 8, 9 and Lemma 17.

Theorem 10. For n = 2m (the case n = 2m + 1 is similar)

r N

[A|=t*+t—p(m, t,k™ +6,)

|Al=1%—p(m,t,6

Am.5,9) :d [Bl=(k" )2 +1
|B|=(k™—1)* — p(m, 1, 6) + &

(A4, B): — e (m e, k™ +6,)+ 5,

where fort, 8,8, k™! <t < (k — 1)k™1;
k|5;0 < & < k™; k|3,; —k™ < 8, < 0, (4, B) € €4E,(2m).

M (2Zm)= <

—

15. Explicit Values of f,(a)

We return to our original question: what is f,(a)?

Theorem 11.

@) fom@®) =k —1)? forall0 <t <k™

(i) fom* ==k —=0)k™—t+1), foralll <t

me1r2 SO 1y . Ok —5)

(ii)) font (k™) -%)= (k™ — sk™1) +——rfora110 <s<k;k|o; —k™ <
o< k™

Moreover, all pairs (A,B) with above mentioned parameters are optimal and
bisaturated.

Proof. (i) equals (i) of Theorem 3. It can also be proved inductively on m as the
case (ii) to follow.

(ii) If a) k™! <t < (k — 1)k™!, then we apply Theorem 10. We put § = k™
and get

A =12 = k™) =12 —
|B| = (k™ — 1)* — p(m, £, k™) + k™ = (k™ — t)(k™ — t + 1)
and as (4, B) € #(2m), then f,,(t> — t) = (k™ — t)(k™ — ¢ + 1).

If b) (k— 1)k™*! <t < k™ then we abbreviate t, =k™ -t+1; 1 <t <k™,
and consider f,,(t? —t;). Now, if fo,(t} —t)) =& —t)k™ —t, + 1) =1 —1t,
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then fo,(t2 —t) =13 —t, = (k™ — £)(k™ — t + 1) according to (i) of Theorem 9.
Therefore it is sufficient to consider

¢ l<t<k™:

We proceed by induction on m.

m=1:As | <t <k (condition of (ii), then ¢ is from the interval a) which is settled.

3

—1-om

fomea( =) = (k™ ~ k™ —t+1) forall 1<t<k™ (15.1)

Now we use the induction hypothesis (15.1) and our recursive formula for
l<t<km

fam(B = 8) = (k = K2k, o(t2 — 8) — (k — 1)(t* — 1)
=(k — D™ 4 k(™ — ) (k™ —t + 1) — (k — 1)(£2 — 1)
=k - k™ —t+1).

(iii) follows from Theorem 10. We put ¢ = sk™* and verify that for 0 < < k™,
k|6

A} = (k™) — pryfm, sk™8, 5) = (sk™"1) — %
IBI = (km _ Skm-—l)z + 5(k’;_ S)
and for —k™ < 6, <0, m|é,;
= (sk™~1)? m_l.-w_ m—lz_&
|A] = (sk™1)* + sk T = (sk™ 1) 2,
1B] = (km — skmtye 4 2L

and so (iii) holds.

Remark. For n odd there are similar results.

16. An Algorithm for Computing £, (a)

We distinguish three cases

Case.a < k"2
Here we apply our recursive formula.

Case. k"2 <a < (k — 1)%k"2:

We do the case n = 2m (the case n odd is similar). We find the unique ¢ for which
P —t<a<t*+nk™' << (k- 1Dk
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Subcase 1) t* —t <a < t%:
We find the unique 6, 0 < & < k™, k|é for which t2 — p(m,t,6 + k) <a<t? —
pu(m, t,8). Then fo,(a) = (k™ — t)* — (m, ,8) + 6.

Subcase 2)t? <a<t* +t:
We find the unique &,, k|5,; —k™ < §, < 0 for which £ + t — p(m,t,k™ + 6, + k)
<a<t?+t—pm(mt,k™+8,). Then fo,(a) = (k™ — £)* + t — p(m, t,k™ + 6,) +
d,.

Let us note that, as p,(m,t, 6) is a strictly monotonically increasing function in
d for any fixed t; k™! <t < (k — 1)k™!; and also note that k|6. Therefore one
needs to find J by at most log, k™! = (m — 1)log, k trials.

Case. a > (k — 1)2k*™"2;
We find the unique ¢; ¢ > (k — 1)k™! for whicht? —t<a <> + ¢

Subcase1)t* <a<t*+t:
According to (ii) of Theorem 11 one has

(k™ = (k™ = t = 1) < fop(a) < (k™ — t).
We find the unique b; (k™ — t)(k™ — t — 1) < b < (k™ — t)?, for which
famd + 1) < a < f,,,(b)
Then f;,,(a) = b.

Subcase 2) t* —t <a <t*:
Here (k™ — 1) < fom(@) < (k™ — t)(k™ — t + 1) and we find b,, (k™ —£)* < b, <
(k™ — t)(k™ — ¢ + 1), for which f,,(b; + 1) < @ < fy,(b;). Then

fam(@) = by.
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