Set Cascades and Vector Valleys in Pascal's Triangle

Tran Ngoc Danh
University of HoChiMinh City, VietNam.
227.Nguyen van Cu, HoChiMinh City

and

David E.Daykin
University of Reading, England.
RG6-2AX

Address for all correspondence

D. E. Daykin,
Sunnydene,
Tuppenny Lane,
Emsworth,
Hants,
England PO10-8HG.

Abstract

Let N be the positive integers. Let T(n) be the set of all $F \subseteq N$ of size |F| = n. The shadow ΔF of F is the subset of T(n-1) obtained by deleting an element of F in all n possible ways. If $R \subseteq T(n)$ then $\Delta R = \bigcup \{F \in R\} \Delta F$. If we write |R| as an n-Cascade we can immediately write down the best possible lower bound for $|\Delta R|$.

Let V(n) be the set of all vectors of dimension n with coordinates 0 or 1. The shadow ΔA of $A \in V(n)$ is the subset of V(n-1) obtained by deleting a coordinate of A in all ways. If $W \subseteq V(n)$ we write |W| as an n-Valley and get the best possible lower bound for $|\Delta W|$.

1 Shadows of sets.

Let N be the set of all positive integers. For $n \in N$ let T(n) be the set of all $F \subseteq N$ of size |F| = n.

Ex.1. We have $T(1) = \{1, 2, 3, ...\}$ and $T(2) = \{12, 13, 23, 14, 24, 34, 15, ...\}$ and $T(3) = \{123, 124, 134, 234, 125, ...\}$.

If $F \in T(n)$ the shadow ΔF of F is the $\Delta F \subseteq T(n-1)$ obtained by deleting an element from F in all n possible ways, so $|\Delta F| = n$.

Ex.2. If F = 123 then ΔF is $\{12, 13, 23\}$.

If $R \subseteq T(n)$ then $\Delta R = \bigcup \{F \in R\} \Delta F$.

Ex.3. Let $P = \{12, 13, 23, 14, 24, 34\}$ and $Q = \{12, 13, 23, 24, 25\}$. Let $R_1 = \{12, 13, 23, 14, 24, 34\}$

 $\{123, 124, 134\}, R_2 = \{123, 124, 234\}, R_3 = \{123, 124, 125\} \text{ and } R_4 = \{123, 246, 256\}.$ Then $\Delta R_1 = \Delta R_2 = P$ and $\Delta R_3 = Q \cup \{14, 15\}$ and $\Delta R_4 = Q \cup \{26, 46, 56\}.$

If $R \subseteq T(n)$ then clearly $|\Delta R| \le n|R|$ but we want to know how small $|\Delta R|$ can be in terms of |R|. To answer we order each T(n). We do this by the rule F < G, in words F is before G, if $max\{F \setminus G\} < max\{G \setminus F\}$.

Ex.4. Since $max\{124 \setminus 345\} = max\{12\} = 2 < 5 = max\{35\} = max\{345 \setminus 124\}$ we have 124 < 345 in T(3).

We see this order in Ex.1,3. By an *initial section IS* we mean the first so many sets in order of T(n). Thus P, R_1 are IS in Ex.3. An important fact is that the shadow of an IS is an IS.

Theorem 1 (Kruskal 1963, Katona 1966). Let $R \subseteq T(n)$. If S is the IS of T(n) with |R| = |S| then $|\Delta R| \ge |\Delta S|$.

This theorem has been proved in various ways. Here we will explain the idea of the proof in [3].

2 Shifts of sets.

Given $R \subseteq T(n)$ we want to shift it step by step towards the beginning of the order, until it becomes an IS. Each shift must not increase $|\Delta R|$ or change |R|, and Theorem 1 will be proved. If $i, j \in N$ and i < j then the shift $i \leftarrow j$ changes a j into an i in R wherever possible. So for $F \in R$ the shift $(i \leftarrow j)F$ is $(F \setminus j) \cup i$ if $i \notin F$ and $j \in F$ and $(F \setminus j) \cup i \notin R$, otherwise it is F. Of course $(i \leftarrow j)R = \{(i \leftarrow j)F : F \in R\}$. In Ex.3 we have $R_1 = (1 \leftarrow 2)R_2$ and $R_3 = (1 \leftarrow 6)R_4$ with $7 = |\Delta R_3| < |\Delta R_4| = 8$. In fact $\Delta(1 \leftarrow 6)R_4 = \Delta R_3 \subseteq (1 \leftarrow 6)\Delta R_4$ which is a special case of

Lemma 1 $Shadow(shiftR) \subseteq Shift(shadowR)$.

To prove this for $i \leftarrow j$ you consider an arbitrary $G \in \Delta(i \leftarrow j)R$. There is an $h \in N$ with $G \cup h \in (i \leftarrow j)R$. So there is an $F \in R$ with $G \cup h = (i \leftarrow j)F$. Suppose $j \notin F$. Then $G \cup h = F$ so $j \notin G \in \Delta R$ and $G \in (i \leftarrow j)\Delta R$ as required. An interested reader can easily sort out the other cases.

Now in Ex.3 the IS is R_1 but we cannot get it from R_3 by $i \leftarrow j$ shifts. We need more general shifts. We take sets $I, J \subseteq N$ with |I| = |J| and I < J and $I \cap J$ empty. The shift $I \leftarrow J$ of $F \in R$ is $(F \setminus J) \cup I$ if $I \cap F$ is empty, $J \subseteq F$ and $(F \setminus J) \cup I \not\in R$, otherwise it is F. We have $R_2 = (34 \leftarrow 15)R_3$ in Ex.3. If R is not an IS there exist such I, J with |I| minimal such that $(I \leftarrow J)R \neq R$. For this shift Lemma 1 still holds, but it is a little harder to write out the proof. We trust that the reader trusts Lemma 1 and Theorem 1.

3 Cascade Representations of Integers.

To get numbers out of Theorem 1 we let S be an arbitrary IS of T(n). There is a largest $m_n \in N$ such that S contains

all
$$\binom{m_n}{n}$$
 sets F with $F \subseteq \{1, ..., m_n\}, |F| = n$.

If there are more sets in S they must possess the number $m_n + 1$. Also there must be a largest m_{n-1} so that S contains

all
$$\binom{m_{n-1}}{n-1}$$
 sets $G \cup \{m_n+1\}$ with $G \subseteq \{1,...,m_{n-1}\}, |G| = n-1$.

If there are more sets in S there is a largest m_{n-2} so that S contains

all
$$\binom{m_{n-2}}{n-2}$$
 sets $H \cup \{m_{n-1}+1, m_n+1\}$ with $H \subseteq \{1, ..., m_{n-2}\}, |H| = n-2,$

and so on. Assume we end with m_e and put

$$k = {\binom{m_n}{n}} + {\binom{m_{n-1}}{n-1}} + \dots + {\binom{m_e}{e}} \text{ where } m_n > m_{n-1} > \dots > m_e \ge e \ge 1,$$
 (1)

so k = |S|. We call (1) an n-Cascade for k. If we plot (1) on Figure 1, the successive binomial coefficients are in successive columns, each not below the one before. So the plot resembles a cascade of water getting deeper as it runs.

Figure 1. Two orientations of Pascal's Triangle.

From the above construction we see that ΔS contains

all
$$\binom{m_n}{n-1}$$
 sets G with $G \subseteq \{1, ..., m_n\}, |G| = n-1,$

all
$$\binom{m_{n-1}}{n-2}$$
 sets $H \cup \{m_n+1\}$ with $H \subseteq \{1,..,m_{n-1}\}$, $|H| = n-2$,

and so on. Thus we just move the n-Cascade (1), using the rule in Figure 1, to get the (n-1)-Cascade for $|\Delta S|$. There may be one other $m_1, ..., m_e$ which satisfies (1), it has e = 0. We can use either. Also because ΔS is an IS we can repeat to get $|\Delta \Delta S|$...

Ex.5. (Lehmer 1964). The 9167-th in S(12) is 1, 2, 4, 5, 8, 10, 11, 12, 13, 15, 16, 18.

Ex.6. (Clements 1974). If $P, Q, S \subseteq T(n)$ and S is the IS with |P| + |Q| = |S| then $|\Delta P| + |\Delta Q| \ge |\Delta S|$. Just add a large h to every integer of Q.

Ex.7. (Hilton 1979). let P, Q, R be IS with $P, Q \subseteq T(n)$, $R \subseteq T(n-1)$ and |P| = |Q| + |R| then $|\Delta P| \le |\Delta R| + max\{|R|, |\Delta Q|\}$.

4 The V-order for vectors.

For $n \in N$ let V(n) be all n-dimensional 0, 1 vectors.

Ex.8. $V(2) = \{00, 10, 01, 11\}$ and $V(3) = \{000, 100, 010, 001, 110, 101, 011, 111\}$. If $A \in V(n)$ the shadow $\Delta A \subseteq V(n-1)$ is obtained by deleting a coordinate of A in all ways.

Ex.9. So $\Delta(011100) = \{01100, 11100, 01110\}.$

Also $\Delta W = \bigcup \{A \in W\} \Delta A$ for $W \subseteq V(n)$. We need some notation. For $A = (a_1, ..., a_n) \neq B = (b_1, ..., b_n)$ in V(n) we put $\nu A = a_1 + ... + a_n$ and $\alpha(A, B)$ is the first i with $a_i \neq b_i$. Also " $A = (a_1, ..., a_{n-1})$ and A" = a_n and $dA = (d, a_1, ..., a_n)$ for d = 0, 1.

Definition 1 (V-order). If $A, B \in V(n)$ then A < B if either (i) $\nu A < \nu B$, or (ii) $\nu A = \nu B$ and $1 = a_j > b_j = 0$ with $j = \alpha(A, B)$.

This order is seen in Ex.8,9. Using this we proved in [2] the main result, which is Theorem 2 below. We will not attempt the proof of Theorem 2 here. It seems of necessity to be hard due to the fact there are infinitely many other orders equally good for it.

Theorem 2 Let $W \subseteq V(n)$. If S is the IS of V(n) with |W| = |S| then $|\Delta W| \ge |\Delta S|$.

5 The sequence of free sequences.

Using V-order let $V(n,t)=\{A\in V(n): \nu A=t\}=A_1< A_2< ...< A_e$ so $e=\binom{n}{t}$. Also let $\Psi(n,t)$ be the 0,1 sequence A_1 ", A_2 ", ..., A_e ". Here V,Ψ are empty unless $0\leq t\leq n$. We see that V(2,0) is 00, and V(2,1) is 10<01, and V(2,2) is 11. In general V(n+1,t) is 1V(n,t-1) followed by 0V(n,t), so $\Psi(n+1,t)$ is $\Psi(n,t-1)$ followed by $\Psi(n,t)$, and we can contruct Ψ without using V-order. The n-th free sequence Ψ_n has length 2^n and is $\Psi(n,0),\Psi(n,1),...,\Psi(n,n)$.

Let $A \in V(n)$ and S be the IS ending A. Next put $R = S \setminus A$ so R is the IS with |R| = |S| - 1. If $A^n = 1$ then $\Delta R = \Delta S$ and we say that A is free (over R), otherwise $A^n = 0$ and $1 + |\Delta R| = |\Delta S|$ because ("A) \cup (ΔR) = ΔS . From Theorem 2 it is clear that $|\Delta S| = |S| - c$, where c is the sum of the first |S| terms of Ψ_n .

6 Valley Representations of Integers.

On Figure 1 please plot the binominal coefficients of

$$f = \begin{pmatrix} 9 \\ 0 \end{pmatrix} + \begin{pmatrix} 9 \\ 1 \end{pmatrix} + \begin{pmatrix} 9 \\ 2 \end{pmatrix} + \begin{pmatrix} 9 \\ 3 \end{pmatrix} \quad and \quad g = \begin{pmatrix} 8 \\ 3 \end{pmatrix} + \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

We think of f+g as a valley, with the 45 degree slope of f as the left side, and g as the right side. Notice that g is like a Cascade because successive coefficients are to the right, but not below, the last. It is easy to see that each k in $0 \le k \le 2^n$ has one or two n-Valley representations.

Next we find the (f+g)-th vector A in V(9). For i=0,1,2,3 the i-th term in f corresponds to V(9,i), so $\nu A=4$. The number of vectors in V(9,4) which start 1 or 011 or 010111 or B=01001101 are respectively $\binom{8}{3}$ or $\binom{6}{2}$ or $\binom{5}{2}$ or $\binom{2}{0}$ or $\binom{1}{0}$, hence A=B0.

If S is an IS of V(n) we find the n-Valley of |S|, then we move the valley by the rule in Figure 1 to get the (n-1)-Valley of $|\Delta S|$. Again ΔS is an IS and we repeat to get $|\Delta \Delta S|$,...

7 The T-order for Vectors.

First let p and q be two sequences $p_1, ..., p_e$ and $q_1, ..., q_e$ with $p_i, q_i \in N$. We order p < q if the least j with $p_j \neq q_j$ has $p_j < q_j$.

Second we find the *type* of a vector by replacing 00 by 0 and 11 by 1 as many times as possible.

Ex.10. If A = 001111011000 then type(A) = 01010.

We order types as follows $0 < 1 < 10 < 01 < 010 < 101 < 1010 < 0101 < \dots$ Two vectors of different types are ordered according to their types. It remains to order vectors of the same type.

Case A'' = 0. Let z_1 be the number of zeros at the end of A, then n_1 be the number of ones next to those zeros, and so on. The sequence σA of A is $n_1, n_2, ..., z_2, z_1$. In Ex.10 we see A looking like $z_3, n_2, z_2, n_1, z_1 = 2, 4, 1, 2, 3$ but σA is 2, 4, 2, 1, 3. We order vectors of the same type according to the order of their sequences.

Case A'' = 1. We exchange 0 and 1 to get the complements of vectors, then we order them according to the order of their complements.

Having defined T-order we can now point out that the idea behind it is that the vectors in ΔA have the same type as A or earlier. It turns out that the shadow of an IS is an IS, and $A \in V(n)$ is free iff $a_{n-1} \neq a_n$. Most importantly Theorem 2 holds for V-order and for T-order.

8 Open Problems.

1) What is smallest $R \subseteq V(n)$ with $\Delta R = V(n-1)$?

2) How big can shadows of families of vectors be? More precisely for $1 \le k \le 2^n$

References.

- [1] I. Anderson, Combinatorics of finite sets, Clarendon Press, Oxford (1987).
- [2] Tran Ngoc Danh and David E.Daykin, Ordering integer vectors for coordinate deletions (Submitted to J. London Math. Soc.,12 Feb 1994.).
- [3] David E.Daykin, A simple proof of Katona's theorem, J. Combinatorial Theory, series A,17(1974), 252-253.