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Abstract
Let C(n) be the n-dimensional 0,1 vectors. If a € C(n) then Ag CC(n—1) is
obtained by deleting a coordinate of g in all n ways. Put AA = J{a € A}Aq for.

all A C C(n). Given k,n > 1 the Danh-Daykin Theorem finds the best possible
lower bound for |AA| over all A C C(n) with | 4| = k. A new proof is given. It
is based on Daykin’s cascade algorithm. ‘

‘1  Introduction.

Let C(n) be the set of all vectors @ = a;a5...a, with each coordinate a; zero or
one. For 1 < h < n'let é,a be the vector in C(n — 1) obtained by deleting ap from
a. The shadow AgAis the set {éiq,...,6,a}. The shadow of an arbitrary A C C(n) is
AA=}{a € A}Aa CC(n —1). In Theorem 1 below is the best possible lower bound
for |[AA| in terms of |A|, where |.| denotes cardinality. If a,b € C(n) and a # g; then
a(a,b) denotes the first ¢ in 1 <i<nwith a; # b;. Also Wa=a; + ...+ a,.

Definition 1 (V-order [5]). Let a,b € C(n) with a #b. Thena < bif (i) Wa < Wb
or (i) Wa=Wbandl=a; > b;=0withj = afqg,b).

For 0 < k < 2" the first k vectors in C(n) in V-order is called the initial section
IS(k,n).

Theorem 1 (Danh-Daykin [5,6]). If J,A C C(n) have |J| = |A| and J is an IS
then |ATJ| < |AA.



This note is a new proof of Theorem 1, based on Daykin’s Cascade Algorithm |
[3,4]. To set the stage, in Section 2 we state results of Danh-Daykin [5,6] which are

easy.

2  Preliminary results.

By A + B we denote AU B and say AN B = 0 the empty set. If u = u;..u,
and v = vj...v, are vectors then wv is the vector uy..u,vy..v,. If A C C(n) and
e€C(1) = {0,1} then Ae = {ae: a € A}, also A = A0+ B1 for some A, B C C(n—1).
We say A is part compressed PC if A, B are IS. By I5(a) we mean {z € C(n) cz < a}
where a € C(n). '

Let J be an IS of C(n +1). Put J = GO+ H1 and G = G0 + Gjl and
H H00+H11 Then )

(1) G, H are IS in C(n), (so Go, G, Ho, Hy are 1S in C(n — 1)),
(2) H C G and Hy C Gy, (so Hy C Hy C Gy C Go),

(3) AJ G (SO AG = GO and AH = Ho),

(4) if j = IS(g:lO) then G; = Hp+ z but Hy = G, otherwise.

Theorem 2 Let D,E be IS of C(n) with E C D. Put D = Do0 + D;1 and
E = Ey0 + E\1. If B is the PC family B = D0 + E1 then ‘

AB _ D lf Eong,
= ) D0 + Eol if D, C E,.

Using induction on dimension we next show that it is sufficient to prove
Theorem 1 for PC families. The Theorem is trivial for n = 1,2. Assume it holds for
n < m. Given any 4 CC(m+1) put A= A0 + Bl then

AA=AU(AAOUBU(AB)L.

We may asume |A| > |B| by exchanging 0,1 if necessary. Let D, E be the IS of C(m)
with [D| =1A| and |E| = |B] so E C D. By induction [AD| < |AA] and |[AE| < |AB].
If B is the PC family B = D0+ E1 we easily get |AB| < |AA| from Theorem 2.

3 Part compressed families.

Let B = D0 + E1 be a PC family in C(n + 1) with £ C D. Let k = |B| and
J=1Sk,n+1)=G0 + HI.
Case 1. G C D. Here E C H so (2) gives FEo C Hy C Gy € D;. Then
AJ = G CD = AB by Theorem 2. This proves the case G C D of Theorem 1.
Case 2. |D| = |G| — 1. We claim that Eq # D; C Eo. To get D we remove the last
vector v of G from G. Similarly to get E we add to H the first vector not in H. Let w

be the last vector in C(n + 1) with the properties (i) v0 < w, and (ii) wpy; = 0, and

(iii) 0 < uw < w implies u,4; = 0. Then w has the form 210, and we can use (4).



Now w ¢ B and & € Dy but 201 € B, so z € Ej and the claim is proved.

Case 3. G # D C G. The D here is contained in the D of Case 2. So the Dy herc is
contained in the Dy of Case 2. Working similary on E, from Case 2 we conclude that

Ey # Dy C Ey also in this more general Case 3.
We need only complete the proof of Theorem 1 for Case 3. This can be done by

using the push down and 10 « 01 shift of [5], but we omit the routine details. In this
" note our interest is in cascades.

4 Cascades and valleys.

Please look at Figure 1. The binomial coefficients § = (:) cover the plane, so
r, s may be negative, although we have ommitted those § = 0 from Figure 1. Put

() o= B 02) ()

so B =1(8) = ~(1B). Alsof = (18) + (B) except if B = bom.

This exception requires care, without care we “blow-up” our calculations. Of course

158 = Y18 and soon.

bom bomn - (8)

Figure 1. Pascal's Triangle. - (2) margin

Consider J = 15(a) where ¢ = 0101101 € C(7), and put

b () + () ()5 () it 0= )+ () () ()

Since Wa = 4 we find in J all b with Wb < 3, and these b are counted by p. The other
b€ J have Wb = 4. There are all such b starting 1 or 011 or 010111 .or ¢ itself, and

the numbers of these are given by the successive coefficients in ¢. Finally || =p +q.
It should now be clear how to find | 7| for any a, and conversely, how to find ¢ given

the dimension and |J|.
If we plot the coefficients of p,q on Figure 1 the result looks like a valley [5]

which we denote by V(a) = p+ ¢q. The left side of the valley is from p and has a 45°

slope. The right side is from ¢ and is a cascade. In other words the coeflicients of g are
in adjacent columns, each coefficient not below the one before it. Cascades are well
known, particularly in connection with the Kruskal-Katona Theorem [1,2]. Notice that
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if a € C(n) then the valley and cascade are an n-Valley and a g-Cascade, meaning they
start in columns n and g = n — Wa respectively. They can stop anywhere. '

We call a cascade proper if it does not go into the margin, otherwise improper.

Using the identity

(5) () = () + (5 4+t () + () for r>sz0<t,
we can always make an improper cascade proper. Conversely if a proper cascade does
not go to the top, the identity will make it improper, if we take ¢ < s. Given a fixed
g > 1, every positive integer has a unique proper g-Cascade. Given n > 1, every k in
0 < k < 2" has a unique n-Valley. There is only one n-Valley for 2" but it goes into
the margin. Improper cascades and valleys are unique to within one application of (5).
The identity (5) also shows that if a cascade for m > 1 starts at (Z) then m < (:1’;),

with strict < when the cascade is proper. Take any a € C(n). It has a valley V/(a) and
an I1S(a) = GO+ H1. We point out

©® . | Ve = V()
™) | T (properV(@) = V(H),
(8) | - /" (properV(e)) = V(H),
) T (roper(~V(@) = V(G

1

In view of (4) it is interesting that (8) and‘(g)'are different iff V/(a) ends (o)'

5 Daykin’s Cascade Algorithm.

Let g > 1 and M, N be two g-Cascades.” We make two new g-Cascades M', N'
with (i) M'+ N’ = M+ N, and (ii) M’ > M, and (iii) ~(M') + ~(N) < M+ N.
Operation 1. (Bigger and smaller cascades). In every column we do the following: If
both M and N have a coefficient in the column we give the bigger to M’ and the
smaller to N’. If only one of M and N have a coeflicient in the column we give it to
M’ - v
Operation 2. Make M'= proper M and N' = N.
Operation 3. When N does not go to top. Put M’ = M and N'=improper N.
Operation 4. (Single coefficient transfer). When the last coeflicient of N is at top, so
it is 1, but it is not bom. Delete this 1 from N to get N'. Make M’ the g-Cascade
which is M plus one coefficient 1 from top.

Our conditions on M’, N’ are clearly satisfied. Note that we get equality in (iii)
except in Operation 4 with-M’' = M + bom, when there is a difference of 1 in (iii).

We perform the operations in any sensible order. We stop to look around when
N’ = 0, or if M’ has a different first coefficient from M. In the latter case we have just
used (5) on Operation 2 and M’ is just a single coefficient.



Figure 2. An i = d + e triangle has 1d =€ and

6 End of proof of Theorem 1.

We are given a PC family B = D0+ E1. Then we let J = G0 + H1 be the IS
with | 7| = |B|. By earlier work E C D and G # D C G. Consequently Ey # D, C E.
At each of our steps we will change B by increasing D but keeping |B| = |D| + | E|
constant. On Figure 1 we plot proper V(D) and V(F). Then we look for the kind
of triangles in Figure 2. The first such triangle has e = (_nl) = 0 and d = (g) In
a triangle d € V(D) and e € V(FE). It will turn out later that ¢ € V(J). The
contribution T d of d to Dy equals that € of e to Ey. Similarly the joint contribution
d + €ofd eto|AB|=|Do|+]|FEs| equals that 5 of i to |AJ| = ["V(J)|. A triangle
is like a link in a zip fastener. We find as many adjacent triangles as there are, and zip
them up, removing them from Figure 1. What is left of V(D) and V(E) we call the
D-tail and E-tail respectively. Since |Fo| > |D;| the E-tail is not empty. Let 8 be its
first coefficient. Also let i/ = d' + €’ be the last removed triangle. Clearly we cannot

have 3 below d'.
Case 1. D-tail empty. Make J-tail= E-tail. We have constructed a proper V(J) with

|AB| = |Do| + |Eo| = |AJ], so Theorem 1 holds in thls case.

Case 2. D-tail not empty. Let © —-l,@and/\ _—,Band,u = 0= N B =] Aand

v = | u. Now E-tail< O so_(E-tail)g <0= t . Suppose the D-tail starts at or below
v. Then (D-tail); >T v = p contradicting |Ep| > |D;|. The D-tail cannot start at p
for then we would have one more triangle. We ‘conclude that the D-tail starts at

or above ).

Case 2.1. f = E-tail. Make J-tail=8 + D-tail. As in Case 1 we have proper V()
with |[AB| = |AJ].

Case 2.2. B # E-tail. Suppose that (E-tail)-3 starts below A. Then  must be on
the 45° slope and § = d, contradicting |F| < |D|. Hence (E-tail)-f starts like D-tail

at or above \.
All that remains is to apply the algorithm to M =D-tail and N=(E-tail) - 8. If we

stop with M’ = p we have another triangle, we zip up and are in Case 1. Otherwise
we continue till N’ = 0, we make M’ proper and we are in Case 2.1.

- References.
[1} I. Anderson, Combinatorics of finite sets, Clarendon press, Oxford (1987).
[2] B. Bollobs,Combinatorics, Cambridge University press (1986).
[3] D.E. Daykin, An algorithm for cascades giving Katona-type inequalities, Na,nta

Math.8(1975),78-83.
[4] D.E.Daykin, Ordered ranked posets representations of integers and inequalities from

5



eztremal poset problems. Graphs and Order. Proc. Conf. Banff. Canada(1984), Ed. 1.
Rival, pages 395-412.

[5] T. N.Danh and D.E.Daykin, Ordering integer vectors for coordinate deletions. (Sub-
mitted to J.London Math. Soc, Feb 12, 1994.) 4

[6] T. N.Danh and D.E.Daykin, Sets of 0,1 vectors with minimal sets of subvectors,
(Submitted to J.Combinatorial Theory, Series A, Dec 12, 1994)



