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The authors have proved in a recent paper a complete intersection theorem for
systems of finite sets. Now we establish such a result for nontrivial-intersection
systems (in the sense of Hilton and Milner [Quart. J. Math. Oxford 18 (1967),
369�384]. � 1996 Academic Press, Inc.

1. INTRODUCTION AND RESULT

The theorem presented and proved in this paper can be viewed as an
extension or improvement of our recent Complete Intersection Theorem
[1] and may be called the Complete Nontrivial-Intersection Theorem. It
goes considerably beyond the well-known Hilton�Milner Theorem [10].
We put the result into the proper perspective with a brief sketch of the key
steps in its development, beginning with the pioneering paper [4] by
Erdo� s, Ko, and Rado.

Since we again use the methods from [1], we also keep the notation
from this earlier paper as far as possible.

N denotes the set of positive integers and for i, j # N, i< j, the set
[i, i+1, ..., j] is abbreviated as [i, j].

For k, n # N, k�n, we set

2[n]=[F: F/[1, n]], \[n]
k +=[F # 2[n] : |F|=k].

A system of set A/2[n] is called t-intersecting if

|A1 & A2|�t for all A1 , A2 # A,

and I(n, t) denotes the set of all such systems.
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We denote by I(n, k, t) the set of all k-uniform t-intersecting systems
(families), that is

I(n, k, t)={A # I(n, t) : A/\[n]
k += .

An investigation of the function

M(n, k, t)= max
A # I(n, k, t)

|A| , 1�t�k�n,

and of the structure of maximal systems was initiated by Erdo� s, Ko, and
Rado [4].

Theorem EKR [4]. For 1�t�k and n�n0(k, t) (suitable),

M(n, k, t)=\n&t
k&t+ .

Clearly, the system

A(n, k, t)={A # \[n]
k + : [1, t]/A=

is t-intersecting, has cardinality ( n&t
k&t), and is therefore optimal for

n�n0(k, t).
The smallest n0(k, t) has been determined by Frankl [5] for t�15 and

subsequently by Wilson [11] for all t:

n0(k, t)=(k&t+1)(t+1).

In a recent paper [1], the authors settled all the remaining cases

2k&t<n<(k&t+1)(t+1).

In particular, they proved the long-standing so-called 4m-Conjecture
(Erdo� s et al., 1938; see also [3] and survey [2]):

M(4m, 2m, 2)= }{F # \[4m]
2m + : F & [1, 2m]�m+1=} .

We also proved the General Conjecture of Frankl [5], that is, for
1�t�k�n

M(n, k, t)= max
0�i�(n&t)�2

|Fi | ,
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where

F={F # \[n]
k + : |F & [1, t+2i]|�t+i= for 0�i�

n&t
2

. (1.1)

Theorem AK [1]. For 1�t�k�n with

(i) (k&t+1)(2+(t&1)�(r+1))<n<(k&t+1)(2+(t&1)�r) for
some r # N we have

M(n, k, t)=|Fr |

and Fr is��up to permutations��the unique optimum;

(ii) (k&t+1)(2+(t&1)�(r+1))=n for r # N _ [0] we have

M(n, k, t)=|Fr |=|Fr+1|

and an optimal system equals��up to permutations��either Fr or Fr+1.

An A # I(n, k, t) (resp., A # I(n, t)) is called nontrivial if |�A # A A|<t,
and I� (n, k, t) (resp., I� (n, t)) denotes all nontrivial families from I(n, k, t)
(resp., I(n, t)). Let

M� (n, k, t)= max
A # I� (n, k, t)

|A| , 1�t�k�n.

Hilton and Milner proved in [10]

Theorem HM [10].

M� (n, k, 1)=\n&1
k&1+&\n&k&1

k&1 ++1, if n>2k.

For t>1 a considerable step was taken in [6] by Frankl, who deter-
mined M� (n, k, t), if n is large enough.

Theorem F [6]. For 1�t�k�n and n>n1 (k, t) (suitable) in the cases

(a) t+1�k�2t+1 : M� (n, k, t)=|V1(n, k, t)| , where

V1(n, k, t)={V # \[n]
k + : |[1, t+2] & V|�t+1= , (1.2)
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(b) k>2t+1 : M� (n, k, t)=|V2(n, k, t)|, where

V2(n, k, t)={V # \[n]
k + : [1, t]/V, V

& [1+t, k+1]|{<=_ [[1, k+1]"[i] : i # [1, t]]. (1.3)

Moreover, for every V # I� (n, k, t) with |V|=M� (n, k, t) one has V#

V1 (n, k, t) in the case k�2t+1 and V#V2(n, k, t) in the case k>2t+1,
provided that n>n1(k, t).

We note that V1(n, k, t)=F1 (Fi 's are defined in (1.1)). The natural
questions are: ``What is the value of n1(k, t)?'' (see [7, 9]) and ``What is the
value of M� (n, k, t), if n<n1(k, t)?'' In [9] it was asked whether
n1(k, t)tc } kt.

In the present paper, we answer all these questions by determining
M� (n, k, t) for all n, k, t. Our main result is the following

Theorem. (a) 2k&t<n�(t+1)(k&t+1):

M� (n, k, t)=M(n, k, t)

and the value of M(n, k, t) is specified in Theorem AK.

(b) (t+1)(k&t+1)<n and k�2t+1:

M� (n, k, t)=|F1 |=|V1 |

and F1 is��up to permutations��the unique optimum.

(c) (t+1)(k&t+1)<n and k>2t+1:

M� (n, k, t)=max[ |V1 | , |V2|] ,

and��up to permutations��V1 or V2 are the only solutions.

2. LEFT COMPRESSED SETS

We recall first some well known notions which we need.

Definition 2.1. For A1=[i1 , i2 , ..., is] # ( [n]
s ), i1<i2< } } } <is , and

A2=[ j1 , j2 , ..., js] # ( [n]
s ), j1< j2< } } } < js , we write A1OA2 iff il� jl for

all 1�l�s, that is, A1 can be obtained from A2 by left-pushing. Further-
more, let L(A2) be the set of all sets obtained this way from A2 .
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Also set L(A)=�A # A L(A) for any A/2[n].

Definition 2.2. A/2[n] is said to be left compressed or stable iff
A=L(A).

Definition 2.3. We denote by LI(n, k, t)/I(n, k, t) (resp. LI� (n, k, t)/
I� (n, k, t)) the set of all stable systems from I(n, k, t) (resp. from I� (n, k, t)).
It is well known and easily follows with the shifting technique of [4] that

M(n, k, t)= max
A # I(n, k, t)

|A|= max
A # LI(n, k, t)

|A| .

It is also known (cf. Frankl [8]) that for t=1 we have analogously

M� (n, k, 1)= max
A # I� (n, k, 1)

|A|= max
A # LI� (n, k, 1)

|A| .

By using the approach in [8] one can extend this to every t and this is
presented as (i) in the proposition below.

Now let A # I(n, k, t) be such that |�A # A A|=0, let I0(n, k, t) denote
all such families from I(n, k, t), and let M0(n, k, t)=maxA # I0(n, k, t) |A| .

Obviously, I0(n, k, t)/I� (n, k, t)/I(n, k, t) and M0(n, k, t)�M� (n, k, t)�
M(n, k, t).

We gain more insight from an interesting identity with a simple proof.
We state it as (ii) in the proposition even though it is not used in this
paper. To the contrary, it follows from the theorem, which says that all
optimal families in I� (n, k, t) belong to I0(n, k, t).

Proposition (i)

M� (n, k, t)= max
A # I� (n, k, t)

|A|= max
A # LI� (n, k, t)

|A| . (2.1)

(ii) M� (n, k, t)=M0(n, k, t) for all n, k, and t.

Moreover, for every A # I� (n, k, t) with |A|=M� (n, k, t) one has A # I0(n, k, t)
as well.

Proof. (i) For integers 1�i< j�n and a family F/2[n] let us define
the well-known (i, j)-shift Sij as follows:

Sij (F)={(F"[ j]) _ [i]
F

if i � F, j # F, ((F"[ j]) _ [i]) � F

otherwise,

Sij (F)=[Sij (F) : F # F].
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It is well known and easy to show (see e.g. Proposition 2.1 of [8]) that
|Sij (F)|=|F| ; F/( [n]

k ) implies Sij (F)/( [n]
k ); and for F # I(n, k, t),

Sij (F) # I(n, k, t).
Let A # I� (n, k, t) be a family with |A|=M� (n, k, t). We apply the (i, j)-

shift to A. Then either Sij (A) # I� (n, k, t) or Sij (A) # I(n, k, t)"I� (n, k, t).
In the first case we continue the shifting until we obtain a stable family.
Suppose then that the second possibility occurs. In this case necessarily
|�A # A A|=t&1 and |�A # Sij (A) A|=t. Without loss of generality
we can assume that �A # A A=[1, 2, ..., t&1], i=t, j=t+1, and that
�A # Stt+1(A) A=[1, 2, ..., t], which immediately implies |A & [t, t+1]|�1
for all A # A.

Since A is of maximal size, necessarily

{G : [1, t+1]/G # \[n]
k +=/A. (2.2)

As �A # A A=[1, 2, ..., t&1] and �A # Stt+1(A)=[1, 2, ..., t], there are A1 ,
A2 # A with

A1 & [1, t+1]=[1, 2, ..., t]

and

A2 & [1, t+1]=[1, 2, ..., t&1, t+1]. (2.3)

Now, instead of Stt+1 we keep applying the (i, j)-shift for 1�i< j�n
with i, j � [t, t+1]. Then (2.2) and (2.3) imply that �A # Sij (A) A=
[1, 2, ..., t&1], i.e., Sij (A) # I� (n, k, t) for all 1�i< j�n, i, j � [t, t+1].
We note that Sij (A)=A for all i, j with i�t&1, since �A # A A=
[1, 2, ..., t&1].

Hence (to avoid new notation) we may assume that Sij (A)=A for all
1�i< j�n, i, j � [t, t+1], and that

A1=[1, 2, ..., t, t+2, ..., k+1],

A2=[1, 2, ..., t&1, t+1, ..., k+1].

Together with (2.2) this yields

B=[[1, t&1] _ B : B/[t, k+1], |B|=k&t+1]/A.

Now we can apply an arbitrary (i, j)-shift, 1�i< j�n, and B will not
change. Therefore |�A # A A|<t will be maintained.

(ii) Suppose to the contrary that there exists an A # I� (n, k, t)"I0(n, k, t),
i.e., 1�|�A # A A|<t, with |A|=M� (n, k, t). Without loss of generality we
can assume 1 # A for all A # A.
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Using the shifting technique described in the proof of (i), we get an A$
with A$/LI� (n, k, t), |A$|=|A|=M� (n, k, t), and still 1 # A$ for all
A$ # A$. Now we consider A"=[2, 3, ..., k+1] and show that |A" & A$|�t
for all A$ # A$, i.e., [A"] _ A$ # I� (n, k, t), which leads to a contradiction
with the maximality of A.

Let us assume that there exists an A$ # A$ for which

|A$ & A"|=|A$ & [2, k+1]|�t&1.

Since A$ is stable, we can assume A$=[1, 2, ..., t, k+2, ..., 2k&t+1].
Moreover, since A$ is stable and A$ # I� (n, k, t), also A$$$=[1, 2, ..., t&1,
t+1, ..., k+1] # A$. Now |A$ & A$$$|=t&1 contradicts A$ # I(n, k, t).

3. GENERATING SETS

In this section we repeat concepts from Section 2 of [1] and restate the
simple, but basic, properties expressed in Lemmas 1�5 there, again in
Lemmas 1�5. Only Lemma 1 has been slightly modified.

Definition 3.1. For any B # 2[n] we define the upset U(B) =
[B$ # 2[n] : B/B$]. More generally, for B/2[n] we define

U(B)= .
B # B

U(B).

Definition 3.2. For any B/( [n]
k ) a set g(B)/� i�k ( [n]

i ) is called a
generating set of B, if U(g(B)) & ( [n]

k )=B. Furthermore, G(B) is the set
of all generating sets of B. (G(B){<, because B # G(B).)

Lemma 1. Let A # ( [n]
k ) and n>2k&t.

Then A # I(n, k, t) (resp., A # I� (n, k, t)) if and only if g(A) # I(n, t)
(resp., g(A) # I� (n, t)) for every g(A) # G(A).

Next we introduce further basic concepts.

Definition 3.3. For B=[b1 , b2 , ..., b |B|]/[1, n], b1<b2< } } } <b |B| ,
write the biggest element b |B| as s+(B). Also for B/2[n] set

s+(B)=max
B # B

s+(B).

Definition 3.4. A/( [n]
k ) be left compressed, i.e., A=L(A). For any

generating set g(A) # G(A) consider L(g(A)) and introduce its set of
minimal (in the sense of set-theoretical inclusion) elements L

*
(g(A)).
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Furthermore, define G
*

(A) = [ g(A) # G(A) : L
*

(g(A)) = g(A)].
(Note that A # G

*
(A).)

We continue with simple properties.

Lemma 2. For a left compressed A/( [n]
k ) and any g(A) # G(A),

(i) L
*

(g(A)) # G(A)

(ii) s+(L
*

(g(A))�s+(g(A)))

(iii) for A # L
*

(g(A)) and BOA we have either B # L
*

(g(A)) or
there exists a B$ # L

*
(g(A)) with B$/B.

The next important properties immediately follow from the definition of
G

*
(A) and the left-compressedness of A.

Lemma 3. For a left compressed A/( [n]
k ) and g(A) # G

*
(A), A is a

disjoint union

A= .
E # g(A)

D(E),

where

D(E)={B # \[n]
k + : B=E _ B1 , B1/[s+(E)+1, n], |B1|=k&|E|= .

Lemma 4. For a left compressed A/( [n]
k ) and g(A) # G

*
(A) choose

E # g(A) such that s+(E)=s+(g(A)) and consider the set of elements of A
which are only generated by E, that is,

AE=(U(E)"U(g(A)"[E])) & \[n]
k + .

Then

AE=D(E) and |AE|=\n&s+(E)
k&|E| + .

Lemma 5. Let A # LI(n, k, t), g(A) # G
*

(A), and let E1 , E2 # g(A)
have the properties

i � E1 _ E2 , j # E1 & E2

for some i, j # [1, n] with i< j. Then

|E1 & E2|�t+1.
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Finally, we use the following convention.

Definition 3.5. For A # LI(n, k, t) we set

smin(G(A))= min
g(A) # G(A)

s+(g(A)).

4. THE MAIN AUXILIARY RESULTS AND
PROOF OF THE THEOREM

For given n, k, t, n>k>t�1, and every i, 2�i�k&t+1, we consider
the set

Hi={H # \[t+i]
t+1 + : [1, t]/H=

_ {H # \ [t+i]
t+i&1+ : [t+1, t+i]/H= .

We have

}U(Hi ) & \[n]
k +}=\n&t

k&t+&\n&t&i
k&t ++t \ n&t&i

k&t&i+1+ .

Let us note that

U(H2) & \[n]
k +=V1=F1 (see (1.1), (1.2))

and

U(Hk&t+1) & \[n]
k +=V2 (see (1.3)).

Our main auxiliary result, which essentially proves the theorem, is

Lemma 6. Let n>(t+1)(k&t+1) and A # LI� (n, k, t) with |A|=
M� (n, k, t), and let g(A) # G(A) satisfy s+(g(A))=smin(G(A)), then

g(A)=Hi for some i, 2�i�k&t+1.

Proof. By Lemma 2 we have for some g(A) # G
*

(A) that s+(g(A))=
smin(G(A))=l, say, and we let g(A)=g0(A) _ g1(A), where

g0(A)=[B # g(A) : s+(B)=l], g1(A)=g(A)"g0(A).

129NONTRIVIAL INTERSECTION THEOREM



File: 582A 270910 . By:BV . Date:26:08:96 . Time:15:51 LOP8M. V8.0. Page 01:01
Codes: 2184 Signs: 1014 . Length: 45 pic 0 pts, 190 mm

It is easy to verify that

l�t+2. (4.1)

The elements in g0(A) have an important property, which follows
immediately from Lemma 5:

(P) for any E1 , E2 # g0(A) with |E1 & E2|=t

necessarily |E1|+|E2|=l+t.

Now we consider the cardinality of the intersection of the elements of
g1(A): let

} ,
B # g1(A)

B }={.

We distinguish the two cases {<t and {�t.

Case {<t. In this case we almost repeat the proof of Lema 6 [1], only
some parameters are changed.

We partition g0(A) according to the cardinalities of its members

g0(A)= .
t<i<l

Ri , Ri=g0 (A) & \[n]
i + .

Of course, some of the Ri's can be empty.
Let Ri$=[E/[1, l&1] : E _ [l] # Ri].
So |Ri|=|Ri$ | and for E$ # Ri$ , |E$|=i&1.
From Property (P) we know that for any Ei$ # Ri$ , Ej$ # R j$ with

i+ j{l+t,

|E1$ & E$2 |�t.

We shall prove (under the present conditions n>(t+1)(k&t+1) and
{<t) that all Ri's are empty, i.e., the case {<t is impossible.

If for all i with Ri{< one has Rl+t&i=<, then (by Property (P))

g$=(g(A)"g0(A)) _ \ .
t<i<l

Ri$+ # I� (n, t),

}U(g$) & \[n]
k +}�|A| and s+(g$)<s+(g(A)),

which is a contradiction.
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Suppose then that for some i we have Ri{< and Rl+t&i{<. If (a)
i{l+t&i, or, equivalently, i{(l+t)�2, then we consider the sets

f1=g1(A) _ (g0(A)"(Ri _ Rl+t&i)) _ R i$

f2=g1(A) _ (g0(A)"(Ri _ Rl+t&i)) _ R$l+t&i .

We know (see Property (P)) that f1 , f2 # I(n, k) and that we are in the
case {<t, that is, |�B # g1(A) B|<t, and so f1 , f2 # I� (n, k) as well.

Hence

Bi=U( fi) & \[n]
k + # I� (n, k, t) for i=1, 2.

The desired contradiction shall take the form

max
i=1, 2

|Bi |>|A| . (4.2)

We consider the set A"B1 .
From the construction of f1 and the Ri$'s it follows that A"B1 consists

of those elements of ( [n]
k ) which are extensions only of the elements from

Rl+t&i . We determine their number (using Lemma 4)

|A"B1 |=|Rl+t&i | } \ n&l
k&l&t+i+ . (4.3)

By similar arguments one gets

|B1"A|�|Ri | } \ n&l
k&i+1+ . (4.4)

Analogously, we have

|A"B2|=|Ri | } \n&l
k&i+ (4.5)

and

|B2"A|�|Rl+t&i | } \ n&l
k&l&t+i+1+ . (4.6)

Now (4.3)�(4.6) enable us to state the negation of (4.,2) in the form

|Ri | \ n&l
k&i+1+�|Rl+t&i | \ n&l

k&l&t+i+ ,

= (4.7)

|Rl+t+i | \ n&l
k&l&t+i+1+�|Ri | \n&l

k&i+ .
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Since |Ri |{<, |Rl+t&i |{<, from (4.7) one has

(n&l&k+i)(n&k+t&i)�(k&i+1)(k&l&t+i+1).

However, this is false, because n�(t+1)(k&t+1)+1�2k&t&2 and
consequently n & k + t & i > k & i + 1 as well as n & l & k + i >
k&l&t+i+1.

Hence (4.2) holds in contradiction to the optimality of A. Therefore, in
the case {<t necessarily Ri=< for all i{(l+t)�2.

If (b) i=(l+t)�2, then we consider R$(t+l)�2 and recall that for
B # R$(t+l)�2

|B|=
t+l

2
&1 and B/[1, l&1].

By the pigeon-hole principle there exists a j # [1, l&1] and a T/R$(t+l)�2

such that j � B for all B # T and

|T|�
(l&t)�2

l&1
|R$(t+l)�2 | . (4.8)

By Lemma 5 we have |B1 & B2|�t for all B1 , B2 # T and since we are
in the case {<t, that is, |�B # g1(A) B|<t, then

f $=(g(A"R(t+l)�2) _ T # I� (n, t).

We show now that under the condition n>(t+1)(n&k+1) one has

}U( f $) & \[n]
k +}>|A| . (4.9)

Indeed, let us write

A=U \g(A) & \[n]
k ++=D1 _* D2 ,

where

D1=U ( g(A"R(t+l)�2) & \[n]
k + ,

D2=(U(R(t+l)�2)"U(g(A)"R(t+l)�2)) & \[n]
k + ,
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and

U( f $) & \[n]
k +=D1 _* D3 ,

where

D3=(U(T)"U( g(A)"R(t+l)�2)) & \[n]
k + .

In this terminology, equivalent to (4.9) is

|D3|>|D2| . (4.10)

We know (see Lemma 4) that

|D2|=|R(t+l)�2| } \ n&l
k&(t+l)�2+ , (4.11)

and it is easy to show that

|D3|�|T| \ n&l+1
k&(t+l)�2+1+ . (4.12)

In the light of (4.8) and (4.10)�(4.12), sufficient for (4.9) is

l&t
2(l&1) \

n&l+1
k&(t+l)�2+1+>\ n&l

k&(t+l)�2+
or equivalently

(l&t)(n&l+1)>2(l&1) \k&
t+l

2
+1+

or (l>t+1 by (4.1))

n>
2(l&1)(k&t+1)

l&t
.

This is true, since n>(t+1)(k&t+1) and

(t+1)(k&t+1)�
2(l&1)(k&t+1)

l&t
for every l�t+2.

Case {�t. Since A is stable, clearly

,
B # g1(A)

B=[1, {].

133NONTRIVIAL INTERSECTION THEOREM



File: 582A 270914 . By:BV . Date:26:08:96 . Time:15:51 LOP8M. V8.0. Page 01:01
Codes: 2243 Signs: 1058 . Length: 45 pic 0 pts, 190 mm

We also have

l=s+(g(A))>{.

Next we recall the definitions of g0(A) and g1(A):

g0(A)=[B # g(A) : s+(B)=l], g1(A)=g(A)"g0(A),

and observe the following important properties of the elements of g0(A),
which immediately follow from left-compressedness arguments: for all
B # g0(A),

(P$) |B & [1, {]|�{&1,

(P") if |B & [1, {]|={&1, then [{+1, l]/B.

At first let us show that {<t+2.
Indeed, in the case {�t+2, by using Property (P$) we have

|B1 & B2 & [1, {] |�{&2�t for all B1 , B2 # g(A),

and hence by removing the element l from every member of g0(A), i.e.,
obtaining g$0(A)=[B/[1, l&1] : B _ [l] # g0(A)], we arrive at the
generating set

f "=(g(A)"g0(A)) _ g$0(A), (4.13)

for which we have

f " # I� (n, k), }U( f ") & \[n]
k + }�|A| ,

but

s+( f ")<l=s+(g(A))=smin(G(A)),

a contradiction.
Therefore we have only two possibilities for { : {=t and {=t+1.

Subcase {=t+1. We must have l=t+2, because otherwise if l>t+2,
then as in the case directly above we remove the element l from every
member of g0(A) and get the generating set f " (see (4.13)) for which we
know

}U( f ") & \[n]
k + }�|A| , s+( f ")<l=s+(g(A))=smin(G(A)). (4.14)
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However, using the properties (P$) and (P") it is easy to verify that
f " # I� (n, k) still, which contradicts (4.14).

Hence in the case {=t+1 one has l=t+2 and clearly g(A)=H2 .

Subcase {=t. Let g$0(A)=[B # g0(A) : |B & [1, t]|=t&1]. Clearly
g$0(A){<, because otherwise g(A) � I� (n, t).

Since for every B # g$0(A) we have [t+1, l]/B (see Property (P")), we
conclude (see also (4.1)) that t+2�l�k+1, and that

g$0(A)/[B/[1, l] : |B & [1, t]|=t&1, [t+1, l]/B]. (4.15)

Also, for every C # g(A)"g$0(A) one has [1, t]/C and |C & [t+1, l]|�1,
and this together with (4.15) shows that

U(g(A)) & \[n]
k +=A/U(Hl&t) & \[n]

k + .

Since A is maximal, necessarily g(A)=Hl&t . The lemma is proved.

Finally, we use the abbreviation

Si =q }U(Hi) & \n
k+} for 2�i�k&t+1

and establish the following numerical result.

Lemma 7. (i) max2�i�k&t+1 Si=max[S2 , Sk&t+1]

(ii) if k�2t+1, then max2�i�k&t+1 Si=S2 .

Proof. (i) Let us show that Si<Si+1 implies Si+1<Si+2 . This yields
(i). We have to show that

Si=\n&t
k&t+&\n&t&i

k&t ++t \ n&t&i
k&t&i+1+

<\n&t
k&t+&\n&t&i&1

k&t ++t \n&t&i&1
k&t&i +=Si+1

implies

Si+1<\n&t
k&t+&\n&t&i&2

k&t ++t \n&t&i&2
k&t&i&1+=Si+2 ,
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or that

t \\ n&t&i
k&t&i+1+&\n&t&i&1

k&t&i ++<\n&t&i
k&t +&\n&t&i&1

k&t +
implies

t \\n&t&i&1
k&t&i +&\n&t&i&2

k&t&i&1++<\n&t&i&1
k&t +&\n&t&i&2

k&t + ,

or that (by Pascal's identity)

t \n&t&i&1
k&t&i+1+<\n&t&i&1

k&t&1 +
implies

t \n&t&i&2
k&t&i +<\n&t&i&2

k&t&1 + ,

or finally that

t \n&t&i&2
k&t&i +

k&t&i+1
<
\n&t&i&2

k&t&1 +
n&k&i

implies

t \n&t&i&2
k&t&i +<\n&t&i&2

k&t&1 + ,

which is true, because n�2k&t+1 and consequently

k&t&i+1
n&k&i

�1.

(ii) In light of (i) it is sufficient to show that for k�2t+1

S2=\n&t
k&t+&\n&t&2

k&t ++t \n&t&2
k&t&1+

>\n&t
k&t+&\n&k&1

k&t ++t=Sk&t+1 . (4.16)
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Equivalent to (4.16) is

t \n&t&2
k&t&1+>\n&t&2

k&t +&\n&k&t
k&t ++t,

or

t :
k&t&1

j=0
\k&t&1

j +\ n&k&1
k&t&1&j+> :

k&t&1

i=1
\k&t&1

i +\n&k&1
k&t&i ++t,

or

:
k&t&2

j=0
\t \k&t&1

j +&\k&t&1
j+1 ++\ n&k&1

k&t&1& j+>0,

and this is true, because k�2t+1 and consequently

t \k&t&1
j +>\k&t&1

j+1 + for every j>0,

and

t=t \k&t&1
0 +�\k&t&1

1 + for j=0.

Proof of the Theorem. The claimed statement follows from Theorem AK
and Lemmas 6, and 7.
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