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SUMMARY

It was proved by Ahlswede (1971) that codes whose codewords form a
group or even a linear space do not achieve Shannon’s capacity for discrete
memoryless channels even if the decoding procedure is arbitrary. Sharper
results were obtained in Part I of this paper. For practical purposes, one is
interested not only in codes which allow a short encoding procedure but also
an efficient decoding procedure. Linear codes—the codewords form a linear
space and the decoding is done by coset leader decoding—have a fairly
efficient decoding procedure. But in order to achieve high rates the following
slight generalization turns out to be very useful: We allow the encoder to use
a coset of a linear space as a set of codewords. We call these codes shifted
linear codes or coset codes. They were implicitly used by Dobrushin (1963).
"This new code concept has all the advantages of the previous one with respect
to encoding and decoding efficiency and enables us to achieve positive rate
on discrete memoryless channels whenever Shannon’s channel capacity is
positive and the length of the alphabet is less or equal to 5 (Theorem 3.1.1).
(The result holds very likely also for all alphabets with a length a = ps,
P prime, s positive integer). A disadvantage of the concepts of linear codes and
of shifted linear codes is that they can be defined only for alphabets whose
length is a prime power. In order to overcome this difficulty, we introduce
- generalized shifted linear codes. With these codes we can achieve a positive
rate on arbitrary 'discrete memoryless channels if Shannon’s capacity is
positive (Theorem 3.2.1).

* Research of this author was supported by the National Science Foundation
under Grant Contract No. GP-9464 to The Ohio State University.
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All these results are obtained for average error. Estimates for the linear code
capacity for maximal error are given for binary channels (Theorem 3.3.1).
This capacity can be zero even if Shannon’s capacity is positive. We continue
using definitions and notations as given in Part I and we procede with the
numbering of the chapters and paragraphs.

III. RELATIONS BETWEEN SHANNON’S CAPACITY
AND ALGEBRAIC CODE CAPACITIES

1. Shifted Linear Codes

In this and the following paragraph we deal with average error only. We are
interested in the quantity C;;—which was defined in Part I, 1.4.3—as function
of the channel matrix w. In order to have a convenient notation, we write 7'
for Cy, . Optimization over all possible field structures in X and ¥ leads to the
quantity 7. Frequently, we shall use notations as T'(w), Cy(w), C(w) to
indicate the dependence on w.

THroREM 3.1.1. Let X = YV = GF(a), a < 5, and let P be a d.m.c.
given by w. Then T*(w) > 0 if and only if (Shannon’s capacity) C(w) > 0.

Proof. Suppose first that @ = 2. Let

and define w, by

w(i|j) = wy(i+ 1|+ 1),  4,je GF(Q).

Thus,
_ (%1 4y
“ <“o1 aoo).

Let

w¥ = J(w; + wy) = (; 5)»

where a = ¥(ay, + ay,) and B = I(ay, + ay). C(w) = 0 if and only if w
has equal rows (Wolfowitz, 1964). Therefore, C(w) = 0 implies C(w*) = 0.
On the other hand, C(w*) =0 implies « = B, which implies that ay, = a,,
and hence C(w) = 0.
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If C(w*) > 0, then it follows from Theorem 2.1 (Part I) that Cy(w*) =
C(w*) > 0. Let Z#* denote the d.m.c. given by w*. Then

PXAu)y =) []w*@tlu)), for u=(.,um"eX,,

vEA t=1

v = (..., o) eY,, ACY,.

We give now another description for P, *(- | -). Let

n

S={,2,, S,=][S and P (4dlu) =3 []wet]un)
1

vEA =1

where s, = (s%,..., s") € S, . Furthermore, let ¢ be a probability distribution
on S, such that

q(s,) = 21—n forall s,e.S,.
'Th.en we have

PXAu) =) q(s)Ps (A |u) for ueX,, ACY,.

A code (n, N, A) for % satisfies

N
-ZIVZP;;(AZW) >1—A (3.1.1)

Let i, ,..., 7, be the components where a 2 occurs in channel sequence s,,*.
Let x, € X, be the vector with 1’s in 7, ,..., 7, and 0’s elsewhere. Then by the
definition of w, and (3.1.1),

{(u; +x,, 4, + ;)i = 1,..., N}

is an (n, N, }) shlfted linear code for #. Hence we have T*(w) = T(w) =
C(w*) > 0.
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Consider now the case @ = 3. In order to indicate the field structures
choosen in X and ¥ we adopt now—and similarly in later cases—the following

notation:

0 1 2

0 fagy ay ag,
w=11a, a; ap].

2 \ay ay ay

Let w = w, . “Shift” by 1, 2 to obtain w, , w,:
0 [ay a1 ay

Wy = 1{ay ay Ay 1)
2 \ay ay ay

0 /ay, Ayp Ay
wy = 11ap ay ay).
2\ap, @y ay

Let w* = Y(w, 4+ wy + w;). Then

01 2
0/ B v
w* =1y « B
2\B vy «
where
= $(ag + ay, + Ass),

<X ™ R
Il

C(w*) = 0 if and only if

Qoo + a3y + @y, = ay; + ayy + sy = Qyy - ayy + Ay .

$ay + ay, + Qsp),
$age + a3 + asy)-

Now we use different field structures and define

4
%1

1 0 2

0 [ay, ay Aoz

= 1{a, ay a;s .

2 \ay, dgy Ay

(3.1.2)
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Rearranging the columns, we get

Form zw** b.y shifting ;" by 1,2 to obtain w,', wy' and then setting
w** = Hw," + w," + wy’). Then we obtain C(w**) = 0 if and only if

Coo T+ €11 + €op = Co1 F €12+ €y = Co2 + €19 + €5,
1e.,

Apy + @y T+ @y = gy + ayy + ay = Aoz 1 Q31 + ay (3.1.3)
Therefore, C(w*) and C(w**) = 0 imply (3.1.2), (3.1.3). If we can show

- in this case that C(w) = 0, then we have C(w) > 0 if and only if C(w*) or

C(w**) > 0. |
Using Theorem 2.2 of Part I and essentially the same argument as in the
case a = 2, we can conclude that

T*(w) = max(C(w*), C(w**)).

We now show that C(w*) = C(w**) = 0 indeed implies C(w) = 0 and thus
complete the proof of the theorem.
We have, in addition to (3.1.2), (3.1.3), and (3.1.4),

Aoy + Qo1 + Gy = 1,
ay + ay; + a, = 1,

Ay + a3 + a5, = 1.

In total, we have 7 equations in 9 unknowns.

'The homogeneous system associated with Egs. (3.1.2), (3.1.3), (3.1.4) has
7 linearly independent equations as can be seen by direct calculation. The
set of solutions of the inhomogeneous system is therefore a translate of a space
of dimension 2.
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100\ /010\ /001
100f,{o10),{001 (3.1.5)
100/ \o10/ \oo1

are solutions of (3.1.2), (3.1.3), (3.1.4).

10 —1 01 —1
10 —1),{01 —1
10 —1 01 —1

are linearly independent and therefore span the 2-dimensional space of
solutions of the homogeneous system. Therefore, the set of all solutions of the
inhomogeneous system is the set of matrices

a b ¢
a b ¢
a b ¢/

and contains among the stochastic matrices precisely those with equal rows,
So if w satisfies (3.1.2), (3.1.3), and (3.1.4), then C(w) = 0. This proves the
result for a = 3. Let now P be a prime and let

But

a, b arbitrary; ¢ = 1 — g —

0 1 p—1
0 2 Ay e Ay(p-1)
1 a a a
w, = : 10 }1 1(?—1)
p»—1 Ap-1)0 Q(p_1)1 "** A(p—1)(p—1)

Shift by 1, 2,..., p — 1 and obtain

0 1 p—1
0 Q1 G4y oy
R
P—1\ay a, - o
Wy ..., and
0 p»—1
0 AUp-1) (p—1) T A(p-1) (p—2)

1 Ay(p-1) e Ay (p—2)

p—1 A(p—2)(p—1) T A(p-2)(p—9)
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Let w* = 1/ p(w, + wy, + -+ + w); then
| 0 1 p—1

0 o oy o
1 o ot A

wk = vl 1,
: ;
P—‘l S e 1

where

1
oy == 5 (@g0 + @ + = + A (>-1)s

1
Qg == Z (@or + @2 + 4+ agp-1)0)s

1 | "
=5 (@o(p—1) + @10 + *** + A1) (p-2))- ‘

C(w*) = 0 if and only if

(1) agp + an + "+ ap-1) -0
= ay + a2 + "+ Ao

== Gy(p1) T G0 T A1) (0-2) -
Define |
1 0 2 3 — (p—1)
) Qo1 Qo2 =~ "7 ay(p-1)
wf) = ,
(p — 1) \awp-o S TP )

produce by shifting wi",..., %%}, and define

e :%(wil) Foa® 4o ),

and obtain C(w?*) = 0 if and only if

(2) ay + ayo+ s +  + A1) (p-1
= Qgg + @12 + 7 T+ Apon

= Qy(p—1 T A + " F Ap-1)(p-2) -
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Proceding in this manner, we get Egs. (3), (4),..., (p — 2), and, finally,

(p—1) ayp-» + ay + -+ A(p-9)0 T A(p—1)(p—1)

= g 1 A1z T T Ao T -2 (p-1) T Ap-1) (p-2)

= Ay(p—1) T C1(p—2) + G21 + " T A1) -
In addition, we have

(P) ag + ay + = + ayp—p = 1

Ap-1)0 T Ap—1) + " + Ap-1)(p-» = 1.

Systems (1), (2),..., (p) yield p? — (p — 1) equations in p* unknowns.

10 = 0 0 - 01
are solutions of Egs. (1),..., (). Hence, the set of solutions contains all

stochastic matrices with equal rows. If the p* — (p — 1) equations are
linearly independent, these are the only solutions. Then we could conclude
C > 0 implies T*(w) = max(C(w*),..., C(w'?")) > 0. We have been unable
to establish the linear independence for general primes p. For p = 5, the
linear independence can be proved by straightforward calculation. Thus the
theorem holds for p = 5.

Because of the structure of Galois fields, the case @ = 4 is somewhat
different. By shifting the matrix

by 1, 2, 3 and pfoceeding as before, we obtain

w* = Hw, + w, + wy + w,)
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which gives

R ™ e
R &» e ™
R ™M= o

R

where

= (a0 + ay; + Ao + ay3),
= 1(an + a3 + ay, + d3),
= H(ap, “f‘ Q13 T Gy + ay),
= i(ag + a5, + Az + ag).

o R W™ e

C(w*) = 0 if and only if « = g8 = vy = 8. To obtain channels w* ik
wi* we use

1 0 2 3 2 10 3 312 0
0 /ay, Qo1 Qgs Gy 0 /ay, - - Qo3 0 /ay, - - o3
1 . . 1 1
2 ) : N M)
3 \ag - T agg 3 \ag - - 33 3 \ay - - ds3

Note that we interchange 0 with 3, whereas this is not necessary in the case
of p prime. It is necessary here in order to obtain sufficiently many linearly
independent equations. Besides the equations we obtain from C(w*) = 0,
C@?*) = 0, C(w3*) = 0, C(w**) = 0, we use the equations

Qg + ay; + Ay + ag3 = 1,

asy + ag + A3y + azy = 1.

Checking, we find that w with equal rows is a solution of all these equations
and that 13 equations in 16 unknowns are linearly independent. Hence, as
before, matrices with equal rows form the only solutions, so we can conclude
C > 0 implies

T*(w) = max(C(w*),..., C(z**)) > 0.

Again, it seems very likely that this result holds in general for a = p*, P prime,
k positive integer.
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2. Generalized Shifted Linear Codes

Now suppose Z is a d.m.c. given by w, where X and Y are finite sets, not
necessarily of equal size. We define generalized shifted linear codes as follows:

Let GF(a) be a Galois field, where a < min(| X|,|Y]). Let X’ be a
subset of X, | X' | = g, and let @ be a 1 : 1 mapping of X’ onto GF(a), and
let ¢ be a mapping of ¥ onto GF(a). This gives rise to a new dm.c. Py,
with input and output alphabets equal to GF(a). We denote the transition
matrix by wy- , , . The transition probabilities are given by

Wy, o.4(C | 0) = Z w(y | e~ 1(b))c, be GF(a). (3.2.1)

YEYTI(c)

We call a shifted linear code for Py 0.4 2 generalized shifted linear code
for 2. The use of those codes on P requires an additional mapping ¢ in the
encoding and ¢! in the decoding procedure. Define T'(wy- , ,) as usual and
let

G = max (n;af T(wy o) (3.2.2)

CcCX
P=|X'[< Y]

G is a lower bound on the achievable rate for generalized shifted linear codes
on Z.

THEOREM 3.2.1. G >0 tf and only if C > 0.

Proof. If C > 0, then there exist two rows in w, say the i-th and the J-th,
which are unequal. Let X’ — {#,7} and let ¢(i) = 0, #(j) = 1 € GF(2).
Partition Y into sets Y, and Y, such that P(Y, | i) s P(Y,|7)and let

__ {0 for yeVY,
1/:(,}1)_“‘ for yev,.
Then Zy- , , is a binary d.m.c. with alphabets equal to GF(2). wy , , has
unequal rows. By Theorem 3.1.1, T*(wy ,4) > 0 and hence G > 0.

Remark. 1t follows from Example 1 of Ahlswede (1971) that we sometimes
can achieve higher rates for generalized shifted linear codes than for shifted
linear codes. ’

3. On The Linear Code Capacity For Maximal Errors F. or Binary Channels

Let w be a 2 x 2-stochastic matrix. Let I = (x;, ;) denote the first and
let 2 = (x,, y,) denote the second row vector. We represent these vectors
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as points in the euclidean space E2. Let « represent the vector (%, 1)- Then

we have either

Case I. 1 and 2 are unequal to « and on different sides of o, or

Case I1. 1 and 2 are on the same side of .
In Case I we say that vector 7 is closer to o than vector j, if (7, o) < d(j, ),
where d(- | -) is the 2-dimensional euclidean metric. Define in this case

(x1 yl) if 1 is closer to «
w* = { ;’zl (3.3.1)
(y 2 2) if 2 1s closer to a. '
Xo Vo

We call w* the underlying symmetric matrix for .

In Case II we say that there is no underlying symmetric matrix for w. We
need the following lemma, which was proved by Ahlswede and Wolfowitz
(1970). Suppose that 2 and @’ are 2 x 2-stochastic matrices. Denote the row
vectors of w by 1, 2 and the row vectors of o’ by 1’, 2". Suppose w and =’ are
given by one of the figures:

RN ) s
< /\\ (3.3.2)
NY /“;
AN /< N /\“;

Lemma 3.3.1. Suppose {(u; , 4A,) (¢ = 1,..., N)is an s.m.l.c. for the d.m.c.
P* given by w*. Then{(u; , A; | i = 1,..., N)is an (n, N, ) code for the d.m.c.
P given by w.

Now we can state
THEOREM 3.3.1. Let & be a binary d.m.c. given by w. If there exists an

underlying symmetric matrix w* for w, then Cr*(w) = Cy(w*) > 0. Otherwise
Cy*(w) = 0. :

Proof. First assume that there éxists an underlying matrix w* for w.
According to Theorem 2.1 of Part I, Cy(w*) = C(w*) > 0. Choose a field
structure GF(2) = {0, 1} in X, ¥ such that w*(010), w*(1]1) > 4. Let
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{u;, A;)|i = 1,..., N} be an (n, N, }) linear code for 2%, \ < 3, where the

coset leaders have minimal weight. Furthermore, let
By = {yu | Pu*(ym | ;) > max P, *(y, | u;)}.

Then B;CA4,, ¢ =1,., N and {(u;, B)|i=1,.., N} is a s.um.lc.
with respect to 2* From Lemma 4 (Ahlswede, 1971) we have that
{(u;, B;) |7 = 1,..., N} is an (n, N, 21) code with respect to 2*, Then from
Lemma 3.3.1, it follows that {(u;, B;)i = 1,..., N}isan (n, N, 2X) code for the
d.m.c. and hence so is {(x; A;) |7 =1,..., N}. Hence Ci¥(w) = Cyw*) > 0.

We now prove the second statement of the theorem. We show first that
Cy*(w) = 0 for w = (} 9). The cases (3 G &), and (¢ }) can be treated in
the same way for symmetry reasons. - :

We have to consider the cases

[E—y

0 1 0O 1 0 0 1
HD VD Oy e

Let {u, ..., uy} be the codewords—u,; being the zero codeword—and let
Ay ={l ..., I;}. Then in cases (a), (b)

Plu, + I; | u;) = P(l; | w) for i=1,.., N, Jj=1,.,L. (3.3.3)

Hence P(4, | u;) = P(A;u) fori = 1,..., N.

Then, since P(4,|u;) -+ P(A; |u;) <1, we have P(A4; |u) <} for
1 =2,..,N.So for A < 4, N(n, ) = 1 and hence Cyw) = 0. In cases (o),
(d), we have for A < 4 that PA;|u) > LG =1,..., N)implies | 4, | > 2n-1
so that 4; = Y, and hence again N(n, \) = 1. This proves the result for
these special matrices. The result for general matrices which have no under-

lying symmetric matrix follows now from Lemma 4 of Ahlswede (1971) and
Lemma 3.3.1.

DNDfpd
DOt

Remark 1. In cases (a) and (b) the result can be proved in the same way
for average errors.
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