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Abstract

Broadcasting is the task of transmitting a message originated at one processor of a commu-
nication network to all other processors in the network. A minimal k—fault tolerant broadcast
network is a communication network on n vertices in which any processor can broadcast in spite
of up to k line failures in optimal time T, (k). In this paper we study Bjg(n), the minimum
number of communication lines of any minimal k—fault tolerant broadcast network on n pro-
cessors. We give the value of By (n) for several values of n and & and, in case k < [logn|, give
almost-minimum k-fault-tolerant broadcast networks.
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1 Introduction

This paper deals with graphs in which broadcasting can be performed efficiently even in presence
of failures.

We represent a communication network as a connected undirected graph G = (V, F) where
the node set V' represents the set of processors and the edge set represents the set of bidirectional
communication lines between processors. Broadcasting is the process of delivering a message from
a processor (called the originator) to all the other processors in the network. The communication

model considered in this papers assumes the following constraints:
(1) Messages can be sent directly only to neighbors in the graph;
(2) each message transmission (call) requires one unit of time;
(3) any processor can participate in at most one call per time unit.

The broadcast problem in this model has been studied by several authors [4, 5, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 22, 19, 20, 25, 26, 27, 29, 30]. Recently, in [1] new concepts of broadcasting
have been introduced.

Two important measures of the goodness of a network are the time needed to perform the
broadcast and the number of communication lines.
It is easy to see that after ¢ time units the maximum number of members which may have received
the message (informed nodes) is 2, including the originator. This is due to the fact that, in one
unit of time, the number of informed nodes can at most double. Furthermore, this implies that the
minimum number of time units required to broadcast a message in a set of n members is [log n]?.
A minimal broadcast network (mbn) is a communication network with n nodes in which a message
can be broadcasted in [logn] time units, regardless of the originator.
Let B(n) be the minimum number of edges in any mbn with n nodes. Minimal broadcast networks
having B(n) edges are called minimum broadcast networks; they represent the cheapest possi-
ble broadcast networks, as far as the number of communication lines is concerned, in which the
broadcast from any node requires minimum time [logn]|. Values of B(n) for some n are known;
however, no general method of constructing mbn’s is known. The problem of determining B(n) for
arbitrary n is thought to be NP-complete. Notice that the problem of recognizing whether a given
network is a minimal broadcast network is NP-complete. Since the design of minimum broadcast
networks with n nodes, n arbitrary, seems to be very difficult, much attention has been given to

the construction of mbn’s with as few edges as possible [9, 4, 15, 18, 7, 22, 19, 20].

' All logarithms in this paper are in base 2.



Liestman [25] first introduced the important issue of fault-tolerant broadcasting. Consider a
network G = (V, /) and let E’ C E be any set of edges, |E’| < k. The set of edges E’ represents
faulty communication lines and the subgraph G’ = (V, F — E') represents the functioning part of
the network. A k fault-tolerant broadcasting (k—ftb) scheme is a broadcast protocol which assures
that any node in the network will receive the message from the originator in presence of up to k
line failures, i.e., when any set E’ of size |E’| < k is faulty. It is important to point out that in this
model the sequence of calls is fixed and cannot be changed when faults are detected.

Indicate by Tk(n) the minimum integer such that there exists a network on n nodes in which
any node can perform a k-fault tolerant broadcast in at most 7% (n) time units.

The best known lower bounds on 7j(n) are [logn]| + k for general values of k£ and n and
Tir(n) > [logn] + k + 1 for each k and odd n such that k& > 20°871 — 5 4 |log(2Mle”l — n — 1)],
[25, 16, 28]. In [5] and [25] k—ftb schemes requiring optimal time were given for k£ = 1 and 2. Lately,
it was shown in [16] that for each n > 8

[logn|+ k for n even and k < |logn| or
n odd and k < [log(2M°e™l —p 4 1)];

[log(n —1)]+k+1 for n odd and k satisfying the two inequalities
E > 2Mgnl —p — 14 [log(2Mg”] —n + 1)
< log(n — 1),

[logn|+ k or [log(n —1)] +k+1 for n odd and the remaining k& < [log(n —1)].
The problem of broadcasting in the presence of a larger number of failures has been considered in
[26], [28], and [13]. In [26] and [28] it is shown that Tyx(n) < [log[37]] + 2k. Moreover, in [2§]
Peleg and Schiffer show that 7% (n) < 2c[logn]| 4+ k+8k/9c+ d, where ¢ > 1 is an integer such that
k< (n—-1)/(8¢+ 1) — ¢, and d is a constant.

In [13] it is shown that that if n < 2Uiogn] 4 2llegn]=2 thep

ﬂOg n-‘ +k+ \jlog n]—[log(:—QUOg nI] _QJ if k < gllogn] _ [log n}
Tk(n) <
[log n] + k + hlogn]_“og’ziwog "J)1—2J +1 if 2Ueen) _ [logn] < k < 2llesn) _ 9,
and that

m+k fek<2™-m-1
Te(2™) =

m+k+1 2" -—-m<E<2™m -2

In this paper we consider the problem of constructing sparse broadcast networks supporting k
fault—tolerant broadcasting schemes requiring minimum time.

Call minimal k-fault—tolerant broadcast network a graph in which any node can perform k

fault-tolerant broadcasting in time T%(n).



Let Bi(n) be the minimum number of edges in any minimal k-fault-tolerant broadcast network
with n nodes. k-fault-tolerant broadcast networks having Bj(n) edges represent the cheapest
possible broadcast networks, as far as the number of communication lines is concerned, in which
fault—tolerant broadcasting from any node requires the minimum possible time for the given values
of n and k. They are called minimum k—fault—tolerant broadcast networks.

The problem of evaluating By (n) has been studied in [4] and [25] in case k = 1 and 2. Gargano
and Vaccaro [16] consider k < |logn]| and show that By(n) = O(n(k + [logn])/2). Moreover,
Gargano [13] shows that Bg(2™) = (m+ k)2™~! for each k < 2™ — m. In [20] L. Khachatrian and
H. Haroutiounian show that By (2™ — 2) = m(2™~1 — 1).

In this paper we study the construction of minimum or almost—minimum k-fault—tolerant broad-
cast networks. In particular we propose k-fault—tolerant broadcast networks whose number of edges
differs from the minimum possible number of edges of any k-fault—tolerant broadcast network in at
most a constant factor, for k < |logn| if n is even and k& < |2[1871 — 5 4 1] if n is odd.
Moreover, we derive the exact value of Bj(n) for several values of n and k and give graphs having
By (n) edges. In particular for £ = 1 we extend the work in [5, 25] by giving By (n), for each n < 16,

and n = 2™ — 6, for any m.

2 A lower bound

In this section we establish a lower bound on Bg(n) for n and k such that Ty (n) = [logn] + k.
Let the number of nodes be n such that n — 1 = 27 — 2¢ 4+ j with m = [logn — 1], £ < m, and

0 < j < 21, Define
_[m—L+1 ifj>0
L(")—{m—£ if j = 0.
Lemma 2.1 Any vertex v in a minimal k—fault-tolerant broadcast networks G on n vertices must

have degree deg(v) > k+ L(n).

Proof. Let the vertex v be the originator and v;, for ¢ = 1,2...,, the :—th neighbor called by v.
Since any set of k edges can be faulty, let us suppose that the edges (v,vy), (v, v2), ..., (v,v) are
the faulty ones. Vertex vg4,; is called at time unit ¢; > k44 and in the remaining ([logn|+k)—¢t; <
[logn] — i time units at most 2M1°6”71=% — 1 other nodes can be informed through vy;. Since n — 1

nodes must receive the information v must call at least vg4q, ..., vk Where
i—1 ¢
Zgﬂogﬂ—i — gllogn] _ oflogn]-t+1 - 1 < Egﬂog?ﬂ—i — 9[logn] _ 9[logn]—t
=1 =1
Therefore, t = L(n) and deg(v) > k + L(n). ]
We then get the following theorem.



Theorem 2.1 For each n and k such that Ti(n) = [logn| + k it holds B(n) > (k+ L(n))n/2.

3 A simple case: n =2™

In this section we summarize the case n = 2™ and k < n — m solved in [13].
We describe the calling scheme and give a graph which supports it. In order to illustrate the
calling scheme let us introduce some notation. Label, in any order, the nodes with the different

elements of Fym, the finite field with 2™ elements (For notions on finite fields see [24]). Let « be a

primitive element of the field Fym, that is, a is such that its successive powers a® = 1,a!, ..., a" 2

give all the nonzero elements of the field and o”~! = 1.

Broadcast—Scheme(Fym):
Time unit ¢, (t=1,...,m+k <n —1): each informed node 3 calls 8 + af~1.

Theorem 3.1 [13] For each k < n — m — 1 the graph G = (V,FE) with V = Fym and F =
{(B,B + a')|a is a primitive element of Fom and i = 0,...,m + k — 1} allows a k-fault tolerant

broadcast in minimum time and has the minimum possible number of edges.
Corollary 3.1 B;(2™) = (m+ k)2™! for each k < 2™ — m.
4 Fault—Tolerant Broadcast Graphs on an even number of nodes

In this section we give near-minimum k-fault tolerant graphs for n even and k& < [logn].

Let the node set be {0,...,n — 1}, with n even and n # 2[1°871 and let k < |logn]|. Define the

14:{[%}[%}+1[2%1}—1} fort=1,... k (1)

Note that the sizes of the sets V; satisfy the following relations:

sets

Vil € {[n/2'7, Tn/2" - 1} (2)

and t
/27 = n - Y|Vl (3
Let the set . -
B:{O,...,n—l}\tL_Jth:{O,...,[;—k-‘—1} (4)
with

flog | B[] = [log n] — k. (5)



If [2%] = |B| < 2M°871=*% we can define £ and j such that £ is the minimum integer for which
|B| = 2flosnl=k _ 9t 4 5 with £ < [logn] —k, and j < 271, (6)
if [2%1 = |B| = 2Mogn1=* we (formally) put £ =0 and j = 1.

For each integer ¢t > k define the sets V; as follows

[logn]—t—1 - [logn]—t -
Vi = i+ D> 2 g+ D 2 -1 fort =k+1,...,[logn] — £ —(T)
i=t

=4
‘/flogn]—f = {]7]—}_17]—}_2[_1} (8)
‘/flogn]—f—}—l = {07 .. '7j - 1} (9)
V| = ollognl—t = forp =k +1,..., [logn| — ¢, Viogn]—e411 =7 (10)

Indicate by vy node with smallest (highest if ¢ = 1) label in the set V; (as defined in (1) and (7)),
that is,

max{v : veVi}=n—-1 ift =1

min{v : v € Vi} =[] if2<t<k;
vy = (11)
min{v : veVi} =+ 9i ik 1<t < [logn] — (1.

min{v : v e V;} =j([logn] —€—t+1) if [logn] — €<t < [logn] —{+1
4.1 Broadcast trees

In this section we describe a broadcast tree on a set of n nodes labelled by consecutive integers.
The broadcast process proceeds as follows. Initially, at time unit 0, only the originator knows
the message. In general after time unit ¢ — 1 there are 2'~! informed nodes and each of them has
to broadcast on a subset of consecutive numbered nodes. This set is divided into two subsets of
consecutive numbered nodes such that either they have equal size or the one the informed node
belongs to has one element more than the other. The informed node calls a node in the other subset,
that will broadcast on it, while it continues broadcasting on its subset. The process continues for
[logn] time units at the end of which there is a calling path from the originator to each node in

the network.

The broadcast tree on the set of all nodes consecutively numbered from a to & and rooted in

the originator v is the tree

THa,...,b},v)={a,a+1,...,b}, F)



where the edge set E is obtained by inserting the edge (u,w) if and only if the above described

broadcasting process poses a call from u to w.

Here we specify, for further use, a slightly different calling process (that is, edges in T'(Vy,v1)).
when the node set is Vi = {n/2,...,n— 1} and the root is the node with label v; = n —1. Consider

the partition of the node set {n/2,...,n — 1} defined, following (1) and (7), by

Al = {n—1-v :veVy} fort=1,... [logn] —£-1 (12)

/flogﬂ—é = {n—-1-v : v€Viggn—tg1, v#n— 1} (13)

Consider then the following broadcast scheme from n — 1 to {n/2,...,n — 1}:

time unit ¢t (1 <t < [logn] —¥#): n— 1 calls a node in A} that, during the following
[logn] — 1 — ¢ time units, broadcasts to the |A!| < 2[1°871=1=% nodes in AL

The broadcast from the informed node in A} to the other nodes in A} can be performed in
[logn] — 1 — ¢t time units according to the protocol previously outlined. Therefore, the above
broadcasting scheme informs each node in {n/2,...,n — 1} in [logn] — 1 time units.

Example 4.1 Let the node set be {0,...19} and k = 2. One has [19/4] =5 with { =2 and
Vi = {10,...,19}
Vo =15,6,7,8,9} A, ={14,13,12,11,10}
Ve =1{1,2,3,4} A, ={18,17,16,15}
Vi ={0} Az = {19}
The trees T'(V2,5) and T'(V1,19) are represented in Figure 1.

19

14 18

9 10 15

Figure 1:



4.2 The Graphs

Let Ty = T'(Vi, v¢) the broadcast tree (as defined in the previous section) on the node set V; rooted
in v

Denote by F; the edge set of the tree T}, for t = 1,..., [logn] — £+ 1. Moreover, let

pO) = Yflesnl=t+1

e E®? be the following set of edges: for each ¢ and each v node in 7} if v is a son of f and
has sons sy, ..., s, (called in this order during the broadcast on 7} from its root v), that is,
(f,v), (v,s1),...,(v,s.) € Fy, then E®) contains the edges (fys1),(s1,82) ..y (Sp—1, 80 );if v =

vy, the root of T, and has sons sq,...,s, then F?) contains the edges (s1,82) ..., (Sr—1,5:);

o E) be the following set of edges: connect to each v; each node which is not already connected

to v;. That is, E®) contains all the edges (v, v;) such that (vs,v) ¢ F; U E(®),

o EM be the following set of edges: for each node v € {0,...n/2 —1} and t = 1,..., k define
%-I—(v@ {;—t]) if v<n/2

{(v@(?—ﬂ) if v > n/2

where & and @ denote, respectively, the subtraction and the addition modulo n/2, then

EO={( @) 0<v<n-1, 1<t <k}

Define then the graph
Grn=({0,...,n =1}, Ex,), where By, = EO U EA U E® U EW,
In the sequel we prove the following results.

Theorem 4.1 The graph Gy, allows k-faull-tolerant broadcasting from each node in minimum

time for each n even and k < |logn|.

Proof. We give a broadcasting scheme on G, ; and prove that it is £-fault-tolerant. Call z the

originator. The process is in two rounds.



BROADCAST SCHEME(G, ,z) [Suppose |B| = [ 2] # 2Mcenl=k]

k
ROUND 1: ?
(1) If £ = vy then
(2) time unit 1: v; calls the node v,y
(3) time unit ¢t (1 <t < [logn] — £): v; calls the node v;41 and during the

following [logn] — ¢ time units, broadcasts to the |F;| < 2[°871=% nodes in T;.
vy calls a node in A} (as defined in (1)) which during the following
[logn] — t time units, broadcasts to the |4} < 2M1°871=¢ nodes in A}.
(4) If  is a node in 7; with « # v; then
(5) time unit ¢t (1 <t < [logn] —#): z calls the node v; that during the following
[logn] — t time units, broadcasts to the |F;| < 2[°8?1=% nodes in Tj;
(if v1 = fr(2), for some 1 < 7 < k, then at time 1  calls
the son that vy first informs when it broadcasts on 77)

(6) If £ = v; with ¢ £ 1 then

(7) time unit ¢t (1 <t < [logn] —¢ t #1): x calls the node v; that during the
following [logn] — ¢ time units, broadcasts to the |F;| < 2[°871=% nodes in T;.
(8) time unit ¢t = i [call s1,...,s, the sons of ] x calls the node s,

s1 will call sy at time unit ¢ + 1; s will call s3 at time unit ¢ 4+ 2, and so on.
ROUND 2:

(9) time unit [logn] +t (1 <t <k): each node v, if informed, calls the node ft(n)(v)

Notice that in Round 1 of BROADCAST-SCHEME(G,, &, x), if the originator z is a node in 7}
then the broadcast from v; is modified as follows to avoid the node z: Let f be the father of z and
51,...,5, be its sons, during the broadcast on T; f calls x at time 7z and z calls s; at time ¢ + j,
then in the modified broadcasting f calls s; at time ¢ and s; calls s;4; at time ¢4 7 (these calls, as
the calls of line (9), are possible since the edges of G, ; include those in E(?)).

Consider now |B| = [5] = 2Mlegnl=k The above reasoning implies that if the originator is a
node in the tree T; then there certainly is a node, say u, in this tree that ends Round 1 before the
time units [logn]. This implies that we can easily modify the above algorithm to handle the case
|B| = 2Mlog71-k just letting u call Ulogn]+1 = 0 at time [logn]. The broadcast from vfogp)41 is

the same as described for the other v;’s.

It is immediate to see that in absence of faults, each node receives the originator message within
the [log n] time units of Round 1 of the BROADCAST-SCHEME(G), i, z).
In particular, Round 1 creates a broadcast tree rooted in the originator z such that if z # v; the
subtree rooted in the node called at time unit ¢ has node set V; for t = 1,...[logn| — ¢ + 1; if

& = vy the subtree rooted in the node called at time unit ¢ has node set A}, for t = 1,...[logn]

We show now that Round 2 completes a k—fault—tolerant broadcasting, that is, we show that
during each of the k time units of Round 2 each node receives the message of the originator along

an additional edge disjoint path.



We call informer of a node v at time ¢ a node a from which v receives the message (in the
absence of failures) during the first ¢ time units of Round 2 (that is, within time unit [logn] 4t
of the BROADCAST-SCHEME(G), x, ©)). More precisely, a is an informer of v at time ¢ if either

a = v or the calls of the first ¢ time units of Round 2 form a path

(a, fi,(a) = a1) (a1, fi,(a1) = a2) -~ - (ar—1, fi, (ar—1) = v),

for some integers 41, t3,...,4,, 1 < r <, such that 1 < < ... < i, <t We denote by inf(v, )

the set of informers of v at time ¢. Formally, inf(v,0) = {v} and for each ¢ < k we have

inf(v,t) = {v} U{a| there exist integers 1 < ¢y < ... <%, <t such that f; (...(fi,(a))) = v}.

inf(v,t) = inf(v,t —1)U{a|exist 1 <4y <...<is <t —1with fi(fi.(...(fi;(a)))) =v}
= inf(v,t —1)U{a| exist 1 <43 <...<is <t —1with f; (...(fi,(a))) = fri(v)}U{fe(v)}

and therefore

inf(v,t) =inf(v, ¢ — 1) Uinf(fe(v),t — 1) (14)

Consider as example n = 10 and v = 3: one has

inf(3,0) = {3}, inf(3,1)={3,8}, inf(3,2)={1,3,6,8}, inf(3,3)=1{0,1,2,3,5,6,7,8}

Let S; be the set formed by 0 and the 2°=1 — 1 possible sums of elements in {|V3],...,|Vi|}, e.g.
S; = {0}, Sz = {0,|V3]}, S3 = {0,|V2], V3|, |Va| + |V5]}, and so on. Note that {|V2|,...,|Vi|} =
{]A%l,...,|A}_1|} The following properties of the sets inf(v,t) are proved in [16].

1) For each node v and time instant ¢, 1 <t < k,

{vezlze St U{n/2+ (va2)|z€ S} ifv<n/2,
inf(v,t) = { (15)
{vdzlz€ S} U{n/2+ (v P 2)|z€ S} ifv>n/2.

2) For each node v and time instant ¢, 1 <¢ < k, the set of informers of v at time ¢, inf(v,¢), is

equal to a set {ay,...,ay} with a; < ag < -+ < aye satisfying
n+ (a1 — age),a; — a;—1 € {[n/2'], [n/2'] — 1}, i=2,...,2%. (16)
3) For each node v and time instant ¢, 1 < ¢ < k,

inf(v,t — 1) Ninf(f;(v),t —1) = 0. (17)



A t-path to a node v is any calling path from the originator to v formed by calls of Round 1
and of the first £ time units of Round 1.
Given a t-path P to a node v, there exists exactly one node I(P) € inf(v,t) such that P = RQ

where:
— R is a path, created by the calls of Round 1, from the originator to I(P);

— @ is a path from I(P) to v which is created by the calls of the first ¢ time units of Round
2, that is @ = (I(P), fi,({(P)) = a1)(aq, fi,(a1) = az)...(a;,-1, fi,(a;,—1) = v) for some
integers 7y, 43, ...,%, such that 1 <i; < ... <4, <{¢;Q is empty if [(P) = v.

Notice that for each originator 2 the edges used in the execution of Round 1 are different from
those used in Round 2. From (17), following the lines of the analogous result one presented in [16]
we can prove the following property of the above paths: Given a (¢ — 1)-path P = RQ from the
originator to node v and a (¢t — 1)-path P’ = R'Q)’ from the originator to f;(v), the paths P and
P'(fi(v),v) are edge disjoint if and only if R and R’ are edge disjoint.

From the above property of {-paths and (16) it is easy to derive that for each originator z, the
sequence of [logn] calls performed in Round 1 followed by the calls of the k < [logn]| time units
of Round 2 give a k fault-tolerant broadcast protocol. Therefore, the graph G, ; allows k—fault-

tolerant broadcasting in time [log n] 4+ &k from each node. O

Theorem 4.1 gives the desired bound on Bjy(n) when n is even. Notice that L ([2%} + 1) <
L(n)+ 1 for each n and k < [logn|.

Corollary 4.1 For each n even and k < [logn|
3 n 3
Bi(n) <|Egn| < 5k+L [Q—k}+1 +2 (n—3)—|—§k—|—6.

Proof. From the definition of the edge set E, ; of the graph G, i, we have F,, |, = Z?Zl |E(i)|
with

[EO] = |ULEE By <n—[logn] — ¢4+ 1=k+ L ([5]+1);
|EG)| <n—logn] =L+ 1=Fk+ L([3] +1);
EG] < (n-1) (k+L([&]+1));

[EW)] = k.

Hence By = S0, [EO] < (3k+ L ([&1+1) +2) (n—3) + 3k +6. O

10



4.3 0Odd number of nodes

Let the number n of nodes in the network be odd. We show that
Theorem 4.2 For each k < |2M°8" —n 4 1] the graph

H,p=(0,....n =1} B,y s U{(n—1,v) : 0<v<n-—2}) (18)
allows k—fault-tolerant broadcasting in time [logn| + k from each node.

Proof. Let the node set be {0,...,n — 1} with n odd. The idea is to apply the BROADCAST-
SCHEME(G,,—1 k, ) to the even sized set of nodes {0,...,n — 2} with the following modifications.

BROADCAST-SCHEME-ODD (G, &, )

ROUND 1:
If the originator is the node n — 1 then
time unit ¢t (1 <t < [logn] —¥):
the originator n — 1 calls the root v; which in the following time units will broadcast to nodes in T}
else [the originator is the node x #n — 1]
time unit t (1 <t < [logn] —¥):
Calls are the same as in Round 1 of BROADCAST-SCHEME(G, x_1, ) but for the fact that,
if the originator « is a node in the tree 7; then during the the broadcasting to the nodes in 7;
node z is not eliminated but substituted by n — 1.
[Notice that the above substitution can be done since the considered values of k assure that

B = [(n —1)/25] < 28 =11=F (efr (4), (5)]

ROUND 2:

time unit [log(n — )]+t (1 <t<k):
each informed node v € {0,...,n — 2} with v # 2 and v # ft(n_l)(;l‘), calls the node ft(n_l)(v)
if # 2 n — 1 then node n — 1 exchanges a call with node ft(n_l)
[Notice that this can be consistently applied since the size of {0,...,n— 1} — {a} is even and the
originator x does not need to be called.]

().

The k—fault-tolerance of the above BROADCAST-SCHEME-ODD(G), i, ) is immediate from
the correctness of BROADCAST-SCHEME(G,_1, k). o

The above Theorem 4.2 and Corollary 4.1 give the desired bound on Bj(n) when n is odd.

Corollary 4.2 For each n odd and k < 21871 — p 4 1|

3 -1 3
Bi(n) < |Epoipl +1—1< (§k+L<("2—k}+1)+3) (n=3)+ Sk +8.

11



5 Fault Tolerant Broadcasting Graphs from Graph Product

The binary hypercube of dimension m, denoted by H,,, is the graph whose nodes are all the binary
strings of length m; two nodes are connected by an edge if and only if they differ in exactly one
bit.

It is well known that the hypercube is a minimum broadcast graph. Denote by «;, for ¢ =
0,...,m — 1, the binary string o; = (a;0, @;1,- .., @;m—1) such that

ai,j:{l if =1

0 otherwise

The following is well known to be a broadcasting scheme for the hypercube.

HYPERCUBE BROADCASTING
Time unit ¢, 1 <t < m: each informed vertex v sends the information to v & a;_1,
where @ denotes the addition modulo 2.

The following property of the above broadcasting scheme will be useful in the sequel.

Property 5.1 If the originator is the vertex v, then for each node v = (ug...Upn—1) # VP g in
H,, the paths from v to u P ag, to u P agP ay,..., and to u B ag P oy ...P a,,_1 are disjoint. For

the node v @ aq the paths from v to v ® ag, to v B aq,..., and to v P o,y are disjoint.

Given graphs G = (V(G), E(G)) and H = (V(H), E(H)), let us denote by G[H] = G x H the
normal product of G' and H, that is, the graph having vertex set V(G[H]) = V(G) x V(H) and
edges set

E(GH]) = {((u1,uz), (v1,vg)) & either (uy,v1) € E(G) and ug = vy or ug = vy and (ug,vy) € E(H)}

Lemma 5.1 IfG is a minimal broadcast graph such that each vertex v € V(G) has degree deg(v) <
[log |V (G)|] — 1, then G[H] is a minimal k—fault tolerant broadcast graph.

Proof. Let V(G) = {1,...,n}. The graph G[H}] has vertex set V* = V(G) x {0,1}* = {(v, @) :
v € V(G), a € {0,1}*} and edge set

E*={((#,),(5,8)) : eitheri=jand (o, 3) € E(Hy) or (i,j) € F(G) and a = §}.

Notice that (e, 8) € F(Hy) if and only if & = 8 @ «; for some unitary string a; with 0 < ¢ <k — 1.
Let the broadcast originator be the node (v1, 3) and suppose that the vertex vy during the first

time unit of its broadcast in G sends the information to its neighbor ve. Since the degree of v; and

12



vy satisfy deg(vq),deg(vy) < [log |V(G)|] — 1, it is clear that there exists a broadcasting strategy
in G such that at time unit [log|V (G)|] the vertices vy and vy are inactive.

We can then have the following k—fault tolerant broadcasting scheme for the graph G[Hy].

BROADCAST-SCHEME-PRODUCT (G[Hy])

(1) Time unit ¢, (1<t <k):
Each informed vertex (v1, ) calls the vertex (vi,a® a:—1)
(2) Time unit £ + ¢, (1 <t < [logn]):
Each informed vertex (v, ), with v € V(G), calls the node (u, «) if and only if
node v should call u at time unit ¢ during the broadcasting from v; in G;
[At time unit [logn] the vertices vy and its first informed neighbor vy are inactive]
At time unit k + [logn] each vertex (v;, @), for ¢ = 1,2, calls the vertex (v;, @ ® ag);
(3) Time unit k& + [logn] +¢, (1<t <k):
Each informed vertex (v, ), with v € V(G) — {v1, va}, calls (v, a & a:);
if t < k, each vertex (v;, ), for i = 1,2, calls the vertex (vi,a ® azy41)
if t = k, each vertex (v, a), calls the vertex (v1, @).

To prove that the above scheme is k—fault tolerant, we need to show that it creates at least
k + 1 edge disjoint paths from the originator (vy, 5) to each other vertex in V*. We consider four

cases.
Case 1 Let v € V(G) — {v1,v3} and a = (ag, . ..,ax_1) € {0, 1}*.
The first path is formed by the path

(v1,8) = (v1,)  created by (1) followed by the path

(vi,a) = (v,a)  created by (2);
The second path is formed by the path
(v1,8) = (v1,a P ag)  created by (1) followed by the path

(vi,a@ ag) = (v,a@ ag)  created by (2), followed by the call
(v,ad ap) = (v, ) done by (3) at time unit k& + [logn] + 1;
Let a2 = ag @ oy & ... P ay_sy, the (-th path, for 3 < £ < k + 1, is formed by the path
(v1,B) = (v, @@ a"2))  created by (1) followed by the path
v, oo ) = (v, ad ol created by (2), followed by the pat
(t=2) (t=2) d by (2), followed by the path
(v,a®a"2) = (v,a® ay_y)  created by (3) within t.u. k+ [logn] + £ — 2,
followed by the call

(v,a® ap_y) = (v,a)  done by (3) at time unit k + [logn] +¢—1

13



Case 2 Consider vy and a = (ag, . ..,ax_1) € {0, 1}*.
The first path is formed by the path
(v1,8) = (v1,a)  created by (1) followed by the path
(vi,a) = (vg, )  created by (2);
The second path is formed by the path
(v1,8) = (v1,a@ ag)  created by (1) followed by the path
(vi,a0® og) = (v2, @ B ag)  created by (2), followed by the call
(v2, a0 B ag) = (vg, @) done by (3) at time unit k 4 [logn];
The £-th path, for 3 < ¢ < k41, is formed by the path
(v1,8) = (v, ®a"2)  created by (1) followed by the path
(v, @ ") = (vg,a @ al*"2))  created by (2), followed by the path
(va, 0 ® a*"2)) 5 (vg,a P ay_y)  created by (3) within t.u. k4 [logn] 4 £ — 3,
followed by the call
(v2, @ ® ay_3) — (vg,a)  done by (3) at time unit k + [logn] + ¢ — 2

Case 3 Consider vy and a = (ag,...,ax-1) # 0 + ao.
The first path is formed by the path

(v1,8) = (v1,)  created by (1).
The second path is formed by the path
(v1,B8) = (v, @ ag)  created by (1) followed by the call
(vi,a@® ag) = (v1,«)  done by (2) at time unit k 4 [log n|
The £-th path, for 3 < ¢ < k, is formed by the path
(v1,8) = (v, ® oY) created by (1) followed by the path
(v, 0@ oY) 5 (v, 0@ ayy)  created by (3) followed by the call

(vi,a P ay_y) = (v1,«)  done by (3) at time unit k + [logn]| + € — 2

(v1, ) = (ve, B) done by (2) at time unit k& + 1 followed by the path
(ve,B) = (vg, ) created by (3) within t.u. [logn] + 2k — 1,
followed by the call

(v2, @) = (v,)  done by (3) at time unit [logn] + 2k
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Case 4 Consider vy and a = (ag,...,ax-1) = [ + ap.

The first path is formed by the path
(v1,8) = (v1,) created by (1) (19)
The f-th path, for 2 < £ < k, is formed by the path

(v1,8) = (v1, 8P 04(4_1)) created by (1) followed by the path
(v1,88 V) = (v, 3@ as_y B ag)  created by (3) within t.u. &+ [logn] +£— 2,
followed by the call

(v1, 8@ ay_1 & ag) — (v1,)  done by (3) at time unit k4 [logn]+¢—1
The (k 4+ 1)-th path is the same as in Case 3.

By Property 5.1 it follows that for every vertex (v, ) the above mentioned paths are edge
disjoint.
O

Let G be the minimum broadcast graph on n = 2 — 2 vertices defined in [19], that is the graph
with vertex set V(G) = {0,...,2™ — 3} and edge set

E(G)={(u,v) : u+v=2"—-1mod 2™ — 2 for some 1 <r <m—1}.
Theorem 5.1 The graph G[Hy] is a minimum k—fault tolerant graph.

Proof. Since each node in G has degree m — 1 = [log |V (G)|] — 1, then by Lemma 5.1 the
graph G[Hy] is a minimal k—fault tolerant broadcast graph on 2%(2™ — 2) vertices. Therefore,
B(2%(2™ — 2)) < |E(G[H])|- On the other hand Lemma 2.1 tells that in any minimum broadcast
graph on 2% (27 —2) = 27k _ 2K+1 vertices the degree of each vertex is lower bounded by &+ (m +
k) — (k+1) = m+ k — 1. This implies that B(2¥(2™ — 2)) > (m + k — 1)2 = |E(G[H}])|. O

Theorem 5.2 For n = 2F(2™ — 27) with r < m — 1

r+1

).

g(k—}—m—r)gBk(n)gg(k—}—m—

Proof. The lower bound follows from Lemma 2.1. To derive the upper bound, let G be the
minimal broadcast graph on n = 2™ — 2" with r < m — 1, vertices defined in [19]. This graph

satisfies the conditions of lemma 5.1 and has number of edges equal to (m — “£1)2. O
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6 Minimum 1-Fault Tolerant Graphs

In this section we investigate the minimum number of edges of 1-fault tolerant graphs. In particular

we establish the exact value of By(n) for each n < 15 and for n = 2™ — 6 with m even.

6.1

Minimum 1-Fault Tolerant Graphs for n < 15

By(3)=3: It is immediate to see that the triangle is 1-fault tolerant.
By(4) =6:  See [13].

By(5)=T1: It is easy to see that B;(5) > 6. Figure 2 shows the only 3 non-isomorphic

graphs on 5 vertices with 6 edges, having minimal local degree 2.

Figure 2:

It is easy to verify that in each case when the originator is the vertex v then the broadcast
cannot be done in less than 5 time units. Therefore, B(5) > 7 and this bound is reached by
the graph in Figure 3.

By(6) =9:  See [20].

Bi(7)=11: It is easy to see that By(7) > [%7] = 11, since each vertex must have degree
not less than 3. A minimum 1-fault tolerant graph on 7 vertices with 11 edges is shown in

Figure 4.
By(8) =16:  See [13].

By (9) = 13:

The following properties for a 1-fault tolerant graph on 9 vertices can be verified.

Property 6.1 Any vertex v of any minimum 1-fault tolerant graph on 9 vertices with deg(v) =
2 has at least one neighbor u with deg(u) > 4 which, in turn, has a neighbor of degree at least

3.
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Property 6.2 In any minimum 1-fault tolerant graph on 9 vertices no two vertices u,v with

deg(u) = deg(v) = 2 are adjacent.

Properties 6.1 and 6.2 implies that B;(9) > 12. Moreover, it can be easily seen that there
are exactly two non-isomorphic graphs satisfying Properties 6.1 and 6.2 and they are not
1-fault tolerant. Indeed when the originator is the vertex denoted by v in Figure 5 then the
broadcast cannot be done in less than 6 time units. Therefore, By(9) > 13. A minimum

1-fault tolerant graph on 9 vertices is shown in Figure 6.
B;(10) = 15:  See Theorem 6.1 in next section.

By(11) = 17: It is easy to see that By(11) > [331] = 17, since each vertex must have
degree not less than 3. A minimum 1-fault tolerant graph on 11 vertices with 17 edges is

shown in Figure 7.
By(12) = 18:  See Theorem 5.1.

By(13) =22:  Suppose that G = (V, E), with |F| = B;(13) is a minimum 1-fault tolerant
graph. It is easy to see that for every v € V it must hold deg(v) > 3. Moreover, if deg(v) = 3
then v has at least one neighbor u with deg(u) > 4. Hence B;(13) > 21. Assuming B;(13) =
21 it is easy to see that there exists a vertex u with deg(u) = 3 which has only one neighbor
v with deg(v) > 4. Let the originator be such a node u. It is clear that the second call from
u must be to v. Call ' the node called by « in the first time unit, deg(u') = 3. After 4 time
units all 13 vertices must have got the information. Hence, all the edges incident on ' must
have been used to inform new vertices. Therefore, it is impossible to construct a second path
from the originator u to u’. Hence B;(13) > 22. A minimum 1-fault tolerant graph on 13

vertices with 22 edges is shown in Figure 8.
By(14) = 28:  See [20].

Bi(15) = 30: It is easy to see that By (15) > 215 = 30. A minimum 1-fault tolerant graph

on 15 vertices with 30 edges is shown in Figure 9.
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6.2 Minimum 1-Fault Tolerant Graphs for n = 2™ — 6

In order to describe the desired graphs, we briefly recall the structure and the broadcasting scheme
of the minimum broadcast graph G = (V, E) on n = 2™ — 2 vertices introduced in [19]. We have
vV ={0,...,2™ — 3},

E={(j7) : i+7=2"—-1mod (2™ — 2) for some 1 < r < m — 1},

and the following possible broadcast schemes.

BROADCAST-SCHEME-a
Time unit ¢, (1 <t <m-—1):

Each informed vertex i calls the vertex j with i + j = 2® — 1 mod (2™ — 2)
Time unit m:

Each informed vertex i calls the vertex j with i + j = 1 mod (2™ — 2).

For any £ =1,2,...,m — 1 we consider the following sequences
X(0)=(20—1,2% -1, 2m o2t -1 20 -1 20 -0

X(K):(QZ_1726_1_1,...,21—172m_1_17.‘.724‘}'1_1726_1)

and the following schemes:

BROADCAST-SCHEME-b(¢)
Time unit ¢, (1 <t < m):
Each informed vertex i calls the vertex j with i +j = 241 — 1 mod (2™ — 2)

BROADCAST-SCHEME—c(¢)
Time unit ¢, (1 <t < f):

Each informed vertex i calls the vertex j with i 4 j = 2¢—t+1 — 1
Time unit ¢, ({+1 <t < m):

Each informed vertex i calls the vertex j with i 4 j = 2¢—t+™ — 1

Lemma 6.1 For any originator a € V and for any { € {1,...,m — 1} Broadcast schemes-b(l) and

Broadcast schemes—c(l) are correct.
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Proof. We assume in the sequel that all numbers are mod (2™ — 2).

Using the Broadcast scheme-b({) we have

Time unit 1: ¢ =+ 2 =1 —a
Time unit 2: ¢« 241 —1—qa, 2—1-a—>24a
TimeunitS:a—>2€+2—1—a, 24—1—a—>24+1—|—24—|—a,

24 ] a2 a, 2040241420 1.
It is easy to see that after ¢ time units, with 1 <¢ < m — 2 the informed vertices are
a, 2=l _ 1 g
and all the vertices
bupt—o2P b2 g, b2 4 b28 — 1 -,

with b; € {0,1} and (bg, ..., beye—2) # (0,...,0).

After £ = m — 1 time units the informed vertices are
a, 21— 1-a (20)
and all the vertices
b1 2" N A b2 b0 25T 4 b124a, b 27T 402 b 02 b 2—1—a (21)

with (bm—h . .7b1) 7£ (O, . ,0)
By scheme-b at time unit ¢ = m every informed vertex 7 calls the vertex j such that i+j = 2¢—1.

Hence the new informed vertices have either the form
G=bp 2" b2 2 by 02 24 a (22)
for all (by—1,...,b01) #(1,...,1) or
j=b 2T b2 2 ) 22— 1—a (23)

for all (b],_4,...,b}) #(0,...,0).

It can be easily seen that all the vertices in (20), (21), (22), (23) are different from each other.

The proof for the Broadcast scheme—c(¢) is similar. |

Let us consider now any two non adjacent vertices @ and b and suppose that the originator is

the vertex a.
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Lemma 6.2 There exists £ € {1,...,m — 1} such that using the broadcast scheme-b({) the infor-

mation originated at a reaches b exactly at the m-th time unit.

Proof. Without loss of generality, we assume b = 0 and (a,0) ¢ F, that is, a # 2¥ — 1, k =
1,...,m — 1. By the proof of Lemma 6.1 (formula (22) and (23)) it follows that we have to show
the existence of an £ € {1,...,m — 1} such that

0 =012 P4+ 028+ 2 by 02+ 124 a
if a is even, (by—1,...,b1) #(1,...,1) and
0=0bp, 127 "4 4028+ 27 by 2+ 12— 1—a

if ais Odd, (bm—h . .,bg, bg_Q, . .,bl) # (0, . ,0)
Let
a=2, 12" Vb2 a2 w02 a2+ 2

a#2" -1, fork=1,...,m—1,a#0.

If 29 = 0 (that is, a is even) it is clear that there exists r € {1,...,m — 1} for which z, = 0,
otherwise a = 271 + ...+ 2 = 2™ — 2 = 0. Therefore, we can choose £ = i for any ¢ such that
x;_1 = 0.

Consider now the case zg = 1 (that is, a is odd). Since a # 28 _1foreach k=1,...,m—1,

there exists ¢ for which zg =21 = ... = 2z;_9 = 1 and z;,_y = 0. We choose again ¢ = . a
Let G’ = (V', E') be the graph on n = 2™ — 3 vertices obtained from G by removing the vertex

0 with all its incident edges (0,1)(0,3),...,(0,2™1 —1). Suppose m is odd. We consider the graph
G* = (V*, E*) where V* = V' and

E*=FE'U{(1,3),(7,15),..., (2™ 2 = 1,2"1 — 1)}.
Property 6.3 The graph G* is a minimal broadcast graph on 2™ — 3 vertices.

Proof. Let a be the originator. Consider first the case a # 2F — 1 for each k= 1,...,m — 1. We
apply Lemma 6.2 to find the appropriate £ and perform broadcasting from a using the Broadcast
scheme-b(?).

If the originator is a vertex a = 2?*t! — 1, we perform the broadcasting by scheme-b for
¢ =2%%2 _ 1. In the (m — 1)-th time unit the vertex @ calls 2252 — 1.

If the originator is a vertex a = 22° — 1, we perform the broadcasting by scheme—c for £ =

22571 _ 1. In the (m — 1)-th time unit the vertex a calls 22571 — 1. |
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Theorem 6.1 If m is even then By(2™ — 6) = ﬁm—_l%w—_@.

Proof. From Theorem 2.1 it follows that By (2" — 6) > (771—1)572’“—6). On the other hand since

each vertex in the graph G* on 2™~ — 3 vertices has degree equal to m — 2 we can apply Theorem
5.1 to obtain a 1-fault tolerant graph on 2™ — 6 vertices and im—_l%w—_q edges. O
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the originator is 3
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the originator is 1 the originator is 2 the originator is 3

t=1: (1,11) t=1: (2,1) t=1: (3,4)

t=2: (14),(11,7) t=2: (2,6),(1,11) t=2: (3,9),(4,1)

t=3: (1,13),(11,10),(4,5),(7,8) t=3: (1,4),(2,3),(6,12),(11,7) t=3: (3,2),(4,8),(1,11),(9,10)

b=t (12),(43),(5:6).39,(13,12)  t=# (3,9),(48),(6,5),(1,10),(1213)  t=ds (2,6),(10,5),(8,7),(9,13,),(11,12)
6=5: (2,3),(4,8),(5,10),(6,7),(9,13),(11,12) t=5: (1,13),(3,4),(5,10),(6,7),(8,9),(11,12) t=5: (1,2),(4,5),(6,7),(8,9),(10,11),(12,13)
the originator is 4 the originator is 5 the originator is 6

t=1: (4,5) t=1: (5,4) t=1: (6,5)

t=2: (4,1),(5,0) t=2: (56),(4,1) t=2: (6,12),(5,4)

t=3: (4,8),(1,11),(6,12) t=3: (5,10),(4,8),(6,2),(1,11) t=3: (6,2),(4,8),(12,11)

t=4: (4,3),(1,2),(6,7),(8,9),(11,10),(12,13) t=4: (1,13),(2,3),(6,12),(7,8),(9,10) t=4: (6,7),(2,3),(4,1),(8,9),(12,13),(11,10)
6=5: (1,13),(2,6),(3,9),(5,10),(7,8),(11.12) t=5: (1,2),(3,4),(6,7),(8,9),(10,11).(12,13) t=>5: (1,2).(3.4).(5.10),(7,8),(9.13).(11,12)
the originator is 7

t=1: (7,11)

t=2: (7,6),(11,1)

t=3: (7,8),(11,10),(6,12),(1,4)

t=4: (4,3),(10,5),(6,2),(8,9),(12,13)

t=>5: (1,13),(2,3),(4,8),(5,6),(9,10),(11,12)

Figure 8:
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e originator is 1
1: (1,5)

2: (1,15),(5,9)

3: (1,2),(5,6),(15,14),(9,10)

4 ( 3),(6,7),(8,9),(10,11),(13,14),(15,4)
5: ( 7),(4,5),(8,12),(9,13),(10,14),(11,15)
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Figure 9:
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