A Cascade Proof of a Finite Vectors Theorem

David E. Daykin,

Department of Mathematics, University of Reading, England, RG6-2AX.

Address for all correspondence

D. E. Daykin,
Sunnydene,
Tuppenny Lane,
Emsworth,
Hants,
England PO10-8HG.

Abstract

Let $\mathcal{C}(n)$ be the n-dimensional 0,1 vectors. If $\underline{a} \in \mathcal{C}(n)$ then $\Delta \underline{a} \subseteq \mathcal{C}(n-1)$ is obtained by deleting a coordinate of \underline{a} in all n ways. Put $\Delta \mathcal{A} = \bigcup \{\underline{a} \in \mathcal{A}\} \Delta \underline{a}$ for all $\mathcal{A} \subseteq \mathcal{C}(n)$. Given $k, n \geq 1$ the Danh-Daykin Theorem finds the best possible lower bound for $|\Delta \mathcal{A}|$ over all $\mathcal{A} \subseteq \mathcal{C}(n)$ with $|\mathcal{A}| = k$. A new proof is given. It is based on Daykin's cascade algorithm.

1 Introduction.

Let $\mathcal{C}(n)$ be the set of all vectors $\underline{a} = a_1 a_2 ... a_n$ with each coordinate a_i zero or one. For $1 \leq h \leq n$ let $\delta_h \underline{a}$ be the vector in $\mathcal{C}(n-1)$ obtained by deleting a_h from \underline{a} . The shadow $\Delta \underline{a}$ is the set $\{\delta_1 \underline{a}, ..., \delta_n \underline{a}\}$. The shadow of an arbitrary $A \subseteq \mathcal{C}(n)$ is $\Delta A = \bigcup \{\underline{a} \in A\} \Delta \underline{a} \subseteq \mathcal{C}(n-1)$. In Theorem 1 below is the best possible lower bound for $|\Delta A|$ in terms of |A|, where |.| denotes cardinality. If $\underline{a}, \underline{b} \in \mathcal{C}(n)$ and $\underline{a} \neq \underline{b}$ then $\alpha(\underline{a}, \underline{b})$ denotes the first i in $1 \leq i \leq n$ with $a_i \neq b_i$. Also $W\underline{a} = a_1 + ... + a_n$.

Definition 1 (V-order [5]). Let $\underline{a}, \underline{b} \in C(n)$ with $\underline{a} \neq \underline{b}$. Then $\underline{a} < \underline{b}$ if (i) $W\underline{a} < W\underline{b}$ or (ii) $W\underline{a} = W\underline{b}$ and $1 = a_j > b_j = 0$ with $j = \alpha(\underline{a}, \underline{b})$.

For $0 \le k \le 2^n$ the first k vectors in C(n) in V-order is called the initial section IS(k,n).

Theorem 1 (Danh-Daykin [5,6]). If $\mathcal{J}, \mathcal{A} \subseteq \mathcal{C}(n)$ have $|\mathcal{J}| = |\mathcal{A}|$ and \mathcal{J} is an IS then $|\Delta \mathcal{J}| \leq |\Delta \mathcal{A}|$.

This note is a new proof of Theorem 1, based on Daykin's Cascade Algorithm [3,4]. To set the stage, in Section 2 we state results of Danh-Daykin [5,6] which are easy.

2 Preliminary results.

By $\mathcal{A} + \mathcal{B}$ we denote $\mathcal{A} \cup \mathcal{B}$ and say $\mathcal{A} \cap \mathcal{B} = \emptyset$ the empty set. If $u = u_1...u_r$ and $v = v_1...v_s$ are vectors then $v = v_1...v_s$ is the vector $v = v_1...v_s$. If $\mathcal{A} \subseteq \mathcal{C}(n)$ and $v \in \mathcal{C}(1) = \{0,1\}$ then $v \in \mathcal{A} = \{v \in \mathcal{A}\}$, also $v \in \mathcal{A} = \{v \in \mathcal{A}\}$ for some $v \in \mathcal{A} = \{v \in \mathcal{C}(n) : v \in \mathcal{A}\}$. We say $v \in \mathcal{A} = \{v \in \mathcal{C}(n) : v \in \mathcal{A}\}$ where $v \in \mathcal{C}(n)$.

Let $\mathcal J$ be an IS of $\mathcal C(n+1)$. Put $\mathcal J=G0+H1$ and $G=G_00+G_11$ and $H=H_00+H_11$. Then

(1) G, H are IS in C(n), (so G_0, G_1, H_0, H_1 are IS in C(n-1)),

(2) $H \subseteq G$ and $H_0 \subseteq G_1$, (so $H_1 \subseteq H_0 \subseteq G_1 \subseteq G_0$),

(3) $\Delta \mathcal{J} = G$, (so $\Delta G = G_0$ and $\Delta H = H_0$),

(4) if $\mathcal{J} = IS(x10)$ then $G_1 = H_0 + x$ but $H_0 = G_1$ otherwise.

Theorem 2 Let D, E be IS of C(n) with $E \subseteq D$. Put $D = D_0 0 + D_1 1$ and $E = E_0 0 + E_1 1$. If B is the PC family B = D 0 + E 1 then

$$\Delta \mathcal{B} = \begin{cases} D & \text{if } E_0 \subseteq D_1, \\ D_0 0 + E_0 1 & \text{if } D_1 \subseteq E_0. \end{cases}$$

Using induction on dimension we next show that it is sufficient to prove Theorem 1 for PC families. The Theorem is trivial for n = 1, 2. Assume it holds for $n \leq m$. Given any $\mathcal{A} \subseteq \mathcal{C}(m+1)$ put $\mathcal{A} = A0 + B1$ then

$$\Delta A = A \cup (\Delta A)0 \cup B \cup (\Delta B)1.$$

We may asume $|A| \ge |B|$ by exchanging 0,1 if necessary. Let D, E be the IS of C(m) with |D| = |A| and |E| = |B| so $E \subseteq D$. By induction $|\Delta D| \le |\Delta A|$ and $|\Delta E| \le |\Delta B|$. If \mathcal{B} is the PC family $\mathcal{B} = D0 + E1$ we easily get $|\Delta \mathcal{B}| \le |\Delta \mathcal{A}|$ from Theorem 2.

3 Part compressed families.

Let $\mathcal{B} = D0 + E1$ be a PC family in $\mathcal{C}(n+1)$ with $E \subseteq D$. Let $k = |\mathcal{B}|$ and $\mathcal{J} = IS(k, n+1) = G0 + H1$. Case 1. $G \subseteq D$. Here $E \subseteq H$ so (2) gives $E_0 \subseteq H_0 \subseteq G_1 \subseteq D_1$. Then $\Delta \mathcal{J} = G \subseteq D = \Delta \mathcal{B}$ by Theorem 2. This proves the case $G \subseteq D$ of Theorem 1. Case 2. |D| = |G| - 1. We claim that $E_0 \neq D_1 \subseteq E_0$. To get D we remove the last vector v of G from G. Similarly to get E we add to H the first vector not in H. Let v be the last vector in $\mathcal{C}(n+1)$ with the properties (i) $v \in v$, and (ii) $v \in v$ implies $v \in v$. Then $v \in v$ has the form $v \in v$. Now $w \notin \mathcal{B}$ and $x \notin D_1$ but $x01 \in \mathcal{B}$, so $x \in E_0$ and the claim is proved.

Case 3. $G \neq D \subseteq G$. The *D* here is contained in the *D* of Case 2. So the D_1 here is contained in the D_1 of Case 2. Working similary on *E*, from Case 2 we conclude that $E_0 \neq D_1 \subseteq E_0$ also in this more general Case 3.

We need only complete the proof of Theorem 1 for Case 3. This can be done by using the push down and $10 \leftarrow 01$ shift of [5], but we omit the routine details. In this note our interest is in cascades.

4 Cascades and valleys.

Please look at Figure 1. The binomial coefficients $\beta = \binom{r}{s}$ cover the plane, so r, s may be negative, although we have ommitted those $\beta = 0$ from Figure 1. Put

$$\uparrow \beta = \binom{r-1}{s-1}, \qquad \nearrow \beta = \binom{r-2}{s-1}, \qquad \vec{\beta} = \binom{r-1}{s}, \qquad \searrow \beta = \binom{r}{s+1},$$

so $\nearrow \beta = \uparrow (\vec{\beta}) = \neg (\uparrow \beta)$. Also $\beta = (\uparrow \beta) + (\vec{\beta})$ except if $\beta = bom$. This exception requires care, without care we "blow-up" our calculations. Of course $\uparrow \sum \beta = \sum \uparrow \beta$ and so on.

Consider $\mathcal{J} = IS(\underline{a})$ where $\underline{a} = 0101101 \in \mathcal{C}(7)$, and put

$$p = \begin{pmatrix} 7 \\ 0 \end{pmatrix} + \begin{pmatrix} 7 \\ 1 \end{pmatrix} + \begin{pmatrix} 7 \\ 2 \end{pmatrix} + \begin{pmatrix} 7 \\ 2 \end{pmatrix} \quad and \quad q = \begin{pmatrix} 6 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Since $W_{\underline{a}} = 4$ we find in \mathcal{J} all \underline{b} with $W_{\underline{b}} \leq 3$, and these \underline{b} are counted by p. The other $\underline{b} \in \mathcal{J}$ have $W_{\underline{b}} = 4$. There are all such \underline{b} starting 1 or 011 or 010111 or \underline{a} itself, and the numbers of these are given by the successive coefficients in q. Finally $|\mathcal{J}| = p + q$. It should now be clear how to find $|\mathcal{J}|$ for any \underline{a} , and conversely, how to find \underline{a} given the dimension and $|\mathcal{J}|$.

If we plot the coefficients of p,q on Figure 1 the result looks like a valley [5] which we denote by V(a) = p + q. The left side of the valley is from p and has a 45° slope. The right side is from q and is a cascade. In other words the coefficients of q are in adjacent columns, each coefficient not below the one before it. Cascades are well known, particularly in connection with the Kruskal-Katona Theorem [1,2]. Notice that

if $a \in \mathcal{C}(n)$ then the valley and cascade are an n-Valley and a g-Cascade, meaning they start in columns n and g = n - Wa respectively. They can stop anywhere.

We call a cascade *proper* if it does not go into the margin, otherwise *improper*. Using the identity

(5) $\binom{r+1}{s+1} = \binom{r}{s} + \binom{r-1}{s} + \ldots + \binom{s+1}{s} + \binom{t}{t}$ for $r > s \ge 0 \le t$, we can always make an improper cascade proper. Conversely if a proper cascade does not go to the top, the identity will make it improper, if we take $t \le s$. Given a fixed $g \ge 1$, every positive integer has a unique proper g-Cascade. Given $n \ge 1$, every k in $0 < k < 2^n$ has a unique n-Valley. There is only one n-Valley for 2^n but it goes into the margin. Improper cascades and valleys are unique to within one application of (5). The identity (5) also shows that if a cascade for $m \ge 1$ starts at $\binom{r}{s}$ then $m \le \binom{r+1}{s+1}$, with strict $k \le n$ when the cascade is proper. Take any $k \in k$ and $k \le n$ in the point out

$$\uparrow (properV(\underline{a})) = V(H),$$

$$\uparrow (proper(\neg V(a)) = V(G_1).$$

In view of (4) it is interesting that (8) and (9) are different iff $V(\underline{a})$ ends $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

5 Daykin's Cascade Algorithm.

Let $g \ge 1$ and M, N be two g-Cascades. We make two new g-Cascades M', N' with (i) M' + N' = M + N, and (ii) $M' \ge M$, and (iii) $\overrightarrow{-}(M') + \overrightarrow{-}(N') \le \overrightarrow{M} + \overrightarrow{N}$. Operation 1. (Bigger and smaller cascades). In every column we do the following: If both M and N have a coefficient in the column we give the bigger to M' and the smaller to N'. If only one of M and N have a coefficient in the column we give it to M'.

Operation 2. Make M'= proper M and N' = N.

 $\overline{\text{Operation 3}}$. When N does not go to top. Put M' = M and N' = improper N.

 $\overline{\text{Operation 4}}$. (Single coefficient transfer). When the last coefficient of N is at top, so it is 1, but it is not bom. Delete this 1 from N to get N'. Make M' the g-Cascade which is M plus one coefficient 1 from top.

Our conditions on M', N' are clearly satisfied. Note that we get equality in (iii) except in Operation 4 with M' = M + bom, when there is a difference of 1 in (iii).

We perform the operations in any sensible order. We stop to look around when N' = 0, or if M' has a different first coefficient from M. In the latter case we have just used (5) on Operation 2 and M' is just a single coefficient.

$$e = {r-1 \choose s-1} \qquad {r-2 \choose s-1}$$

$$i = {r \choose s} \qquad d = {r-1 \choose s} \qquad {r-2 \choose s}$$

Figure 2. An i = d + e triangle has $\uparrow d = \overrightarrow{e}$ and $\overrightarrow{i} = \overrightarrow{d} + \overrightarrow{e}$.

6 End of proof of Theorem 1.

We are given a PC family $\mathcal{B} = D0 + E1$. Then we let $\mathcal{J} = G0 + H1$ be the IS with $|\mathcal{J}| = |\mathcal{B}|$. By earlier work $E \subseteq D$ and $G \neq D \subseteq G$. Consequently $E_0 \neq D_1 \subseteq E_0$. At each of our steps we will change \mathcal{B} by increasing D but keeping $|\mathcal{B}| = |D| + |E|$ constant. On Figure 1 we plot proper V(D) and V(E). Then we look for the kind of triangles in Figure 2. The first such triangle has $e = \binom{n}{-1} = 0$ and $d = \binom{n}{0}$. In a triangle $d \in V(D)$ and $e \in V(E)$. It will turn out later that $i \in V(\mathcal{J})$. The contribution $\uparrow d$ of d to D_1 equals that \overrightarrow{e} of e to E_0 . Similarly the joint contribution $\overrightarrow{d} + \overrightarrow{e}$ of e to $|\Delta \mathcal{B}| = |D_0| + |E_0|$ equals that $|\overrightarrow{e}| = |D_0| + |E_0| = |D_0| + |E_0|$ equals that $|\overrightarrow{e}| = |D_0| + |E_0| + |D_0| + |D_0|$

Case 1. D-tail empty. Make \mathcal{J} -tail= E-tail. We have constructed a proper $V(\mathcal{J})$ with $|\Delta \mathcal{B}| = |D_0| + |E_0| = |\Delta \mathcal{J}|$, so Theorem 1 holds in this case.

Case 2. D-tail not empty. Let $\Theta = \downarrow \beta$ and $\lambda = \beta$ and $\mu = \Theta = \searrow \beta = \downarrow \lambda$ and $\nu = \downarrow \mu$. Now E-tail $< \Theta$ so (E-tail)₀ $< \Theta = \mu$. Suppose the D-tail starts at or below ν . Then (D-tail)₁ $\geq \uparrow \nu = \mu$ contradicting $|E_0| > |D_1|$. The D-tail cannot start at μ for then we would have one more triangle. We conclude that the D-tail starts at or above λ .

Case 2.1. $\beta = \text{E-tail}$. Make \mathcal{J} -tail= $\beta + \text{D-tail}$. As in Case 1 we have proper $V(\mathcal{J})$ with $|\Delta \mathcal{B}| = |\Delta \mathcal{J}|$.

Case 2.2. $\beta \neq \text{E-tail}$. Suppose that (E-tail)- β starts below λ . Then β must be on the 45° slope and $\beta = d'$, contradicting $|E| \leq |D|$. Hence (E-tail)- β starts like D-tail at or above λ .

All that remains is to apply the algorithm to M=D-tail and $N=(E-tail) - \beta$. If we stop with $M' = \mu$ we have another triangle, we zip up and are in Case 1. Otherwise we continue till N' = 0, we make M' proper and we are in Case 2.1.

References.

- [1] I.Anderson, Combinatorics of finite sets, Clarendon press, Oxford (1987).
- [2] B. Bollobs, Combinatorics, Cambridge University press (1986).
- [3] D.E. Daykin, An algorithm for cascades giving Katona-type inequalities, Nanta Math.8(1975),78-83.
- [4] D.E.Daykin, Ordered ranked posets, representations of integers and inequalities from

extremal poset problems. Graphs and Order. Proc. Conf. Banff. Canada(1984), Ed. I. Rival, pages 395-412.

- [5] T. N.Danh and D.E.Daykin, Ordering integer vectors for coordinate deletions. (Submitted to J.London Math. Soc, Feb 12, 1994.)
- [6] T. N.Danh and D.E.Daykin, Sets of 0.1 vectors with minimal sets of subvectors, (Submitted to J.Combinatorial Theory, Series A, Dec 12, 1994)