Sets of n-length 0-1-sequences with minimal shadow in (n-1)-length subsequences¹

R. Ahlswede and N. Cai

For $\mathcal{X}^n = \prod_{1}^n \mathcal{X}$, the sequences of length n over the alphabet \mathcal{X} , we consider for sets $A \subset \mathcal{X}^n$ their shadow $\nabla A = \{x^{n-1} \in \mathcal{X}^{n-1} : x^{n-1} \text{ is subsequence of some } a^n \in A\}$. The goal is to find for given cardinalities sets of minimal cardinality of the shadow. It is not optimal to choose the segments of the B-G order (see Preprint 92–036).

Example: Choose $\mathcal{X} = \{0,1,2,\}$, n=3, and notice that the 12^{th} initial segment in B–G order is $A = \{000,100,101,001,110,101,011,111,200,020,002,210\}$ with $\nabla A = \{00,10,01,11,20,02,21\}$, $|\nabla A| = 7$. However, for $B = \{000,100,010,001,110,101,011,111,200,210,201,211\}$, |B| = 12, we have $\nabla B = \{00,10,01,11,20,21\}$, $|\nabla B| = 6$.

However, in the binary case the B-G order coincides with the H-order of [1]:

For any integer $u \in [0, 2^n]$ the u-th initial segment consists of all $x^n \in \{0, 1\}^n$ with less than n-k ones and all remaining elements with n-k ones, whose complements are in the initial segment of the squashed order (used for instance in Kruskal-Katona).

As in the vertex isoperimetric problem in binary Hamming space ([1]) it is optimal also for our shadows of sets in $\{0,1\}^n$.

We use the unique binomial representation of an integer u

$$u = \binom{n}{n} + \dots + \binom{n}{k+1} + \binom{\alpha_k}{k} + \dots + \binom{\alpha_t}{t}; n > \alpha_k > \dots > \alpha_t \ge 1, \quad (1)$$

and observe that for an initial, H-order segment S with |S| = u

$$|\nabla S| = \binom{n-1}{n-1} + \binom{n-1}{n-2} + \dots + \binom{n-1}{k} + \binom{\alpha_k-1}{k-1} + \dots + \binom{\alpha_t-1}{t-1} = \stackrel{\nabla}{G}(n,u), \text{ say.}$$

$$\tag{2}$$

Theorem. For every $A \subset \{0,1\}^n$ $|\nabla A| \geq \overset{\nabla}{G}(n,|A|)$ and the bound is achieved by the u-th initial segment in H-order.

The proof is an immediate consequence of our main discovery, the

 ∇ -Inequality: If $w_1 \leq w_0 < \overset{\nabla}{G}(n,w)$ and $w \leq w_0 + w_1$, then

$$\overset{\nabla}{G}(n,w) \le \overset{\nabla}{G}(n-1,w_0) + \overset{\nabla}{G}(n-1,w_1). \tag{3}$$

¹We are grateful to David Daykin for the communication on this subject.

Proof of Theorem by induction on n: For n=2 (3) is readily verified. From the IH for n-1 we proceed to n. Define for $A \subset \{0,1\}^n$ and $B \subset \{0,1\}^{n-1}$

$$A_i = \{x_1 \dots x_{n-1} : x_1 \dots x_{n-1} i \in A\}$$
 and $B * i = \{y_1 \dots y_{n-1} i : y_1 \dots y_{n-1} \in B\}$.

Next observe that $\bigcup_{i=0}^{1} (\nabla A_i) * i \subset \nabla A, \bigcap_{i=0}^{1} (\nabla A_i) * i = \emptyset$

and that therefore $|\nabla A| \ge \sum_{i=0}^{1} |\nabla A_i| \ge \sum_{i=0}^{1} \overset{\nabla}{G}(n-1,|A_i|)$ (by the IH).

According to the ∇ -inequality this can be lower bounded with the desired $\overset{\circ}{G}(n,|A|)$, if $|A_0|, |A_1| < \overset{\nabla}{G}(n,|A|)$. Otherwise we have for some $i \ |A_i| = \max(|A_0|,|A_1|) \ge \overset{\nabla}{G}(n,|A|)$ and we are done again, because $\nabla A \supset A_i$.

Proof of the ∇ -inequality: Instead of presenting our original proof with fairly lengthly calculations with binomial coefficients, we derive the inequality from Lemma 6 of [2], which in turn makes use of an inequality of Eckhoff and Wegner. Define

$$G(n,u) = \binom{n}{n} + \binom{n}{n-1} + \dots + \binom{n}{k} + \binom{\alpha_k}{k-1} + \dots + \binom{\alpha_t}{t-1}; u \text{ as in } (1).$$
 (4)

Lemma 6 of [2]: If $0 \le u_1 \le u_2$ and $u \le u_1 + u_2$, then

$$G(n,u) \leq \max(u_2, G(n-1,u_1)) + G(n-1,u_2).$$

Proof of ∇ -inequality: If (3) does not hold, then

$$w - \overset{\nabla}{G}(n, w) < w_0 - \overset{\nabla}{G}(n - 1, w_0) + w_1 - \overset{\nabla}{G}(n - 1, w_1)$$

and with the convention $\overline{u}(n-1) = u - \overset{\triangledown}{G}(n,u)$

$$\overline{w}(n-1) < \overline{w}_0(n-1) + \overline{w}_1(n-2). \tag{5}$$

Now (1), (2), and (4) imply that

$$G(n-1,\overline{u}(n-1)) = \overset{\nabla}{G}(n,u), \tag{6}$$

$$G(n-1,\overline{w}(n-1)) > G(n-2,\overline{w}_0(n-2)) + G(n-2,\overline{w}_1(n-2)).$$
 (7)

Lemma 6, (5), and (7) yield

$$G(n-1,\overline{w}(n-1)) \le \overline{w}_0(n-2) + G(n-2,\overline{w}_1(n-2))$$

or by our convention and (6) $\overset{\triangledown}{G}(n,w) \leq w_0$, a contradiction to our hypothesis.

- [1] L.H. Harper, "Optimal numberings and isoperimetric problems on graphs", J. Comb. Theory 1, 385–393, 1966.
- [2] G.O.H. Katona, "The Hamming-sphere has minimum boundary", Studia Scientia-rum Hungarica 10, 131-140, 1975.