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1. Introduction

Let Ω be the set ²1, 2,…, n´, and let W be the empty set. Let ' be the family of

all non-empty sets of subsets of Ω. For ! `' and XXΩ, put

Z!(X )¯

1

2

3

4

W
4

A`!,AXX

A

if there is no A `! with AXX,

otherwise.

An important discovery is the following.

T 1 (Ahlswede and Zhang [1]). If Wa! `', then

3
rZ!(X )r

rX r 0 n

rX r1
¯ 1, (1)

where summation is o�er non-empty XXΩ.

This theorem has a dual, Theorem 1D below. For ! `' and XXΩ, put

Z$!(X )¯

1

2

3

4

Ω

5
A`!,AYX

A

if there is no A `! with AYX,

otherwise.

Also, let f be given by f(0)¯ 0 and f(m)¯ 1­(1}2)­…­(1}m) for integer m& 1.

T 1D (Daykin and Thu [2]). If Ω a! `', then

3
rZ$!(X )r

(n®rX r) 0 n

rX r1
¯ nf(n®1), (1D)

where summation is o�er XXΩ, X1Ω.

In this note we present the results of a search for similar identities.

2. A method of in�estigation

To illustrate our method, let y
"
, y

#
,… , y

n
be real variables. To study (1) for

! `', where Wa!, we look for solutions of the identity (n) below, in which

summation is over non-empty XXΩ :

3 rZ!(X )r yrX r ¯ 1. (n)
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We write out (n) for the example !¯²A´ with A¯²1, 2,… , a´ and 1% a% n. This

gives the equation

0n®a

0 1 y
a
­0n®a

1 1 y
a+"

­…­0n®a

n®a1 y
n
¯ 1}a.

Taking a¯ 1, 2,… , n in turn, we obtain a triangular set of simultaneous equations

with unique solution y
k
¯ 1}k 0nk1 , proving that the multipliers in (1) are unique.

In general, we choose a new function instead of Z!(X ), and a trial identity similar

to (n). To determine y
"
, y

#
,… , y

n
for the trial identity, we write out particular cases

of !, and solve the equations. Finally, we test to see if the trial identity holds in

general. In this paper we present our discoveries. Details of the work involved will

appear in [4].

3. The function T

For ! `' and XXΩ, put

T!(X )¯

1

2

3

4

W
5

A`!,AYX

A

if there is no A `! with AYX,

otherwise.

Usually, empty unions are W. Notice that T follows this convention, but Z* does not.

Let XXΩ and !," `'. As usual, !h"¯²AeB : A `!,B `"´ and !g"¯
²AfB : A `!,B `"´. Then we have all of the following.

If Ω `!, then T! 3Ω. If !¯²W´, then T! 3W. (2)

Now

T!e"(X )¯T!(X )eT"(X ) and T!g"(X )¯T!(X )fT"(X ), (3)

so

rT!e"(X )r¯ rT!(X )r­rT"(X )r®rT!g"(X )r. (4)

We omit the proofs of (2) and (3) because they are easy and similar to the proofs in

[2]. For ! `', put

P(!)¯3 (®1)rX r rT!(X )r and Q(!)¯3 (®1)rX r rT!(X )r f(rX r),

where summation is over all XXΩ and f is as defined in Section 1.

T 2. For all ! `', we ha�e P(!)¯ 0.

Proof. Case 1. !¯²W´. Here T! 3W by (2), and P(!)¯ 0.

Case 2. !¯²A´, where A1W. Then T!(X ) is A or W as XXA or X\A,

respectively. Hence

P(!)¯ 3
XXA

(®1)rX r rAr¯ rAr 3
XXA

(®1)rX r ¯ 0.

Case 3. !¯²A
"
,A

#
,… ,A

m
´ with m" 1. Let %¯²A

"
,A

#
,… ,A

m−"
´ and &¯

²A
m
´. By using (4), we obtain

P(!)¯P(%)­P(&)®P(%g&).

Then r%r, r&r, r%g&r!m, so by the induction hypothesis, P(!) is 0­0®0.
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T 3. If 3 `' and 1 `A for e�ery A `3, then Q(3)¯®1.

Proof. Case 1. 3¯²A´, A1W because 1 `A. Then T3(X ) is A or W as

XXA or X\A, respectively. Hence if a¯ rAr, then

Q(3)¯ 3
XXA

(®1)rX r rAr f(rX r)

¯ rAr 3
XXA

(®1)rX r f(rX r)

¯ a 3
!
%k%a

(®1)k 0ak1 f(k)¯®1.

For the last step above, we replace 0ak1 by 0a®1

k 1­0a®1

k®11 and f(k) by f(k®1)­1}k.

Then the coefficient of (®1)k}k in the sum reduces to 0a®1

k®11 , which is 0ak1k}a. So the

sum is a(((1®1)a®1)}a)¯®1.

Case 2. 3¯²A
"
,A

#
,… ,A

m
´ with m" 1 and 1 `A

i
for all 1% i%m. Let %¯

²A
"
,… ,A

m−"
´ and &¯²A

m
´. Again using (4), we have

Q(3)¯Q(%)­Q(&)®Q(%g&).

Then %, & and %g& have cardinalities less than m, and 1 `A for each A `%,&,

%g&. We can apply induction on m to obtain Q(3)¯ (®1)­(®1)®(®1)¯®1.

Next, we present Theorem 4. The method of proof is the same as above.

T 4. Let " be a set of disjoint subsets of Ω, and Wa". Then

Q(")¯®r"r.

4. Identities in�ol�ing chains or disjoint families

By changing slightly the definition of T, we obtain the function H below, and some

interesting results. The proofs are easy. For ! `' and XXΩ, put

H!(X )¯

1

2

3

4

W
5

A`!,AXX

A

if there is no A `! with AXX,

otherwise.

For ! `', put W(!)¯3 rH!(X )r} 0rX r 0 n

rX r11 , where summation is over non-

empty XXΩ.

T 5. Let " be a set of disjoint subsets of Ω, and Wa". Then W(")¯ r"r.

T 6. Let # be the chain W1A
"
ZA

#
Z…ZA

m
of subsets of Ω. For

1% i%m, write a
i
¯ rA

i
r. Then

W(#)¯m® 3
"
%i%m−"

a
i
}a

i+"
.

Proof. Case 1. m¯ 1. Then the functions Z# and H# are the same, and

W(#)¯ 1, by Theorem 1.
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Case 2. m" 1. Let %¯²A
"
,A

#
,… ,A

m−"
´ and &¯²A

m
´.

If A
m

XX, then H#(X )¯A
m

and H%(X )¯A
m−"

. If A
m

\X, then H#(X )¯
H%(X ). Hence W(#)¯W(& )­∆, where W(& )¯ 1, by Case 1, and

∆¯ 3
W1XXΩ,Am

\X

rH%(X )r

rX r 0 n

rX r1
¯ 3

W1XXΩ

rH%(X )r

rX r 0 n

rX r1
® 3

Am
XXXΩ

rH%(X )r

rX r 0 n

rX r1
¯W(%)® 3

Am
XXXΩ

rA
m−"

r

rX r 0 n

rX r1
¯W(%)®

a
m−"

a
m

W(& ).

We apply induction on m to end the proof.

C. For each identity in this paper, we obtain the dual by taking

complements in the same way as for the dual (1D) of the identity (1) in [2].

A. The author wishes to thank David E. Daykin, University

of Reading, England, for his help with this paper.
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