Set Cascades and Vector Valleys in Pascal’s Triangle

Tran Ngoc Danh . David E.Daykin
University of HoChiMinh City, VietNam. and University of Reading, England.
227.Nguyen van Cu, HoChiMinh City RG6-2AX
Address for all correspondence - D. E. Daykin,

Sunnydene,

Tuppenny Lane,

Emsworth,

Hants,

England PO10-8HG.

Abstract

Let ‘N be the positive integers. Let T'(n) be the set of all F* C N of size
|F| = n. The shadow AF of F is the subset of T'(n — 1) obtained by deleting an
element of F in all n possible ways. If R C 7'(n) then AR = U{F € R}AF. If -
we write |R| as an n-Cascade we can immediately write down the best possible

lower bound for |AR).
Let V(n) be the set of all vectors of dimension n with coordinates 0 or 1.

The shadow AA of A € V(n) is the subset of V(n — 1) obtained by deleting a
coordinate of A in all ways. If W C V(n) we write |W/| as an n-Valley and get
the best possible lower bound for |AW|. ‘

1 Shadows of sets.
Let N be the set of all positive integers. For n € N let T(n) be the set of all
F C N of size |F|= n.

Ex.1. We have T(1) = {1,2,3,..} and T(2) = {12,13,23,14,24,34,15,...} and
T(3) = {123,124,134,234,125,...}.
If F € T(n) the shadow AF of F is the AF C T(n — 1) obtained by deleting an

element from F' in all n possible ways, so |AF| = n.
Ex.2. If F = 123 then AF is {12,13,23}.
If R C T(n) then AR = U{F € R}AF.
Ex.3. Let P = {12,13,23,14,24,34} and Q = {12,13,23,24,25}. Let R, =



(123,124,134}, R, = {123,124,234}, Rs = {123,124,125} and R, = {123,246, 256}.
Then AR; = ARy = P and AR; = QU {14,15} and AR, = Q U {26,46, 56}.

If R C T(n) then clearly |AR| < n|R| but we want to know how small |AR)| can
be in terms of |R|. To answer we order each T(n). We do this by the rule F < G, in

words F' is before G, if maz{F \ G} < maz{G\ F}.

Ex.4. Since maz{124 \ 345} = maz{12} = 2 < 5 = maa{35} = max {345\ 124}

we have 124 < 345 in T'(3).
We see this order in Ex.1,3. By an initial section IS we mean the first so many

sets in order of T'(n). Thus P, R; are IS in Ex.3. An important fact is that the shadow
ofan IS isan IS.

Theorem 1 (Kruskal 1963, Katona 1966). Let R CT(n). If S is the IS of T(n) with
|R| = |S| then |AR| > |AS]. :

This theorem has been proved in various ways. Here we will explain the idea of
the proof in [3].

2  Shifts of sets.

Given R C T(n) we want to shift it step by step towards the beginning of the or-
der, until it becomes an IS. Each shift must not increase |AR| or change |R|, and
Theorem 1 will be proved. If 7,7 € N and ¢ < j then the shift i «— j changes a 7 into
an ¢ in R wherever possible. So for F' € R the shift (1 « j)Fis (F\j)U¢ifi & F and
J € Fand (F\j)Ui ¢ R, otherwise it is F'. Of course ( — j)R = {(1 < j)F : F € R}.
In Ex.3 we have B; = (1 « 2)R; and R3 = (1 « 6)R, with 7 = |AR3| < IAR4| = 8.
In fact A(1 —6)Ry = AR3 C (1 « 6)AR4 which is a special case of

Lemma 1 Shadow(shiftR) C Shift(shadowR).

To prove this for ¢ « j you consider an arbitrary G € A(¢ «— j)R. Thereisan h € N
with GUhR € (i « j)R.-So thereis an F' € R with GUh = (i « j)F. Suppose j & F.

.Then GUh = Fsoj ¢ G € AR and G € (i «— j)AR as required. An interested reader

can easily sort out the other cases.

Now in Ex.3 the 1.5 is Ry but we cannot get it from Rs by ¢ « j shifts. We need
more general shifts. We take sets I,J C N with |I| =|J| and I < J and I N J empty.
The shift I « J of F € R is (F\J)UIif[ﬂFisempty, JCFand (F\J)UI¢ R,
otherwise it is F'. We have R; = (34 « 15)R3 in Ex.3. If R is not an /.S there exist
such I, J with |I| minimal such that (I « J)R # R. For this shift Lemma, 1 still holds,
but it is a little harder to write out the proof We trust that the reader trusts Lemma

1 and Theorem 1.



3 Cascade Representations of Integers.

To get numbers out of Theorem 1 we let S be an arbitrary IS of T'(n). There is
a largest m,, € N such that S contains

all (m") sets F with F C{l,...,mn}, |F| =n.
A\ n

If there are more sets in S they must possess the number m, + 1. Also there must be
a largest m,_; so that S contains ’

all (mn_i> sets GU{m,+1} with GC {1,...,mn1}, |G| =n -1

If there are more sets in .S there is a largest m,_, so that S contains

n —

all (mn—;> sets HU{mnp_1 +1,mn+1} with H C{l,...,ma_2}, |H|=n-2,
and so on. Assume we end with m, and put

k= (mn) + (m'n_l) + ... + (me) where My, > Mp_y > . > Me zez 1’ | (1)
) €

n

so k = |S|. We call (1) an n-Cascade for k. If we plot (1) on Figure 1, the successive
binomial coefficients are in successive columns, each not below the one before. So the
plot resembles a cascade of water getting deeper as it runs.

For se;‘s (:) —> (sil) .For vect.ors (:) _> (rz.l)

Figure 1. Two orientations of Pascal's Triangle.

From the above construction we see that AS contains

n —

all ( mnl) sets G with G C{l,...,m,}, |G|=n -1,

<

all (mn“‘l)> sets HU {mn + 1} with H C {1,“,mn.~1}, IHI R




and so on. Thus we just move the n-Cascade (1), using the rule in Figure 1, to get the
(n-1)-Cascade for |AS|. There may be one other my,...,m, which satisfies (1), it has
e = 0. We can use either. Also because AS is an IS we can repeat to get [AAS]....

Ex.5. (Lehmer 1964). The 9167-th in S(12) is 1,2,4,5,8,10,11,12,13,15,16, 13. _

Ex.6. (Clements 1974). If P,Q,S5 C T(n) and S is the IS with |P| 4 |Q| = ||
then |AP| + |AQ| > |AS|. Just add a large h to every integer of Q.

Ex.7. (Hilton 1979). let P,@,R be IS with P,Q C T(n), R C T(n — 1) and
IP| = 1Q] + || then [AP| < [AR| + maz{|Rl, 1AQ]}. S

4 The V-order for vectors.

~For n € N let V(n) be all n-dimensional 0,1 vectors.

Ex.8. V(2) = {00,10,01,11} and V(3) = {000, 100,010, 001,110, 101,011, 111}.
If A€ V(n)the shadow AAC V(n — 1) is obtained by deleting a coordinate of

- A in all ways. -

- Ex.9. So A(011100) = {01100,11100,01110}.
Also AW = U{A € W}AA for W C V(n). We need some notation. For
A= (a1,..,a,) # B = (by,...,0,) in V(n) we put vA = a; + ... + a, and oA, B) is the
first + with a; #b;. Also “A = (ay,...,an_1) and A” = a, and dA = (d, a,,...,a,) for
d=0,1.

Definition 1 (V-order). If ABe V(n) then A < B if either (i) vA < vB, or (ii)
vA=vB and 1 = a; > b; = 0 with j = (A, B).

This order is seen in Ex.8,9. Using this we proved in [2] the main result, which
i1s Theorem 2 below. We will not attempt the proof of Theorem 2 here. It seems of
necessity to be hard due to the fact there are infinitely many other orders equally good

for it.

Theorem 2 Let W C V(n). If S is the IS of V(n) with |W| = |§| then IAW] > |AS|.

5 The sequence of free sequences.

Using V-order let V(n,t) = {A € V(n) : vA =1t} = A, < Ay < ... < A, so
e= (’t‘) Also let W(n,t) be the 0,1 sequence A;”, A;”, ..., A.”. Here V, ¥ are empty
unless 0 <t < n. We see that V/(2,0) is 00, and V/(2,1) is 10 < 01, and V(2,2)
is 11. In general V(n + 1,t) is 1V(n,t — 1) followed by 0V(n,t), so ¥(n + 1,t) is
U(n,t — 1) followed by ¥(n,t), and we can contruct ¥ without using V-order. The
n-th free sequence U, has length 2" and is ¥(n,0), ¥(n, 1), ..., ¥(n,n).

Let A € V(n) and S be the IS ending A. Next put R = S\ A so R is the IS with
|R| =]S| —1. If A” =1 then AR = AS and we say that A is free (over R), otherwise
A” =0 and 1 +|AR| = |AS| because (“A) U (AR) = AS. From Theorem 2 it is clear
that |JAS| = |.S| — ¢, where ¢ is the sum of the first |S| terms of ¥,,.



6 Valley Representations of Integers.

On Figure 1 please plot the binominal coefficients of

_9+9»+9'+9 d_8+6+5+'2+1
F=1p 1 o) T\g) ™ 97 \3) T2/ " \2) " \o 0/
We think of f + g as a vzﬂley, with the 45 degree slope of f as the left side, and g as

the right side. Notice that g is like a Cascade because successive coeflicients are to the
right, but not below, the last. It is easy to see that each k£ in 0 < k < 2" has one or

two n-Valley representations.
Next we find the (f + g) — th vector A in V(9). For i = 0,1,2,3 the ¢ — th term
" in f corresponds to V/(9,1), so vA = 4. The number of vectors in V(9,4) which start

1 or 011 or 0101 or 0100111 or B = 01001101 are respectively (i) or (g) or (2) or (g)

r (é), hence A = BO. _ v
If S is an IS of V(n) we find the n-Valley of |S|, then we move the valley by the
rule in Figure 1 to get the (n — 1)-Valley of |AS]. Again AS is an IS and we repeat

to get |AAS],...

7 The T-order for Vectbrs.

First let p and ¢ be two sequences p,...,p. and qi,...,q. wWith p;,¢; € N. We
order p < q if the least j with p; # ¢; has p; < ¢;.
Second we find the type of a vector by replacing 00 by 0 and 11 by 1 as many
times as possible.
Ex.10. If A = 001111011000 then type(A) = 01010.
We order types as follows 0°< 1 < 10 < 01 < 010 < 101.< 1010 < 0101 < ...
Two vectors of different types are ordered according to their types. It remains to order

vectors of the same type.

Case A” = 0. Let z; be the number of zeros at the end of A, then n; be the number
of ones next to those zeros, and so on. The sequence oA of A is ny,ng,...,22,21. In
Ex.10 we see A looking like z3,n9, 22,n1,21 = 2,4,1,2,3 but 0 A is 2,4,2,1,3. We order
vectors of the same type according to the order of their sequences.

Case A” = 1. We exchange 0 and 1 to get the complements of vectors, then we order

them according to the order of their complements.
Having defined. T-order we can now point out that the idea behind it is that the

vectors in AA have the same type as A or earlier. It turns out that the shadow of an
1S is an IS, and A € V(n) is free iff an-y # a,. Most 1mportantly Theorem 2 holds
for V-order and for T-order.

8 Open Problems.

1) What is smallestl R C V(n) with AR =V(n —1)?
2) How big can shadows of families of vectors be? More precisely for 1 <k <27




 mazimize |AR| over R C V(n) with |R| = k.
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