SETS OF 0,1 VECTORS WITH MINIMAL SETS OF SUBVECTORS

Tran Ngoc Danh University of HoChiMinh City, VietNam. 227.Nguyen van Cu, HoChiMinh City

and

David E.Daykin
University of Reading, England.
RG6-2AX

Address for all correspondence

D. E. Daykin,
Sunnydene,
Tuppenny Lane,
Emsworth,
Hants,
England PO10-8HG.

Abstract

Let $\mathcal{C}(n)$ be the 0,1 vectors $\underline{a} = a_1...a_n$. To get a subvector of \underline{a} delete any a_i . If $\mathcal{A} \subseteq \mathcal{C}(n)$ then $\Delta \mathcal{A}$ is the set of all subvectors of members of \mathcal{A} , so $\Delta \mathcal{A} \subseteq \mathcal{C}(n-1)$. Put $W\underline{a} = a_1 + ... + a_n$. We order $\mathcal{C}(n)$ by $\underline{a} < \underline{b}$ if (i) $W\underline{a} < W\underline{b}$ or (ii) $W\underline{a} = W\underline{b}$ and $1 = a_i > b_i = 0$ for the least i with $a_i \neq b_i$. We present a completely new proof of our <u>Theorem</u>. If $\mathcal{A} \subseteq \mathcal{C}(n)$ and \mathcal{J} is the first $|\mathcal{A}|$ members in $\mathcal{C}(n)$ then $|\Delta \mathcal{J}| \leq |\Delta \mathcal{A}|$.

1 Introduction.

Let $\mathcal{C}(n)$ be the set of all vectors $\underline{a} = a_1...a_n$ having $a_h = 0$ or $a_h = 1$ for $1 \leq h \leq n$. Further let $\delta_h \underline{a}$ be the subvector in $\mathcal{C}(n-1)$ obtained from \underline{a} by deleting coordinate a_h . The shadow $\Delta \underline{a}$ of \underline{a} is the set $\{\delta_1 \underline{a}, ..., \delta_n \underline{a}\}$. The shadow $\Delta \mathcal{A}$ of any $\mathcal{A} \subseteq \mathcal{C}(n)$ is $\bigcup \{\underline{a} \in \mathcal{A}\} \Delta \underline{a}$.

We are concerned with this problem. Given $0 \le k \le 2^n$ find $A \subseteq C(n)$ with cardinality |A| = k and shadow size $|\Delta A|$ minimal. We solved the problem in [1] 1993 by Theorem 1 below, where C(n) is V-ordered. If $a, b \in C(n)$ and $a \ne b$ then $\alpha(a, b)$ is the first i in $1 \le i \le n$ with $a_i \ne b_i$, also $Wa = a_1 + ... + a_n$.

Definition 1 (V-order). Let $a, b \in C(n)$ with $a \neq b$. Then a < b if (i) Wa < Wb or (ii) Wa = Wb and $a_i > b_i$ with $j = \alpha(a, b)$.

By an initial section IS we mean the first so many members of C(n) in V-order. In particular $IS(\underline{a}) = \{\underline{x} \in C(n) : \underline{x} \leq \underline{a}\}.$

Theorem 1 If $\mathcal{J}, \mathcal{A} \subseteq \mathcal{C}(n)$ have $|\mathcal{J}| = |A|$ and \mathcal{J} is an IS then $|\Delta \mathcal{J}| \leq |\Delta \mathcal{A}|$.

In this note we present a completely new proof of Theorem 1. Any statement not proved in full detail is easy to verify. We use condensed notation. If $u = u_1...u_r$ and $v = v_1...v_s$ are vectors then uv is the vector $u_1...u_rv_1...v_s$. If $A \subseteq C(n)$ and $e \in C(1)$ then $Ae = \{ae : a \in A\}$. By A + B we mean the union $A \cup B$ and are saying that $A \cap B = \emptyset$, the empty set. Each $A \subseteq C(n+1)$ has a partition A = A0 + B1 where $A, B \subseteq C(n)$. When A, B are IS we say A is part compressed PC.

We tacitly use the fact that for $x, y \in C(n)$ and any vectors a, b we have axb < ayb iff x < y. Given $a \in C(n)$, if a = 1...1 put Va = 1, otherwise let Va denote the last $a = 1 \le b \le n$ with a = 0. Then $a = 1 \le b \le n$ where $a = 1 \le b \le n$. It is important that $a = 1 \le n \le n$.

2 Initial sections of V-order.

Let $\mathcal J$ be an IS. Put $\mathcal J=G0+H1$ and $G=G_00+G_11$ and $H=H_00+H_11$. Then

- (1) G, H are IS,
- (2) $H \subseteq G$ and $H_0 \subseteq G_1$ so $H_1 \subseteq H_0 \subseteq G_1 \subseteq G_0$,
- (3) $\Delta \mathcal{J} = G = \mathcal{J}^*$,
- $(4) \ \Delta(\mathcal{J}0) = \mathcal{J},$
- (5) $\Delta(\mathcal{J}1) = G0 + G1$ not usually IS.

G_1	G0	H1	H_0
	0000		
	1000		
	0100		
00	0010		
		0001	00
	1100		•
10	1010		
		1001	10
01	0110		
		0101	01
		0011	
11	1110		
		1101	11
•		1011	
		0111	•
		1111	

In Figure 1 we see the V-orders (i) of $\mathcal{C}(2)$ in G_1, H_0 , (ii) of $\mathcal{C}(3)$ in G, H, and (iii) of $\mathcal{C}(4)$ in $G_0 + H_1$. In the figure $\mathcal{C}(4)$ is cut into slices by the last coordinates of its vectors. Imagine we have this figure for every $\mathcal{C}(n)$.

Consider $IS(\underline{a})$ growing with \underline{a} . We only get an increase in G_1 (resp. H_0) when $\underline{a} = \underline{x}10$ (resp. $\underline{a} = \underline{y}01$) at the end of a 0-slice (resp. at the beginning of a 1-slice) and the increase is \underline{x} (resp. \underline{y}). Moreover if the 0-slice is immediately before the 1-slice then $\underline{x} = \underline{y}$. All other vectors in a 0-slice (resp. 1-slice) end 00 (resp. 11). Therefore (6) if $\mathcal{J} = IS(\underline{x}10)$ then $G_1 = H_0 + \underline{x}$ otherwise $G_1 = H_0$.

Let $n \geq 3$ and S be the 0-slice just before a 1-slice T. If $|T| \geq 2$ then |S| = 1, but if |T| = 1 then $|S| \geq 2$.

3 Part compressed families.

Let D, E be any IS of C(n) and put B = D0 + E1 so B is PC. Next Γ is the set of $\underline{a} \in C(n+1)$ of the form $\underline{a} = \underline{u}\underline{z}1$, where $\underline{z} = 0...0$ of $dim\underline{z} \geq 1$, and either $\underline{u} = \emptyset$ or \underline{u} ends 1. Also $\gamma \underline{a} = \underline{u}1\underline{z}$ if $\underline{a} = \underline{u}\underline{z}1 \in \Gamma$. We can now define a map $\psi : B \longrightarrow C(n+1)$ by

$$\psi_{\tilde{a}} = \left\{ egin{array}{ll} \gamma_{\tilde{a}}^{a} & if \ \tilde{a} \in \Gamma \ and \ \gamma_{\tilde{a}}
otherwise. \end{array}
ight.$$

Theorem 2 If \mathcal{B} is PC then $\Delta \psi \mathcal{B} \subseteq \psi \Delta \mathcal{B}$.

Proof. Observe that the two ψ are different. We can have $\mathcal{B}=D0+E1$ as above. Let $\underline{x}\in\Delta\psi\mathcal{B}$. There is a $\underline{b}\in\psi\mathcal{B}$ with $\underline{x}\in\Delta\underline{b}$ and an $\underline{a}\in\mathcal{B}$ with $\underline{b}=\psi\underline{a}$. We distinguish three possibilities. Case 1. $\underline{a}\not\in\Gamma$. Here $\underline{b}=\underline{a}$ and \underline{a} ends 0 or 11. Case 2. $\underline{a}\in\Gamma$ and $\underline{b}\neq\underline{a}$. So $\underline{b}=\underline{u}1\underline{z}$ and $\underline{a}=\underline{u}\underline{z}1$. Case 3. $\underline{a}\in\Gamma$ and $\underline{b}=\underline{a}$. Here $\underline{a}=\underline{u}\underline{z}1$ and $\underline{u}1\underline{z}$, \underline{a} are both in \mathcal{B} .

Please look at the last line of Case 1 in Figure 2. There we are given $\underline{a} = \underline{w}11$, $\underline{x} = \underline{w}1$ and \underline{w} ends 0. So $\underline{w} = \underline{u}\underline{z}$ where $\underline{u} = \emptyset$ or \underline{u} ends 1. As shown $\underline{u}1\underline{z}1 \in \mathcal{B}$ yielding $\underline{u}1\underline{z}$, $\underline{u}\underline{z}1 \in \Delta \mathcal{B}$ and $\underline{x} = \psi \underline{x} \in \psi \Delta \mathcal{B}$ as required. In the last line of Case 2 we are given \underline{a} , \underline{b} , \underline{x} , \underline{u}' as shown for some \underline{w} . Now \underline{u} ends 1 so $\underline{x} = \underline{w}01\underline{z} \in \Delta \mathcal{B}$ and $\underline{x} = \psi \underline{x} \in \psi \Delta \mathcal{B}$ again. On the final line we are in Case 3 with $\underline{x} = \underline{u}'\underline{z}1$ and $\underline{u}' = \underline{w}\underline{z}1$ where \underline{w} ends 1 or $\underline{w} = \emptyset$. Hence $\underline{u} = \underline{w}\underline{z}11$ and $\underline{c} = \underline{w}\underline{z}111\underline{z} \in \mathcal{B}$ and $\underline{c} > \underline{d} = \underline{w}1\underline{z}11\underline{z}$. Because \underline{D} is \underline{IS} this gives \underline{a} , $\underline{d} \in \mathcal{B}$ and $\underline{w}1\underline{z}1\underline{z}$, $\underline{w}\underline{z}1\underline{z}1 = \underline{x} \in \Delta \mathcal{B}$ so $\underline{x} \in \psi \Delta \mathcal{B}$.

	$ \tilde{x} $	$\psi_{\tilde{a}}$		a a	$ \in\Delta\mathcal{B}$	Comment
Case 1.	w'^0		w0		w'0	
	$w \not\in \Gamma$		"		w	
	$w \in \Gamma$		"		u1z, uz1	$a = \underbrace{uz10} > \underbrace{u1z0} \in \mathcal{B} \text{ as } D = IS$
	w'11		w11		w'11	
	$w1, w_n = 1$. 27		w_1	
	$w1, w_n = 0$		"		u1z, uz1	$a = uz11 > u1z1 \in \mathcal{B} \text{ as } E = IS$
<u>Case 2.</u>	u1z'	u^1z		uz1	uz'1	A Company
	uz uz	"		"	uz	
•	u'1z	. "		"	u'z1	u' ends 1 or $u' = \emptyset$
	u'^1z	"		"	w01z	$u' = w0, \ u = w01, \ a = w01z1$
Case 3	uz		uz1		uz	
	uz'1		77		u1z', uz'1	
·	u'z1		"		u'1z, u'z1	u' ends 1 or $u' = \emptyset$
	u'z1		"		77 77	u' ends 0. See text.

Figure 2. Proof table for Theorem 2.

. Theorem 3 1 Let D, E be IS of $\mathcal{C}(n)$ with $E \subseteq D$. Put $D = D_0 0 + D_1 1$ and $E = E_0 0 + E_1 1$ and $\mathcal{B} = D 0 + E 1$. Then

$$\Delta \mathcal{B} = \left\{ \begin{array}{ll} D & \text{if } E_0 \subseteq D_1, \\ D_0 0 + E_0 1 & \text{if } D_1 \subseteq E_0. \end{array} \right.$$

Proof. The result holds as $\Delta \mathcal{B} = D_0 0 \cup D_1 1 \cup E_0 1$ by (3).

Example. To show that $D_1 = E_0$ does not imply $\mathcal{B} = IS$, let D = IS(1110) and E = IS(0010) then $D_1 = E_0 = IS(001)$ but $\mathcal{B} = IS(11100) \setminus 00011$ and $\mathcal{B} \neq IS$.

4 Proof of Theorem 1.

The result holds trivially for n=1,2. To use induction we assume it holds for $n \leq m$. Let $\mathcal{A} \subseteq C(m+1)$ and put $\mathcal{A} = A0 + B1$ so

$$\Delta A = A \cup (\Delta A)0 \cup B \cup (\Delta B)1.$$

¹Remark on Theorem 3. Let \underline{f} be the final vector in \mathcal{B} . Let \mathcal{J} be the largest IS in \mathcal{B} and put $\mathcal{F} = \mathcal{B} \setminus \mathcal{J}$. If $D_1 \subseteq E_0$ then $\mathcal{B} \neq IS$ and \underline{f} ends 1 and $\Delta \mathcal{B} = \mathcal{J}^* + \mathcal{F}^*$. If $E_0 \subseteq D_1$ and $\mathcal{B} \neq IS$ then \underline{f} ends 0. We do not use these facts in this note.

By exchanging 0 and 1 we may assume $|A| \ge |B|$. Let D, E be IS of C(m) with |D| = |A| and |E| = |B| so $E \subseteq D$. By induction $|\Delta D| \le |\Delta A|$ and $|\Delta E| \le |\Delta B|$. Put $D = D_0 0 + D_1 1$ and $E = E_0 0 + E_1 1$ and $B = D 0 + E_1 1$ as usual so $B \in PC$.

Case 1. $E_0 \subseteq D_1$. By Theorem 3 we have $|\Delta \mathcal{B}| = |D| = |A| \le |\Delta \mathcal{A}|$. We forget \mathcal{A} and study the slices of \mathcal{B} in Figure 1. Let R, S, T, U be the consecutive slices with S the last 0-slice containing a vector of \mathcal{B} . Thus R, T are 1-slices and $U \cap \mathcal{B} = \emptyset$. Let $x \neq 0$ be the last vector of S, then $x \neq 0$ is the first vector of T.

Case 1.1. $x01 \in \mathcal{B}$. Here $R, S \subseteq \mathcal{B}$ and $\mathcal{B} = IS$.

Case 1.2. $x01 \notin \mathcal{B}$. Here $T \cap \mathcal{B} = \emptyset$. If $\mathcal{B} = IS$ we are done, so assume $\mathcal{B} \neq IS$. Let f be the final vector of \mathcal{B} so $f \in S$. There is a first $f \notin \mathcal{B}$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ and $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ and $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ and $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$. There is a first $f \notin S$ and $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ and $f \notin S$ are the final vector of $f \notin S$ are the final vector of $f \notin S$ are the f

Case 2. $D_1 \subseteq E_0$. By Theorem 3 and induction

$$|\Delta \mathcal{B}| = |D_0| + |E_0| = |\Delta D| + |\Delta E| \le |\Delta A| + |\Delta \mathcal{B}| \le |\Delta \mathcal{A}|.$$

So we deal with \mathcal{B} . Let T be the last 1-slice containing a vector of \mathcal{B} . Again let R, S, T, U be consecutive slices. Further let x10, x01 be as before. Then $x01 \in \mathcal{B}$ but by definition of this case $x10 \notin \mathcal{B}$. Let g be the first vector of S.

Case 2.1. $g \in \mathcal{B}$. Here $E_0 = D_1 + x$ and $|\Delta \mathcal{B}| = |D_0| + |E_0| = |D| + 1$ by Theorem 3. We have $|S| \geq 2$ and this implies |T| = 1. If e is the first vector not in \mathcal{B} , then $e \in S$, and $\mathcal{D} = (\mathcal{B} \setminus x_0 1) + e$ is an IS. Again using Theorem 3 we get $|\Delta \mathcal{D}| = |\mathcal{D}_0| = |D| + 1 = |\Delta \mathcal{B}|$. So Theorem 1 holds in this Case 2.1.

Case 2.2. $g \notin \mathcal{B}$. Put $\mathcal{D} = \psi \mathcal{B}$ and note that $\mathcal{D} \neq \mathcal{B}$ because $g = \psi(x01)$, except in the trivial case g = z. But $|\mathcal{D}| = |\mathcal{B}|$ and Theorem 2 tells that $|\Delta \mathcal{D}| \leq |\Delta \mathcal{B}|$. If $\mathcal{D} = A0 + B1$ then $B \subset E \subseteq D \subset A$ so we can only enter this Case 2.2 a finite number of times. We forget \mathcal{B} and work on \mathcal{D} . Since \mathcal{D} may not be PC we must start at the very beginning. \diamondsuit

References.

[1] T.N.Danh and D.E.Daykin, Ordering integer vectors for coordinate deletions. (Submitted to J. London Math. Soc., 12 Feb 1994.)

[2] T.N.Danh and D.E.Daykin, Set Cascades and vector Valleys in Pascal's triangle. (Submitted to Theta, 14 July 1994.)

[3] T.N.Danh and D.E.Daykin, Bezrukov-Gronau order is not optimal, (Submitted to Rostock Math. Kollog. 21 July 1994.)

[4] T.N.Danh and D.E.Daykin, Structure of V-order for integer vectors, (Submitted to Conference Ho Chi Minh City January 1995).