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ABSTRACT

Let Z, be the lattice of intervals in the Boolean lattice £,, . For A, B C Z,, the pair
of clouds (A, B) is cross—disjoint, if INJ =¢ for I € A, J € B. We prove that
for such pairs | A||B| < 3?72 and that this bound is best possible.

Optimal pairs are up to obvious isomorphisms unique. The proof is based on a new
bound on cross intersecting families in £,, with a weight distribution. It implies also
an Intersection Theorem for multisets of Erdos and Schonheim [9].



1. THE RESULTS

Consider the set [n] = {1,2,...,n}, the set of all its subsets L, , and the lattice of
intervals I, = {I =[A,B]: A,B€ L,} , where [A,B]={C€L,:ACCCB},if
AC B, and [A,B]=1, (the empty interval), if A ¢ B . The lattice operations A
and V are defined by

A,BJA[A,B'l =[A,B]|n A4, B'], (1.1)
A,B]V[A"B'|=[AnA",BUB. (1.2)

Y

—

Here the empty interval I, is represented by [[n], gb] . The pair (A,B) with A, B C
I, ~{Is} is cross—disjoint, if

INJ=14 for I €A JeEB. (1.3)

Let us denote the set of those pairs by D,, .
Theorem 1. For n=1,2,...

max{|A[|B| : (4,B) € D, } = 3*" 2.

Equality is assumed for

A*={I€eT,:I1=[AB),1¢B},B*={I€T,:1=[A,B],1€A}.

All optimal pairs are obtained by replacing 1 in the definition of A* and B* by any
element m of [n], and by exchanging the roles of these two sets.

We shall relate cross—disjoint pairs of clouds from Z,, to cross—intersecting pairs of
clouds from £,, with a suitable weight.

Recall from [1] that (U,V) with U,V C L,, is cross—intersecting, if

UNV #¢ for UelU and V € V. (1.4)

We denote the set of these pairs by P,, . Furthermore we introduce the weight w :
L, - N by
w(A) =214 for A€ L,. (1.5)

Theorem 2. For (U,V) € P,
WUWWV) 2 w@)- > wV) <3l
ueu Vey

and the bound is best possible. Moreover, for any optimal pair (U,V) there exists a
t€[n] suchthat U=V ={AecL,:tecA}.

3



2. ANOTHER DESCRIPTION FOR Z, \ {4}

We associate [A, B] € I,~{I4} witha ternary sequence ¥([4, B]) = (z1,%2,...,Zn) ,

where
0 if t¢ B

It = 1 ifteA
2 iftteBNA.
U :Z, ~{Is} = {0,1,2}" is bijective.
If U([A,B])=2z" and ¥([A,B']) =y", then
[A,BIAN[A",B'| =15 < 3t € [n] : {z¢,y1} = {0,1}. (2.1)

For (A,B) € D, the associated pair (X,Y) = (¥(A), ¥(B)) has the property:
For z" € X,y" €)Y {z¢,y:} = {0,1} for some t € [n]. (2.2)
We can view (X,)) as families of cross—disjoint subcubes of the n—dimensional unit

cube or as families of cross—disjoint cylindersets in {0,1}™ in the sense of measure or
probability theory. In this interpretation 2 stands for the set {0,1} .

Henceforth we consider pairs (X,Y); X,Y C {0,1,2}" ; satisfying (2.2). The set of
these pairs is denoted by D), . Our first goal in proving Theorem 1 is to show that for
(X,Y) e Dy

x||y| < 321, (2.3)

3. DOWN—UP—SHIFTS

The proof of Theorem 1 goes in several steps. At first we show here that any (X,)) €
D} can be transformed into another pair in D] with the same cardinalities and with
invariance under down—up-shifts. They are defined as follows.

For any Z C {0,1,2,}™ and any t € [n] set
dt(Z):{(zl,...,zt_l,i,zt+1,...,zn):izO,...,j—l;jZl and
|{Z:(Zla"'7Zt—1727zt+17"'7zn)EZ}|:j}' (31)

This is the down—shift of Z in the t—th component. Similarly, wu;(Z) , the up—shift of
Z in the t-th component is obtained by exchanging 0 and 1 in the t-th component of
the sequences in dy(Z) . We formulate an immediate consequence of our definitions.

Lemma 1. For any (X,Y) €D} and t € [n] also (di(X),u(Y)) € D}, .

We say that (X,)) with X,Y C {0,1,2}" is down-up-extremal, if
(de(X),ue(V)) = (X,Y) forall t € [n]. (3.2)
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4. RELATION TO CROSS—INTERSECTION IN L,

Next we introduce the mappings o; : {0,1,2}" — L™ by

oi(z")={t:zz=1i,1<t<n} for i=0,1. (3.3)

We also put for Z C {0,1,2}"

0i(2) = {o5(2") : 2" € Z). (3.4)

These mappings make it possible to convert cross—disjoint pairs of clouds from the

interval lattice Z,, into cross-intersecting pairs of clouds from the Boolean lattice
Ly .

More precisely we have the following result.

Lemma 2. Suppose that (X,Y) with X,Y C {0,1,2}" is down—up—extremal. Then
(X,Y) is cross—disjoint ezactly if (o0(X),01(Y)) is cross—intersecting, that is, X N
Y #¢ for X €0p(X) and Y € 01(Y) .

Proof: Suppose that (X,Y) is cross—disjoint, but that (oo(X),01(Y)) is not cross—
intersecting. Then there exist z" € X', y™ € J, and a non—empty set E C [n] such
that (x4 y:) = (1,0) for ¢t € E and {x,y:} # {1,0} for t ¢ E . However, since
(X,)) is down—up—extremal, the sequence z'™ obtained from z™ by replacing for
te E xzz=1 by z; =0 must bein X and this sequence is not disjoint with
y™ . This contradiction proves that (oo(X),01(Y)) is cross-intersecting. The reverse
implication is obvious.

5. THEOREM 1 FROM THEOREM 2
Notice that for A C [n]

o9 H(A)] = Joy H(A)] = 2L (5.1)

Therefore also for any A, B C [n] and X,Y C {0,1,2}"
oo M (A) N x| < 2n 714 o (B)n Y| < 2n 1Bl (5.2)
Now in upper bounding |X||Y| for (X,)) € D} we can assume by Lemma 1 that

(X,Y) is down—up—extremal and by Lemma 2 that (oo(X),01(Y)) € P, . Hence
Theorem 2 implies that for U = o¢(X) and V = 01())

W)W (V) < 32—
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and thus by (5.2) and (5.1)

XY= log O N X[ oy (V)N Y

UeU vey
<> oW N o W= wy) - w(v) <320, (5.3)
veu Vey

The characterisation of the optimal pairs follows from the one in Theorem 2. We use
right away the sequence terminology. If (X',)) € D} is optimal, then applications of
operations (d,u¢) and o0g,01) lead to an optimal (U,V) € P, by (5.3).

By the uniqueness part of Theorem 2 for some t € [n|, w.lo.g. say t = n, we
have U =V = {A € L,, : t € A} . Furthermore (o " (U),07'(V)) = ({0,1,2}" ! x
{0}, {0, 1,2} x {1}) .

It remains to be seen that (d;',u,') leads to no non-isomorphic pairs. We have

d,*({0,1,2}" 71 x {0}) = X(0) x {0} U X (1) x {1}UX(2) x {2}, u,*({0,1,2}" " x
{1}) = Y(0)x{0}UY (1) x {1}UY(2) x {2} , where by the optimality the X(i)’s and also
the Y(i)’s partition {0,1,2}"! . Therefore for some i and some j (2,2,...,2) €
X (i) NY(j) . But now by (2.2) necessarily {i,j} = {0,1} and X(i') =¢ for i #d,
V(') =¢ for j # j'. We have arrived at the desired form.

6. AUXILIARY RESULTS FOR PROVING THEOREM 2

Obviously in deriving an upper bound on W (U)W (V) for (U,V) € P, we can always
assume that U and V are upsets.

Moreover we can replace (U4,V) by the pair of images (S;;(U),S;;(V)) under the
familiar left—shifting S;; :

For any &£ C L,

EN{i,j}, if i¢ E,j€E and EA{i,j} ¢ &

Sii(E) =
i(E) { E otherwise.
for E €& and

SZJ(S) = {SU(E) :F e 5}

Just verify that (U4,V) € P, implies (S;;(U),S;;(V)) € Pn , that [S;;(U)| = [U],|S:;(V)| =
|V| , and that

W (S3U)) = W U)W (S5(V)) = WV). (6.2)
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Clearly, finitely many applications of left—shifting operators results in a pair, which is
invariant under further such operations. We call such a pair left—shifted.

Let now (U,V) € P, be a pair of left—shifted upsets.
For the analysis of such pairs we introduce the following sets and families of sets.
For A C [n] its projection on [n —1]is
pPA=AN[n—-1] (6.3)

and for A C L, we define
pA={,A: Ac A} (6.4)

Furthermore we partition A into

Ao={AeA:n¢ A}, A, ={Ac A:ne A} (6.5)

Thus also Uy, U1, Vo, V1, pUhi and ,V; (i =0,1) are well-defined.

Since U and V are upsets

puO C pul and pV() C pvl. (66)

Lemma 3. If (U,V) € P, cannot be enlarged without violating the cross—intersection
property and U,V are left-shifted upsets, then for all U € Uy with U € U1 \ pUpy
there exists a V € Vi with ,V € V1 N\ pVo such that

(i) UN,V=¢, UU,V=[n-1]
and

(it) for all V' with V'€ V1~ Vo and V' #V necessarily ,UN V' # ¢ .

Ezchanging the roles of U and V gives analogous statements.

Furthermore

(’LZZ) pU() = pul <~ pV() = pvl .

Proof: (i) For every U € U; with ,U € Ui \ pUy there must exist a V € V; with
PV € pVi N Vo with ,UN ,V = ¢, because otherwise U is intersecting on [n — 1]
with all V* € V; and by (6.6) with all V* € V| and thus one can enlarge U by
U\ {n} in contradiction to our assumptions.

Furthermore for this V' ,UU ,V = [n —1] , because otherwise for some i € [n —1]\
2UU L,V U*=S5,;,(U) €U by assumption and U*NV = ¢ in contradiction to the
fact that (U,V) € P, .

(ii) The forgoing argument shows that ,V’ ¢ ,V . and that necessarily ,UN,V' # ¢,
because ,UU ,V =[n—1].

(iii) This follows from the fact that (,V) cannot be enlarged.



7. PROOF OF THEOREM 2

We proceed by induction on n . The case n =1 is verified by inspection. For n > 2
we can consider a (U,)) satisfying the assumptions of Lemma 3.

Case: Uy = pU; .

By (iii) in Lemma 3 we have also ,Vy = ,V1 . However (,Up, Vo) € Pn—1 and by
induction hypothesis

W (U)W (, Vo) < 3202, (7.1)

Now just calculate that in the present case

WUW (V) = [W(,lho) - 2+ W (lh)] - [W (Vo) - 2+ W (,V1)]
= 3W (,Uo) - 3W (, V) < 32—,

Case: Uy # pUs .

By Lemma 3 ,Vy # pV1 and there are subsets U € Uy , V € V; satisfying (i). For all
V' € Vy necessarily ,UN V' # ¢ and again by Lemma 3 also for all V' e Vi \{V},
VI #V, ,UN V' # ¢. This means that (U U {U \ {n}},V~{V}) € P, and
symmetrically (U ~{U}L,VU{V ~{n}}) € P, .

Moreover we see that

W(UU{U N {n}}) = WU) +2n7 1V (7.2)
WE~{V}) =ww)-2""VI=w) -2 (by (),  (7.3)
WU~ {U}) =wu) -2V, (7.4)

and
WOV U{V —{n}}) =wO)+2IVIH = w ) + 27 (by (i)). (7.5)

By the optimality of (4,V) we conclude with (7.2) and (7.3) that
WUW W) 2 WU U{U N An}})W (Y~ {V})
= (W) +27 1) (W (v) - 21)
=WuW W) - 21w ) + 201V () — 2n (7.6)

and with (7.4) and (7.5) that

WUW V) > WU~ {UNW(VU{V ~ {n}})
= (WU) - 2"V (w (V) + 21

=wwUw V) + 2w ) — 27 IVlw (v) —2n. (7.7)
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Now (7.6) and (7.7) yield
—2UI=tw () + 2n- W () < 2n (7.8)

and
WUl () — 27~ IWlw (v) < 2n. (7.9)

The double of the left hand side in (7.8) plus the left hand side of (7.9) equals
3.2~ UIWw (V) and satisfies

3.2nUlw () < 3.2,

This is equivalent to
w(v) <2Vl (7.10)

Similarly, by doubling the left hand side of (4.9) and adding to it the left hand side of
(4.9) leads to the inequality
W) < 2n UL, (7.11)

The two inequalities imply

WUYW (V) < 2 < 320D for pn > 2. (7.12)

We calculate that for 4 =V ={AC[n]:1€ A}

WU)W (V) = 321,

Finally we prove uniqueness. We have learnt already that for optimal left—shifted
pairs (U,V) necessarily Uy = U1, pVo = pV1 and that by induction hypothe-
sis W (U)W (Vo) =322 . Thus U =V = {A C[n]: 1€ A} . In general, every
optimal pair (U*,V*) can be left—shifted to (U,V) . Since the left—shifting operators
don’t change cardinalities of subsets, there must be a singleton {¢} in both, U* and
V* . Consequently we have U* =V*={A C[n]:t € A}.



8. A COMMON GENERALIZATION OF THEOREM 2
AND A THEOREM OF ERDOS/SCHONHEIM [9]

In deriving their Intersection Theorem for multisets Erdos and Schonheim established
first an Intersection Theorem with weights for £, . Those weights w(A),A € L, ,
are increasing in |A|, whereas our weights w(A) = 2"~ 14l used in Theorem 2 are
decreasingin |A| . The latter does not allow to just choose the “heavier” one of A and
A® = [n] N\ A in order to construct an optimal configuration. This difference makes
things more difficult in our case. Nevertheless we can give a unified approach.

Let W={w;:1<1i<mn} be positive reals which give rise to the weight w on L, :

w(A) = H wy for A C [n] (8.1)
teA
and
W(A) =[] w(4) for AC L. (8.2)
AcA
Define
a(n,w) = max{W(A) : A C L, is intersecting} (8.3)

(ie. ANB#¢ for A,Be A).
We recall first a result of [9].

Theorem ES.

a(n,w) <

Z max (w(A), w(A°)) (8.4)

AC([n]

and the bound is best possible when w; > 1 for i € [n] .

Proof: Clearly an intersecting A can have at most one of the sets A and A€ as
member.

One can construct an optimal intersecting family A(n,w) in case
w; > 1 for i€ [n] (8.5)
as follows:
a) If w(A) > w(A°), then A€ A(n,w) .
b) If w(A)=w(A°) and |A| > |A°|, then A € A(n,w) .

c) If w(A) =w(A°) and |A| = |A°|, then take anyone of A, A° into A(n,w) and
keep the other out of A(n,w) . Clearly, W (A(n,w)) = 3 Z max(w(A4), w(A4°%) .
AC([n]
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By (8.5) and a), b), and ¢) A(n,w) is an upset and also intersecting, because for
A,B € A(n,w) ANB = ¢ implies A° D B and thus A° € A(n,w) in contradiction
to a) — c).

However, without condition (8.5) the A(n,w) described above need not be an upset
or intersecting.

For example when w; < 1 for all i € [n], then the biggest weight is assigned to the
empty set, which cannot occur in an intersecting family. Therefore (8.4) is not tight.

Fortunately an analysis of the proof of our Theorem 2 leads us to the right generalisa-
tion.

First of all by relabelling we can always assume that

wy > we > e > Wy (8.6)

Let now m be the largest index with w,, > 1, if it exists, and otherwise set m =0 .
Set W ={w;:i€[m]}, w'(B)= Hwi for B C [m].

i€B
Next define
AcCn]: An[m] € A(m,w')}, if m>1
A*(n,w):{ {Acn] [m] € A(m,w')} | (8.7)
{AcC[n]:1¢€ A}, if m=0.
Clearly,
A*(n,w) = A(n,w), if (8.5) holds. (8.8)
Theorem 3.
a(n,w) = W (A*(n,w)). (8.9)
Proof: We use induction on n —m .
The case n—m =0 or n =m is the case covered by Theorem ES.
Case: n—m >0
Suppose that A is an optimal intersecting family, that is,
W(A) = a(n,w). (8.10)

Since (8.6) holds, the left-pushing operator S;; can be applied, because it does not
decrease the total weight. We can therefore assume that A is invariant under such
operations. Also we can assume that A is an upset, because adding an A’ C [n] to
A with A’ D A for some A € A does not affect the intersection property and could
only increase the total weight.

We use again the projection p on [n — 1] and our earlier definitions ,A4, ,A, A;,
and ,A; (¢=0,1). Since A is an upset

p.A() C p.Al. (8.11)
11



Case: ,Ap = pA; .

Since pAp is intersecting, by induction hypothesis in this case

W(A) = W(pAo) +wn W(pA1) = (1 +wn)W(pAi)
< (14 wp)W (A*(n = 1,0")) = W(A*(n,w)),

where w' = (w;)?=' and the lase identity follows with definition (8.7).

Case: ,A# A
Here there is an A € A; with AN {n} ¢ Ap and there must be a B € A; with

BN A={n}, (8.12)

because otherwise one can enlarge A by AN {n} . Now the same ideas as used in the
proof of Lemma 3 apply and give

pAU B =[n—1] (8.13)

and consequently that the B with these properties is unique, because otherwise there
isan i€ ,AU ,B and, since S;,(A4) € A, by (8.12)

Sin(A)N B = (,AU{i}) N (B, U {n}) = ¢.
This is a contradiction.
Since A and B can be exchanged, we can assume that

w(A) > w(B) (8.14)

and consequently that

_w(A)

n

w(AN {n})

> w(A) > w(B), (8.15)

because w, <1,if n—m>0.

Finally, since B is the unique member of A satisfying (8.12) (AN{B})U{A\{n}}
is intersecting and by (8.15) has bigger weight than .4 . This contradicts the optimality
of A. The case ,A, # A1 cannot arise.
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9. MAXIMAL FAMILIES OF DISJOINT INTERVALS

One might wonder what can be said about families A C Z,, with

AANB =14 for A, Be€ A (9.1)

The family A corresponds to a set A* C {0,1,2}" by the mapping ¥ of Section 2.
A* has the property:

for all z" y™ € {0,1,2}" for some t € [n] {z:,y:} = {0,1}. (9.2)

One readily verifies that |[A*| < 2™ and equality occurs for A* = {0,1}" . In fact

the problem is equivalent to Shannon’s zero error capacity problem for the matrix
1 0
. As Shannon noticed in [11], it equals log,2 =1

= O
N[ =
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