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1. INTRODUCTION AND MAIN RESULTS

Whenever possible we keep the notation of [3]. N denotes the set of positive integers
and N* is the set of positive squarefree numbers. P = {p1,po,...} = {2,3,5,...}
denotes the set of primes and p; denotes the s—th prime.

For two numbers w,v € N we write ulv (resp. wfv ) iff u divides v (resp. u does
not divide v ). [u,v] stands for the least common multiple of u and v. (u,v) is
the largest common divisor of u,v and we say that u and v have a common divisor
if (u,v) > 1. (u,v) denotes the interval {r € N:u <z <o} and (u,v) denotes
the left—open interval {x e N:u <z <wv}.

For any set A C N we introduce A(n) = AN(l,n) and |A| as cardinality of A .
The set of multiples of A is

M(A)={m € N:alm for some a € A}.

For u € N,u#1,p"(u) (resp. p~(u) ) denotes the largest (resp. the smallest) prime
factor of w .

Forany y € N, n(y) = |P(y)| denotes the counting function of primes. For any subset
of primes T C P, and u € RT we set

¢(u, T) ={z € N(u) : (z,p) =1 forall peT}.

We note that always {1} € ¢(u,T) forall TCP, u>1.

Finally, for a set A ={a1,...,a,} of ordered numbers a; < as < -+ < a,, we also
just write A ={a1 <azx <---<anp}.

P. Erdés and R. Graham (see [1], [2]) posed the following problem:

Let 1<a; <ax<---<ap=n, (a;,a;) # 1. What is the maximal value of k7 We
denote it by g(n) .

While in [1] the problem was stated unfortunately with many confusing misprints, in
[2] one can find the following conjecture: g(n) equals either >=(ny Or the number of
integers of the form 2-t, t < %n , (t,n)#1.

However, it is easy to find a counterexample for this assertion and we informed Erdos

about this during his visit in Bielefeld in the year 1992. He then came up with the
following formulation:

Conjecture 1. Let n=¢{" -¢3?...¢>, o, >1, ¢ €P,and ¢1 <@ < < g,
then
g(n) = max |M(2q1,2q2,...,2¢;,q1-..¢;) NN(n)|.
1<j<r
We consider a more general and seemingly more natural problem:

Let Q@ ={q1 < - <@g} CP be any finite set of primes and let A = {a; < as <
-+~ <a} CN(n), be a set such that for all 1 <4i,j <k

(ai,aj) # 1 (1.1)
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and

(ai,HqZ) > 1. (1.2)
i=1
I(n,Q) denotes the set of all such sets. We are interested in the quantity

f(n,Q) =max{|A|: A€ I(n,Q)}. (1.3)
For special values of n , namely n = ¢ ...q" forsome a; > 1, clearly ayp ) =n
and we get exactly the problem of Erdos—Graham.

Our problem can be viewed as being dual to that studied in [3], where a specified set
of primes is excluded as factors.

Obviously, we can assume that {2} ¢ Q , because otherwise f(n,Q) = |%| is realized
for the even numbers < n . Our main result is

T
Theorem 1. For every finite Q ={q1 <q2<---<¢q} CP and n> [] ¢
i=1

f(n,Q) = 112?22 M (2q1,2q2,...,2q,q1-..¢;) NN(n)| (1.4)
holds. In particular Conjecture 1 is true.

We will also show (see Section 6), that the restriction on n in Theorem 1 can not be
ignored.

For given finite @ = {¢1 < --- < ¢-} C P let us look at our problem in the iriﬁnite
case, i.e. A={a; <ag <...} CN satisfies (1.1) and (1.2). What is maximal dg of
the asymptotic (upper) density of such A ? From Theorem 1 immediately follows:

Corollary. For any finite Q ={q1 <---<¢-} CP we have

d L 1 ﬁ<1 1>+ !
= max — — - — .
Q 1<5<r 2 q; q1..-4;

=1

Moreover, this maximum is assumed for a set possessing an asymptotic density.

It is also natural to formulate the problem for the squarefree case. We define f*(n, Q)
as the maximal cardinality of sets A C N*(n) satisfying (1.1) and (1.2).

Theorem 2. For any finite Q = {q1 <...q-} CP we have

fi(n, @) = max |M(2q1, ..., 2q5,q1---q;) "N (n)].
<j<r

We draw attention to the fact that here we have no restriction on n . The proof of
Theorem 2 is much easier than that of Theorem 1.
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Moreover, Theorem 2 can easily be extended to much more general objects, namely to
squarefree quasi-numbers (see [3]).

Sections 2,3, and 4 provide auxiliary results for the proof of Theorem 1 (and sketch of
proof of Theorem 2) in Section 5. We draw especially attention to an auxiliary result
in Section 3, which is stated as Theorem 3, because it is of independent interest.

Finally, an example in Section 6 shows that (1.4) does not hold without any condition
on n . The reader is advised to look first at this example.

2. AN AUXILIARY RESULT FOR “LEFT COMPRESSED SETS”,
“UPSETS”, AND “DOWNSETS”

Let O(n,Q) denote the set of all optimal sets of I(n,Q) , i.e.

Om.Q) = {AcI(nQ): |4l = f(n.Q)} (sce (1.3)).

For any ps,pr € P, ps < p:, we define the operation “left pushing” Lg; on subsets
of N.For BCN let

Bi={beB:b=by-pd (bi,ps -p)=1,a>1,(bs -p%) ¢ B}.
Then
Ls’t(B) = (B AN Bl) U BQ,

where Bg:{cEN:c:cl-pf,(cl,ps-pt):1,521,(01-pf)EBl}.

Clearly
|Ls+(B) NN(n)| > |B(n)| for every s,t;s <t; and n e N. (2.1)

For Q C P the set B C N is said to be left compressed with respect to @ , if
Ls4(B)=DB forall s,t,s<t,pteP\Q (2.2)

and
Ls4(B)=DB forall s,t,s <t,ps,pt € Q. (2.3)

For given @ C P, we denote by C(Q) the set of all subsets of N, which are left
compresed with respect to @ .

Every finite set B C N can be transformed by finitely many operations Ls;; s <t ;
of the types (2.2) and (2.3) into a member of C(Q) . Since these operations preserve
(1.1) and (1.2), we get with (2.1) the following result.



Lemma 1. Forany Q CP and neN

O(n,Q)NC(Q) # 2.

Clearly any A € O(n,Q) is an “upset”:
A= M(A)NN(n), (2.4)
and it is also a “downset” in the following sense:

for a € A;a=p...p;' i > 1 also py, ...pi, € A (2.5)

For every B C N we introduce the unique primitive subset P(B), P(B) C B, which
has the properties

bi,by € P(B),by # by, implies by tby and B C M (P(B)). (2.6)

We know from (2.5) that for any A € O(n,Q) P(A) consists only of squarefree
numbers and that by (2.4)
A= M(P(A)) NN(n). (2.7)

3. AUXILIARY INEQUALITIES FOR SETS OF NUMBERS
WITH FORBIDDEN PRIME FACTORS

Let T CP,T =T, UT,, where
Ty Copr,- - sps—1 b Te = {pjrs -5 pj Fips <pjy < < pj,..
The sets 77 and T, can be empty.
Lemma 2. Let s > 1 and suppose that
r < m(pste—1-Pps) —S—20+1 forall {>1, (3.1)
then

2 |p(u, T)| <|o(u-ps, T)| forall ue RT. (3.2)

Remark 1: A more special form of the Lemma was proved (although it was not stated
explicitly) in our paper [3]. Actually, in [3] we proved (3.2), if 75 = @ . In this case
we have r =0 and the condition (3.1)

0 < 7(psto—1-ps)—s—20+1 forall £>1

always holds.



Indeed, since s > 1 we have ps; >3 and thus the first inequality in 7(ps4r—1 - ps) >
(3 Pstr—1) > 27(pste—1) , where the last inequality folows from =(3z) > 2n(x),
which was shown in [3]. Thus for the quantity in question

T(Psto—1Ds) —S—20+1 > 27 (psgp—1) —5—204+1 =2(s+0—1)—s—20+1=5s—1> 0.

Proof: Equivalent to (3.2) is
|6(u, T)| < |¢(u-ps, T), (3.3)

where ¢'(u-ps,T) = ¢(u-ps,T) N (u,u-ps) -

We introduce
U(u,T)={a€ ¢(u,T):p*(a) <ps or a=1}

and for a € U(u,T)

D(a)={be¢p(u,T):b=a-d,p (d) > ps or d=1}.

With these sets we can write ¢(u,T) as a disjoint union

owT)= |J Dla).

a€¥(u,T)



Next we introduce for a € ¥(u,T)
D'(a) = {c € (u-ps,T):c=a-d,p (d*) > ps}.

Clearly these sets are disjoint and

dup.T)> |J D)

ae¥(u,T)
Sufficient for (3.3) is
|D'(a)| > |D(a)| for all a€ ¥(u,T). (3.4)

From the definition of the sets D(a) and D’(a) it follows that for

T = {p17 s 7ps—1} U T2

D@) =6 (=.77) . |D' (@) = ¢/ (<22,77) , and

() 2o (1) o (B) =0 () 0 (522,

a a

Thus we arrived at the following sufficient condition for (3.4):

|p(v, T*)| < |¢' (v - ps, T*)| = |p(v - ps, T*) \ ¢(v, T*)| for all v e R, (3.5)

We avoid the trivial cases v < 1 for which ¢(v,T7*) =@ and 1 <wv < ps , for which
lp(v, T*)| =1 and ps € ¢'(v-ps, T*) . Hence we assume v > p; and introduce

Fv, T*) ={be ¢(v,T*),b#1:b-p"(b) <v}U{1}.

Then ¢(v, T*) is a disjoint union

o0, T = | rbyu{ih

beF (v, T*)

where v
T(b):{mGN:m:p-b;pEIP’\T*;p+(b)§p§ Z}

Hence for all b€ F(v,T*)

|T(b)|:Hp€P\T*:p+(b)§p§%H and (3.6)
(e, T = > )] +1, (3.7)
beF (v, T*)

where integer 1 in (3.7) stands to account for the element {1} € ¢(v,T™) .
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On the other hand we have
¢(v-p,T)D> |J m)Uu{p}

beF (v, T*)
where 71(b) = {m1 €N:my =p-bp e P\T* 7 <p< ==} and p§ satisfies v <
p§§v~ps for some k£ €N

It is easy to see, that the sets {71(b)},b € F(v,T*) , are disjoint and that the element
{p*} does not belong to any of them.

We have ’ Ve
|7‘1(b)|:‘{p€P\T*:E<p§ : }‘ (3.8)
for all b€ F(v,T*) and
@' (0-ps, T = D In()|+1, (3.9)
beF (v, T*)

where integer 1 in (3.9) stands to account for the element {p*} .
From (3.7) and (3.9) it follows that sufficient for (3.5) is
|T1(b)| > |7(b)| for all b€ F(v,T7).

Let psie—1 < ¢ <pste for some £2>1.

Then, from (3.6) and (3.8), we have
. v
7(b)] = HPEP\T pT(b)<p< EH <{peP:ips <p<pse-1}[=¢
and

) V- Ps
— c— <
|71(b)] ’{pGP\T b<p 7, H

Hp € PNT" : psiv—1 <P <Dsto—1-Ds}| = T(Psyo—1-ps) — (s +€—1) — 1y,

IV

where 71 is the number of primes from 75 in the interval (psy¢, psie—1 - Pps) - Since
r1 <r=|Ty| we have

IT1(0)| = 7(psye—1-ps) —(s+L—1) =
Finally, using condition (3.1) we have established the sufficient condition
[T1(0)] > T(Psse—1-ps) = (s+L—=1) —r > L >]|7(b)].

Remark 2: Perhaps one can try to simplify condition (3.1) in Lemma 2 by finding
%il{]l(ﬂ(psM_l “ps) — 26) for s> 2.

However, if the minimum is achieved for ¢ = 1 (which seems the most likely), then
one has at least to prove, that between p? and ps-psy1 there are at least two primes,
which seems hopeless. For comparison let us recall that in 1904 Brocard conjectured
that between p? and p2,, , there are at least 4 primes and this remains unsolved (see

[5])-
We need the folowing result, which is probably known to the experts (in fact, it is an
easy consequence of known results), but we could not find in the literature.
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Lemma 3.
Ps - Dt > Ps-t

for all s,t € N expect for two cases, namely, s =3, t =4, for which p3-ps =
5. 7T=35<p12 =387, and s=t =4, for which py-pys =7-7=49 < p1g = 53 .

Proof: We use very sharp estimates of the size of primes, which are due to Rosser and
Schoenfeld [4]:
1
Pn <N (logn + loglogn — 5) for n > 20,

pn > nlogn for n>1. (3.10)

Using (3.10) one gets
Ps Pt > Ps.p forall ¢t > s> 12.

For every s < 11, we take the exact value of p, and estimate, using (3.10), only
primes p; and pg . For examplelet s=4, py =7, t>5.Since s-t > 20 we can
use (3.10) to get

1
par < 4t (log4t + loglog 4t — 5) and pg-pr =7 -p >T7-tlogt. (3.11)

From (3.11) we have 7-p; > ps¢ for all ¢ > 25 and this cases 5 <t < 24 are verified
by inspection using the list of primes.

In the case s =t = 4 we have the opposite inequality and this is one of the two
exceptions specified in the Lemma. For other values of s < 11 we have similar
calculations.

We recall the definitions of the sets T7,75,T in Lemma 2:
Ty CA{p1,--sps—1} T = {pjys 50, }iPs <Pjy <+ < pj;
and s > 1. We introduce

T5 = ({p1,---,ps—1} ~T1) U{ps} = {pirs---»pi, }r0iy <+ <Di, =Ds.

Theorem 3. Let s > 1 and the sets of primes Ty, T5,T5 , T =T, UT5 as described
above. Then for every u € RT with

u > M (3.12)
HPGTs D
2|lp(u, T)| < |p(u-ps, T)| holds. (3.13)
Proof: In the light of Lemma 2 we can assume
7> T(Pste—1-ps) —S—20+1 for some ¢ > 1. (3.14)
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At first let us show that from (3.14) one can get

r> (s —1)% (3.15)

Indeed from Lemma 3 we know
Pste—1°Ps > P(s+e—1)s for all s, £ except s=3,{=2 and s=4,{=1.
Hence
7T(ps+ﬁ—1 'ps) > ﬂ'(p(s-l-ﬁ—l)s) = S(S + - 1)

for all s,/ with the exceptions mentioned above.

Therefore
7’>7T(ps+4—1'ps)—5—2€+125(5—1—5—1)—5—264—12(5—1)2.

since s >1.For s=3, £=2 and s=4, =1 we verify (3.15) by inspection.

Now, for every u € R™ by the inclusion—exclusion principle we have

|6(u, T)| = |u) = EJ + ) {LJ <u- ] (1_%) 4 9ITI-1

peT p<q P-4 peT
p,q€T

and

(- ps), T| > u-ps- H (1 - 1) -2l

peT p

Hence, sufficient for (3.13) is

1
u(ps —2) - [] (1 - —) >3- 2711 forall u> M. (3.16)

peT p p€T3p

Since |T|=s—t+r , equivalent to (3.16) is

(pS—Q)-M- H (1 — 1) — (p8_2)'Hp€7;2(p_ 1) ) H (p—1) > 3.97.95—t—1

HPET?’ p pETUT> p Hi:l pi peT,
(3.17)
Since |T1| = s —t, we observe that
[Te-1) =27
peTh
and sufficient for (3.17) is
p—1
(ps —2) - per, 0= 1) >3.2", (3.18)

Hf:1 pi
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Now, if s > 3, then

oy, HpeT2 (p—1) B B (pjy —1)...(pj, — 1)
(P =2) [Tioip (b ~2) P1---Ps
(Ps =2)(Pjeys — 1) - (pj. = 1) > (ps —2) - (pjoy, —1)"7° = (ps —2)-16"° >3- 2,

since pj, > 7,p;.,, > 17 and we know that r > (s —1)? +1 (see (3.15)).

>

So, it remains to show the validity of (3.13) only for the case s = 2. From (3.15) we
know that r > 2 and, if » > 2, we have in (3.18)

(pj, —D(pj, —1)...(p;. — 1) S G-1)(7—-1)(11-1)...(pj, — 1) e
2.3 - 6 o

Hence, we can assume r = 2. However the formula (3.18) does not hold in this case
for instance for p;, =5, p;, =7

BG-1)(7-1)

3.2%2 =12.
G 7

In the case s = r = 2 we have to estimate the quantities |¢(u,T")| and |p(3u,T)|
more accurately.

We have to consider two cases: ¢ =1 and ¢t = 2, where ¢t = |T5| . We are going to
prove (3.13) only for ¢ =1 (the case t =2 is similar, actually even simpler).

We have to prove that for q1,q2, 5<q1 <q2; T =1{2,q,¢2}
2|¢(u, T)| < |¢(3u,T)| holds provided that u > £z . We have

6(3u, T) | —2l¢(u, T)] = |3u) - | 3t| - | 2] = | 2]+ [ 2|+ | 2 |+ | 25 | - | 52 ] -
o2l o2 ] 2 ] -2 ]| 2 ] -2 ] -2 ] -

(o - -2t 2030 - (2] - 2] -2 2 ) -
(] - 3] -2 z] 2 =) + (3] - (] 2 [as] 2 == )

Now we use the following inequalities (which can be easily verified).

r—1<z—32<|6x]—[3z] —2[2z] +2z)] <az+2<z+1 forall z€RT to get
|¢(3uT)|—2|¢(u:r)|>u(1——)(1—q—1> (1_?2)‘4:

_ u(gi—1)(g2—1) (q1—1)(g2—1) .
= g A == —42>0 ,since u> L and 5<q1 <ge.
Remarks:

3. We note that (3.13) does not always hold, if we ignore the restriction on u . For
example for T = {2,5,7} , s=2, u=3 we have

2003, )| =2-{1,3H =4 £ |¢(p2 - 3,T)| = |6(9, T)| = [{1,3,9}[ = 3.

4. If w is sufficiently large, u > u(e) , then the coefficient 2 in (3.13) of the Theorem
(in Lemma 2 as well), clearly can be changed to (ps —¢) , for any ¢ >0 .
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4. FURTHER PREPARATIONS: LEMMAS 4, 5, 6

For given Q C P and any b€ N let p*(b,Q) denote the maximal prime from P~ Q
which occurs in the prime decomposition of b (in the case @Q = @ we always have

pT(b,¢) =pT(D) ).
If b is completely composed from the primes @ or b=1, then p™(b,Q)=1.

Further, let A C N(n) be such that P(A) , the primitive subset of A , consists only
of squarefree numbers and let A = M (P(A)) NN(n) .

For given () C P, we define

pT(P(4),Q) = nax p (a,Q). (4.1)

We consider L; ;(A) = A", where i < j and p; € Q implies p;, € Q.

One can easily verify the following statement.

Lemma 4.

p*(P(A4),Q) = p* (P(4),Q).

Let A € O(n,Q)NC(Q) for some Q = {q1,92,--.,¢-}, 2 < q1 < --- < ¢q- and
neN.

We know (see Lemma 1), that such a set A always exists. Let P(A) be the primitive
subset of A and p* (P(A), Q) = ps for some ps € (PN Q)U{l}.

We write P(A) in the form P(A) = Ry UR; U...U R, , where
Ro={a€cP(A):p*(a,Q) =1} (4.2)

and
Ri={acP(A):p*(a,Q)=pi},1<i<s.

We note that some of the R; can be empty, but not Rj .

Since A is optimal, we know that A = M(P(A)) N N(n) , which can be written in
the form

A=M(P(A)NN(n) = (M(RyU...URs,_1) UK(Rs)) NN(n),

where K(R,) = (M(Rs)~M(RoU---URs_1))NN(n) ,ie. K(R,) is the set of those
elements of A , which are not divisible by any b,b € RyU---U R4_1 .

Let s>1, R, =RUR! | where
={beR,:2|b},R = R, RY (4.3)
and K(Rs) = KO(R YU KY(R,) , where
K°%R,) ={a€ K(R,):2|a},K'(Rs) = K(Rs) ~ K°(R,). (4.4)

Finally, let ' '
Gi,={meN:m-p, e R,},i=0,1. (4.5)
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Lemma 5. Let A € O(n,Q) N C(Q), let the sets K'(Ry),R.,G%, i = 0,1, be
defined as above, and let s > 1 . Then

(1) bta forall beR., ac K'"(R,), i=0,1
(2) KY(Rs)=M(R)NM(RoyU---URs_1), i=0,1
(3) GLelI(n,Q), i=0,1. (defined in the Introduction)
(4) (RpU---UR, UG, €I(n,Q), i=0,1.

Proof: (1) Obviously, b { a for all b € R, a € K'(Rs). Suppose b | a for
some b € R, a € K°R,). Then p%-2 | a as well, because 210 and 2 | a.

However pi -2 € A, because A is left compressed with respect to @ and ps ¢ @
ps > 2,21 b. Hence # -2 € M(RyU---URs_1) , because ps { z% - 2 . Therefore
a ¢ K(Rs) , becuase p% -2 | a . This is a contradiction.

(2) follows from (1).

(3) Clearly GY € I(n,Q) , because all elements of GY are even and prime ps ¢ Q . Let
us show that Gl € I(n,Q) as well. Suppose to the opposite, there exist by,by € G

with (bl,bg) =1.
We have by - ps,bs - ps € RL (see definition of G} and R!).

However, since Rl C A, A is left compressed with respect to @ and ps ¢ Q,
ps >2, 21by, 2¢1by, we conclude 2-b; € A as well. Hence the elements 2 - b ,
ps - by € A and at the same time (2-by,ps - by) =1, which is a contradiction.

(4) This is trivial.

Finally we need an auxiliary result concerning the set K(R;) . Let a be any element
of K(Rs) . This element uniquely can be written in the forms

a=p;-...pgt 'q]ﬁgll ...qff - a3, where (4.6)

Piy < Pip <0 < Pi, :pS<Qj1 <<QN7 O‘iaﬁi217 qj; eQa p_(a3)>psa
p|as implies pe PN Q or az=1.

We note, that {¢;,,...,q;,} =@ 1is also possible.

Lemma 6. Let Ae O(n,Q)NC(Q), pT(p(4),Q) =ps, s>1 andlet a € K(R,)
be an element of the form (4.6), then

(1) @ =pit . plt gt gy € K(Ry) forall of>1, B/ >1, p~(a}) >ps .
p|ay implies pe P\ Q, or a4 =1, provided that o’ <n .

(2) For every integer b € N of the form b :pzl . pZ: I qj1 . .q?f-b’,% >0,9; >0,
p= (b)) >ps, plb implies pe PN Q or b/ =1, we have b¢ A .

Proof: (1) Since a € K(R;) C A, we have m | a for some m € P(A) and hence

m | pi, ---Di,"qjy - - - Gj, » because pT (P(A),Q) =ps and m € P(A) implies m € N* .

Therefore all integers of the form in (1) belong to our set A . However, every m € P(A)
13



with m | a must belong to the set R, , otherwise a ¢ K(Rs) and this completes the
proof of (1).

(2) If for some b € N of the form in (2) we have b € A, then m’ | b for some
m' € RgU---URs_1 (m' ¢ Rs , because ps{b ). Since A is a “downset”, pT(RoU
++URs_1,Q) <s—1 and since p~(b') > ps, p|b implies pe PN Q or b =1,
we have m’ | pi, ...pi,_,qj, ---qj, as well, and hence m’ | a , which is a contradiction

to a € K(R;) .
U

Let
7 = {a* € K(Rs)NN™ :a™ = piy ... Diy @y -+ - Qo Piy <+ <Di, =Ps < qjy <+ <j,,qj, EQ}

and let for a* € Z, E(a*) denotes the set of all integers a’ of the form (1) in Lemma
6 with o' <n.

From Lemma 6 (1) immediately follows

K(R) = | Ba). (4.7)

where Z'=ZNK'R,),i=0,1.

5. PROOF OF THEOREM 1

Let Q={q1,q,--. ¢}, 2<q@<--<¢,neN, n>]]qg andlet O(n,Q) be
i=1

the set of all optimal sets. For every B € O(n,Q) we consider P(B) the primitive,

generating subset of B: B = M(P(B)) NN(n) .

Let

_ : +
P = min P (P(B),Q),

where p*(P(B),Q) is defined in (4.1), and p, € (P~ Q) U{1}.
Let O1(n,Q)={B € O(n,Q):p*(P(B),Q) =p,} . Our first step is to prove
ps < 2. (5.1)

From Lemma 1 and 4 it follows that

O01(n, Q)N C(Q) # 2.
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Let A € O1(n,Q) N C(Q) and suppose to the opposite of (5.1) that ps > 3, i.e.
s>2.

Let P(A) = RyUR;U---UR;, where the R;_s are described in (4.2).

We also recall the definitions of the sets R%, G%, K'(R;) (see (4.3), (4.4)). We consider
the following two sets:

A'= M(RyU---URs_1 UGY) NN(n),i =0,1.

From Lemma 5 we know that A% A' € I(n,Q) and we are going to prove, that at
least one of the following inequalities |AY| > |A],|A!| > |A| holds. Suppose

|K*(Rs) NN(n)| > |K°(Rs) N"N(n)] (5.2)
(the opposite case is symmetrically the same), and let us prove that
|A' = [M(RoU---UR,_1 UG{) NN(n)| > |A]. (5.3)

Let
K*(M(G})~ M(RoU---URs_1)) NN(n).

In the light of (5.2), sufficient for (5.3) is

K| = 2| K (R,)]. (5.4)
From (4.8) we know that
K'(R,) = U E(a™), where (5.5)
VA

ZlZ{G*GKl(RS)mN*:CL*:pil...pit'qj'l...qj'z,pj1<...<pit:p3<Qj1<...<Qje,jSEQ}
and
E(a)={a<n:a=p{"...p{" ¢ ... ¢ as,0; > 1,6 > 1,p (as) > ps,p| az = p P\ Q
or az=1, and a* =p;, ...pi, ", ---qj, € Z'}.

It is easy to see that one can write the set E(a*) in the following form:

E(a*):{agn:a:a*-ag,ag€¢(a—Z,T>}, (5.6)
where T' = ({p17"'ap8) N {pilv"'7p7lt}) U ({q € Q : Q>ps} ~ {qju-..vqu}) :

Hence

|E(a”)] = ‘(b (aﬁT)( (5.7)
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for every a* € Z! and T = T(a*) , as described in (5.6).

Now, for any a* € Z*, a* =pj, ...pi, - Qs+ Qe s Pin < <piy, =ps < gy <00 <
45,395, € Q we consider the integer b* = ps =D, ---Di_1 * ¢, ---qj, and the set

E*(0)={b<mn:b=pl'...pl ¢} ...q" b3,7i,0; > 1,p (b3) > ps,p | bs=>pEPNQ
or bs =1}.

One can write the set E*(b*) in the form:
E*(b) = {bgn:b:b*-bg,bg e¢<3 T)}
where the set 7' is the same as in (5.6).
* (% " Ps
B e = (1) = (5 7)) 5

From the definitions of the sets E(a*) and E*(b*) we know for every a* € Z!,
b* = & | that

Hence

E3(b") = B(a"), (5.9)
where Ej(b*) = {b€ E*(b*) : p, | b} and that (by Lemma 6 (2))
(E*(b*) N Ej(b"))NA=w. (5.10)
Hence, in the light of (5.5) — (5.10), sufficient for (5.4) is

|E*(b*)| > 2|E(a*)| for every a* € Z1,b* = L, (5.11)

which by (5.7) and (5.8) is equivalent to
o2 1) |2 () o

for T = ({p1,.--,ps} ~{pir,-- -0, H U ({a€Q:a>ps} ~{ajr,---.a.})
a* =Dpiy o Diy Gy Qi Piy < Piy < < Piy, =Ds < G, <0< q,,q5, €Q .

Now we are in the position to apply Theorem 3 to show the validity of (5.12). The sets
of primes T7,T5,T3 in Theorem 3 are now

Tl = {pla S 7p3} N {pilv' .. ,p’it} = {ph' .. 7ps—1} N {pila S 7pit71} ) (pzt :ps)

Ty={qeQ:q>ps}~{¢,,---,q;},and T3 ={pi,,...,pi,} -

HpET2 p

The condition (3.12), i.e. u > I , also holds, because n > [] ¢ yields

peTs P q€Q

u = n - n > HqGQ 4 > quT2 q
a* Piy - - Piy ~ Gy - - - G5 _ph"'pit'qjl"'qu N Hp€T3p
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This proves (5.12) and consequently (5.3):

|AY = |M(RyU---UR,_1 UG NN(n)| > |A].

Hence A!' € O(n,Q) , because A € O(n,Q) and Al € I(n,Q) . Obviously, P(A’) C
RoU---UR,_1 UG . Therefore p™(P(A’),Q) < ps , which is a contradiction to the

definition pg = Berg(ig@p*’ (P(B),Q) . This proves (5.1).

Since for every B € O1(n,Q) we have b; € P(B) it follows that either

ptb; foral peP~\@Q

. 2| b;, but p{bi,pE]P’\(QU{Q}).
Let

q = Beglli(r;m)f (P(B),¢),
and let

OQ(”?Q) = {B € Ol(n,Q) Zp+(P(B),¢) = Qt}'
Again, it is easy to see, that

OQ(”» Q) N O(Q) 7& g.

Let
A€ O3(n,Q)NC(Q).

We write P(A) in the form

P(A) =8 USU...US,

where S; ={bep(A):pt(b)=¢}, 1<i<t<r.

We are going to prove, that P(A) = {q1} ,if t =1 ,and P(A)={2q1,...,2qt,q1---q:} ,
if t> 1, and this is equivalent to the statement (1.4) of Theorem 1.
If t=1,thenclearly P(A) = {q1} and the Theorem is true. Hence we assume t > 1.

We observe that {q:} ¢ Si , because otherwise {q1} € S1 as well, since A € C(Q)
and hence (¢, q1) =1 in contradiction to A € I(n, Q) . Let us assume that

2.q &5, (5.13)

Since A € O3(n,Q) C O1(n,Q) , (5.13) means that every integer a € S; has at least
two different primes from the set @ in its prime decomposition (one of this primes is
of course ¢ ).

Let us prove that the assumption (5.13) is false. For this we choose a similar approach
as for proving (5.1). Let
S, =SPUS},
17



where S? ={a € S;:q_1|a}, S} =5~ S and

Vi={meN:m-.q €S}},i=0,1.

Under assumption (5.13) it can be shown that

A'=M(S1U---US, 1 UVHNN(n) € I(n,Q),i =0,1.

Using the approach described in the first part of this paragraph it can be proved that
at least one of the inequalities

|A°| > |A[,]A!| > |A| holds. (5.14)

We mention that only a very special case of Lemma 2 has been used and not Theorem

3. We also note that here we do not need a restriction on n like n> [] ¢ .
q€Q

It can be seen that the fact (5.14) contradicts A € Oz(n, Q) and hence the assumption
(5.13) is false. Therefore 2-¢; € S; for A € Oz(n,Q)NC(Q) and P(A) = S1U---US; .

However, from 2-q; € Sy C A € Oy(n,Q)NC(Q) it follows that 2-¢1,...,2¢:-1 € A
as well and that ¢; ¢ A for all ¢; € Q . Hence 2¢1,2q2,...,2q: € P(A) .
Let a € P(A) and a#2¢, i=1,...,t.Since pT(a) < ¢ (A € Og(n,Q)) , then
2 1 a for otherwise 2¢; | a for some i < ¢, which is impossible, because P(A) is
primitive.
Therefore 2t a and a = q;...q , because otherwise (a,2¢;) =1 for some ¢ <¢.
Hence P(A) ={2q1,...,2q:,q1...q:} and Theorem 1 is proved.

O

Proof of Theorem 2:

Since the proof is very similar (and much easier) than the proof of Theorem 1, we will
give only a sketch.

We repeat all steps up to formula (5.4) (proof of which was the most difficult part of
Theroem 1) and observe that (5.4) trivially holds for squarefree numbers without any
restriction on n .

The situation is similar with formula (5.14) (which was the second main step in the
proof of Theorem 1).

18



6. EXAMPLE OF Q C P AND n,n < ][] ¢, FOR WHICH
qeQ
THE CONCLUSION OF THEOREM 1 DOES NOT HOLD

We take @Q C P as follows:
Q = {QI;Q27' . 7Q7‘—1aqr} = {5,77' o 7p7"+17QT}7

ie. ¢ =piy2, 1=1,2,...,r—1 and ¢, is a prime specified in (6.3) below.

We also assume that

Gr—1 = pr41 > 1000. (6.1)
Let
r—1
n=2-3-11-[] & (6.2)
=1

Finally, as a ¢, € P we take any prime satisfying

n n
2000 < % < To00° (6.3)

The existence of such primes follows from Bertrand’s postulate. We use the abbreviation

H; = M{2q1,2q2,...,2¢;,q1...¢;} "N(n);j=1,...,m

We are going to prove, that for the specified Q C P and n , the conclusion of Theorem
1 does not hold, i.e.

f(n,Q) > max |Hj|. (6.4)

We show first that

1r£]z_xéir|Hj\ = max{|H,_1], |H,|}. (6.5)

r—1
Since 2- [ ¢ | n, it is easy to see that
i=1

1 ! 1 1
Hjl=n--]1- (1——)+ forall 1<j<r-—1
2 0 i qa---qj

(2

and that
|H2’ < |H3| < |H4| <--- K |Hr,1|.

This proves (6.5), because

and trivially » —1 >4 (see (6.1)).
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Clearly, to prove (6.4), it is sufficient to find a set A € I(n,Q) for which
Al > ma || = max{|H, ], 15}

We choose A as follows:
A= M{2q¢,292,...,2-¢-1,2-3-¢-,3-q1" ... q—1} NN(n).

Obviously, A € I(n,Q) and we have to show that both hold:

4] > |H, | (6.6)
and

| Al > |H|. (6.7)
We consider first the set H,_; ~ A . Since

H,._1=M{2q,...,2¢-—1,q192 - - - ¢—1} N N(n),
the set H,._; ~~ A consists only of integers of the form
a-q1-q2...¢r—1<n=2-3-11-q1...¢r—1 =66¢1...¢r—1
and (a,6) =1, because for (a,6) # 1 we have a-q;...q.—1 € A. There are exactly
22 integers a with a <66, (a,6) =1 . Hence
|Hr_1 AN A| = 22.

Now we consider the set A~ H,_; .

It is clear that all integers of the form 2%-3°.¢, <n, a>1, > 1, are in the
set A~ H,_;. We verify that there are 24 integers of the form 2 -3% < 1000,
a>1, f>1 and since 1000-¢g. < n (by (6.3)) we conclude that |A~ H,_1| >
24 > |H,_; ~ A| = 22 . This proves (6.6).

To prove (6.7) we compare the cardinalities of the sets H, ~ A and A~ H, . Since

H, = M{2q1,2q2,...,2¢,-1,2¢r,q1 ...q-} N"N(n) = M{2q1,...,2¢.} "N(n) (because
qi1---q->n), H.~ A consists only of integers of the form

2-q-b<n, (6.8)
where b is not divisible by anyone of the primes 3,q1,...,¢-—1 .

Since ¢, > 5555 (see (6.3)), we conclude from (6.8) that b < 1000 . However, since
¢r—1 > 1000 , (see (6.1)), we have b€ {1,2,...,2°} and hence

|H, . A] < 10.

Now we consider the set A~ H, .
This set consists of the integers of the form

3-q1...¢r—1-¢<n=006q ...q—_1,

where 21 c. There are exactly 11 such integers ¢ < 22 . Hence
AN Hy| =11 > 10 = |H, \ A

and this proves (6.7).

20



7. DIRECTIONS OF RESEARCH

We think that our methods are applicable to other number theoretical extremal problems.
A first question is how f(n,Q) can be characterized, if @) is an infinite set of primes.

Perhaps more demanding is the problem of finding a common generalisation of the
problem analysed in this paper and its in dual in [3]:

For (finite) sets Q1,Q2 C P, Q1 N Q2 = @, and n € N, what is the maximal

cardinality %k of sets A = {a1 < -+ < ar} C N(n) satisfying (a;,a;) # 1,
ai, ] ¢g) #1,and [a;, [[ ¢q] =1 forall i,57
q€Q1 q€Q2

Instead of requiring that no two numbers of A are relatively prime one can require
that no ¢ numbers are pairwise relatively prime.
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