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Incomparability and Intersection Properties of Boolean Interval
Lattices and Chain Posets

RuUDOLF AHLSWEDE AND NING CAI

In a canonical way, we establish an AZ-identity (see [2]) and its consequences, the
LYM-inequality and the Sperner property, for the Boolean interval lattice. Furthermore, the
Bollobas inequality for the Boolean interval lattice turns out to be just the LYM-inequality for
the Boolean lattice. We also present an Intersection Theorem for this lattice.

Perhaps more surprising is that by our approach the conjecture of P. L. Erdds et al. [7] and
Z. Fiiredi concerning an Erdos—-Ko—Rado-type intersection property for the poset of Boolean
chains could also be established. In fact, we give two seemingly elegant proofs.
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1. THE BOOLEAN INTERNAL LATTICE .%,

The main objects of our investigation are collections of intervals in the Boolean
lattice %,; that is, the family of all subsets of [n]={1,2, ..., n} endowed with union
and intersection as lattice operations.

For A, B € %,, we define the interval

[A, B]={C:AcCcB} (1.1)

in 4, and if A & B here, then we speak of the empty interval I .
The Boolean interval lattice %, is the set of all intervals in 9%, endowed with the
following ‘meet’ and ‘join’ operations denoted by ‘0’ and ‘[0

[A, BIO[A’, B'|={C:C € [A, BIn[A', B']}

_{[AUA’,BOB’], if AUA'<BNB, 12
L, otherwise, '
[A, B]O[A’, B'|=[ANA’, BUB']. (1.3)

The lattice properties are readily verified. Note that the meet can be viewed as a
Boolean intersection. However, for the join we have

[A, B]O[A’, B']|2[A, BJU[A', B]

and often there is no equality.
Clearly, we can define a partial order ‘<’ by

[A, B]<[A',B']&[A, B]c[A', B'] or (equivalently) A'cAcBcB'. (14)
We define a rank function p: $,— N U {0} by
p(4, B) = {|()1;\A| +1, E 5: g};Z
One readily verifies that p is upper semimodular; that is,
p([A, B]O[A", B']) + p([A, B]O[A", B']) < p([A, B]) + p([A", B']).

This is not used in this paper.
However, we frequently use an equivalent description of non-empty intervals.
677
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Instead of [A, B] we write (C, D), where C=A and D = B\A. Note that CND =
and, given any disjoint subsets C and D of [n], (C, D) is the interval corresponding to
[C, CUD].
Now (C, D)<(C',D"Y&C'cCand (C\C')UDcD'>C'cCand DcD'.
One also readily verifies that
(C,D)C', D"y={(CUC',DND"), if (C, D)KC', D') # I. (1.5)
Finally (with a little abuse of notation), we also use p for the second interval
description:
p((C, D)) =|D| + 1. (1.6)

2. THE AZ-1DENTITY, THE LYM:-INEQUALITY, AND THE SPENCER PROPERTY FOR .%,

Let us introduce %; = (';!) and let us denote by $% the set of intervals from .4, of
rank k (0sk<n+1).
Observe first that, for all € ¥,

[I'e I s =n—k+1 2.1)
and that
{I'e 5701 I =2(k —1). (2.2)

This regularity property of a lattice is sufficient for the LYM-inequality to hold. We
move directly to the AZ-identity. For any & < %, and any I = [A, B] € 4, with

A ={KedA:Kcl}#J (2.3)
write
sty ={[A;, Bl:1si<a} (2.4)
and define
wan = (18- (O a)+ (| 8|~ 141) (:5)
If (2.3) does not hold, set W (1) = 0.
THEOREM 1 (AZ-identity). For any 4 < $,,
w1
s 0 .
1€, _ n
n2n p([)+2p[ _1 ( )
CORSN PN

Proor. By (2.1) (or (2.2)), 4, has exactly
n+1 n+1
2" [ (n—k+ 1)<0r 2" ] (k= 1)) =2"n!

k=1 k=2
maximal chains. Also, exactly

(n = p(I) + D) W (12 *(p(I) ~ 2)!
maximal chains leave the upset U(«f)={K € 4,:3I' e o with K=1I'} in I =[A, B].
Since p(I) = |B\A| + 1, we obtain

S (n = p(D) + 1) W12 P (1) — 2)! = 2"n!

T U(A)

Since W (I) =0 for I ¢ AU(sf), the identity follows. O
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The Whitney numbers w;, of .4, are defined by
Wi = |5 forOsksn+1. (2.6)
They can be evaluated.
LEmMma 1. We have:

(1) we=G")2" " for 0O<k<n+1and wy=1 and, consequently,
(i) 19| = ZkZowe =3"+ 1.

Proor. The set % is exactly the set of intervals (C, D) with D e %' and
C c D¢ = [n]\D. Therefore (i) holds and (ii) follows, because |.%,| = 2728 |4 O
CoroLLARY 1 (LYM-inequality). For any antichain o < $,,
n+l1 |&¢ N yﬂ
EEO g,

>

k=0 Wi
Proor. For J e 4, by the antichain property and by (2.5),
W) = (1B] — |A]) + (IB] — |A]) =2(p(I) — 1)
and, by Theorem 1,

2 2(p()—1) <1.

185 gn=pr2(p([) — 1)<p(1)n_ 1)

Using Lemma 1(i), we obtain
1

Test Wp)

and thus the result. O

<1

CoroLLARY 2 (Sperner property). (i) For every antichain o < 3,

n
o< — +1 2n*B'3L1BH.
<) 0<Il£1<aj(+1 W ( 1173 D> 1)

Wi, lfn+1:31+1,
max wip=1Y W1, ifn+1=31+2,
O<k=n+1 .
Wit =W, lfn+1:3l

(i)

(iii) The antichains o of maximal length are
ﬂ_{ﬁ‘, ifn+1=31+m, m=0,1,2,
7, ifn+1=3L

Thus, if 3|n + 1, then there are two optimal antichains.

Proor. Corollary 1 implies that |&f|<maxXy—z<,.1Wr. The condition w, =
max(wy_1, We41) gives the necessary condition for w, to be maximal: B53'0<k <
5[+ 1. It can also be verified to be sufficient. Thus (i) follows. Also (ii) is a
consequence.

The antichains specified in (iii) are thus optimal. It remains to be seen that there are
no others in the case 3|n + 1.
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Let &/ be a antichain of maximal length w,. By Theorem 1 (or even Corollary 1),
necessarily,
| N Fo| + | NI = w,

and, again by Theorem 1, W,,(I) =0 for I ¢ /. Now suppose that s/ #= .#.,, $.". For all
I=[A,B]e $;"\s, by its definition W, (I)=0 implies that, for all x € B\A,
A’ =AU {x} satisfies [A’, B] € /N $, and B’ = B\{x} satisfies [A, B'] € o/ N .. This
means that all sub-intervals of I, which have a rank /, are in &N ., However, no
IesdNF" has a sub-interval in &/ N.#,. This means that the bipartite graph
(4L, L7, <) has two connected components. This is impossible, because I=
[A, B] € #."" is connected to J = [, B'] € "' by alternating deleting elements from
A and B and each two vertices [¢, B'] and [¢, B"] are connected in this graph. O

3. INTERSECTING SYSTEMS IN .%, AND 9% THE ERDOS—KO-RADO PROPERTY
AND UNIQUENESS

The goal of our investigations is to understand how intersecting systems, which have
been studied extensively in Boolean lattices [see [4, 6]) and also in other structures (see
[4] and [5, 8-10, 14, 15]), behave in .%, and .$%.

We call S < 4, an intersecting system, if for all I, I' € S,

10I'=INTI#. (3.1)
Also, we say that S is saturated, if it is not a proper subset of an intersecting system.
A simple and basic saturated intersecting system is, for C < [n],
$.(C)={le $:Cell (3.2)

We show first that its cardinality is independent of C.

LEmMMA 2. For all C = [n],
| £(C)=2"

Proor. The intervals containing C are of the form [A, B], A = C < B. Clearly, there
are 2'“2"7'I such intervals. O

Next we show that all saturated intersecting systems are of the form (3.2).

Lemma 3. For every intersecting system S < $, a D € $,, D # I, exists with D <1
for all I € S. Furthermore, if S is saturated, then S = $,(C) for some non-empty C < [n].

Proor. Write S ={[A,, B,]:t € T} and note that A, = B; (i, j € T) implies
U A, < B.. (3.3)

teT teT
So, the interval D =[U,.+ A, ( Ler B:] satisfies D # I and D <I (I € S). Further-
more, when § is saturated, then D =[C, C] for some C<[n]and D € S, S = 4,(C). O

Whereas in .4, the intersecting systems %,(C) (J# C < [n]) are exactly the largest
intersecting systems, in %, the systems {X c[n]:x € X} (x e [r]) are not the only
intersecting systems of maximal cardinality.

However, connections between these lattices can be established via their Whitney
numbers. For this, we define

F5C) = F,(C) N I~ (3.4)
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Lemma 4. |F5(O) = (" 1).

Proor. Note that

94C) = {<Cm EEVE e <k['z]1>} - {[C\E, CUELE e {k['i)}

and thus the claimed identity. O

We now consider intersecting systems of intervals of rank k. This is analogous to the
case of k elements sets, considered originally in [6]. It is remarkable that in the new
situation we have uniqueness in the sense that only the #4(C)’s appear as optimal
systems.

THEOREM 2. For every intersecting system S < 9%,

n
Ss( )
k—1

and the $5(C) (Cc[n], 1<|C|<sn—k+1) are exactly the intersecting systems
achieving equality.

The analysis proceeds in terms of a useful concept of parallelism.

We say that the interval (C, D) € $,\{Iz} has direction d({C, D)) = D. The empty
interval Iy has no direction.

Intervals with the same direction are called parallel. We write [ || I’, if [ and I’ are
parallel. Obviously,

p()=p(T), 1|1 (3.5)

The next property is familiar from geometry.

LemmA 5. Parallel intervals are disjoint or, formally,

I, I#T'>INT =101 = L,

Proor. For I=(C,D)=[C,CUD], I'={C',D)=[C',C'UD], C#C' and CN
D=C'ND=Jwehave INI'=[CUC’, (CUD)N(C'UD)]=[CUC', (CNC")U
D] =1z, because (CUC')ND = and CUC' ¢CNC' for C#C'. Consequently,
cuc'({€nNncHub. O

Using this result one readily verifies the next statements, which shed new light on
Lemmas 1 and 4.

LEmmA 6. (i) For every direction D < [n], the intervals {(C, D) and C = D¢ partition
5
(i) &, can be partitioned into 2" families of parallel intervals.

(iii) % can be partitioned into (" 1) families, each having 2" *"' parallel intervals.
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Proor oF THEOREM 2. Clearly, Lemma 6(iii) and Lemma 5 imply that |S| < (" ).

Furthermore, by Lemma 3, S = .#,(C), and since by assumption S = %, we conclude
that S<.$,(C)N S If S is optimal, then necessarily S =.%,(C)N .J%=9%C), by
Lemma 3. O

Remark 1. It is natural also to consider intersecting systems with a qualified
constraint. We call S c 4, d-intersecting if, for all I, I’ € S,

p(I0I') =d. (3.6)

Our previous definition is included in the case d = 1.

There is a simple reduction for the cases d =2.

For I1=(C,D), I'=({C’,D’'), (3.6) is equivalent to (C,D){C',D")=(CUC’,
DND"ywith DND'|=d—1and D #D'.

Therefore for every d-intersecting system S c.$, there corresponds a (d —1)-
intersecting system of %, & ={D: IC, D) € S} of the same cardinality. Conversely, to
every (d — 1)-intersecting system of %, 9 there corresponds a d-intersecting system of
4, of the same cardinality; namely, for any E € %,,

S={E\D, D): D e F}.

Similarly, there is such a correspondence between intersecting systems S < .#5 and
P B

4. FroMm LocaL TO GLOBAL INTERSECTION OF INTERVALS AND INTERSECTING ANTICHAINS
The fact that parallel intervals are disjoint (Lemma 5) has a useful extension.

Lemma 7. For two non-disjoint intervals (Cy, D;) and {(C,, D,), with D,c D,,
necessarily

(Cy, Dy)<(C3, D>)
or (equivalently)
[Cl) Cl U D]] (= [Cz, Cz U Dz]

Proor. Recall the definition (1.4) of the partial order. By our assumption, for some
X < |n],
CicXcCyUDy, C,cXc(Cy,UD,
and therefore
C,c C,U Dy, C,cC,UD,. (4.1)

Since D, = D,, we conclude first that
Cl U Dl c Cz U Dz. (42)

Since C, N D, = C,N D, = and C, = C, U D, we conclude further that
C2 (e Cl' (4.3)

Finally, (4.2) and (4.3) say that
C,cCicCiUD;cCy,UD,
and thus [C;, C, U D] <= [C,, C,U D] O
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A well-known inequality of Bollobas [3] states that, for any intersecting antichain
F < By,

Ea/ZD|9;n Bﬁ _

—<1. (4.4)
o)

What is the Bollobas-type inequality for .%,? The answer follows by simple reasoning.
For an intersecting antichain = {(C;,, D;):1<i<m} in %, by Lemma 7 necessarily
{D;:1<i=<m} is an antichain in %,. We obtain the following inequality.

THEOREM 3. For an intersecting antichain & in $,,

n+1|ym yﬁ|<1

>

)

Conversely, we can translate this inequality backwards. Thus the LYM-inequality for
the Boolean lattice is exactly the Bollobas-type inequality for the Boolean interval
lattice.

5. AN INTERSECTION THEOREM FOR CHAIN POSETS

We now introduce chain posets and prove for them an intersection property
conjectured by Erdos et al. in [7]. There and also by Fiiredi (according to [7]), this
conjecture has been verified in over large range of parameters. The methods used do
not seem to be suitable to settle the conjecture. Our approach does this, and is very
simple. In Section 6 we give an even simpler and more direct proof.

A strictly increasing sequence of subsets of [#] and of length k is claled a k-chain. €%
denotes the set of all those chains and we define €, =\ _J;*} €*. The chain C ={C, c
C,c---c(C}is contained in the chain C' ={CicCyc- - C,}, if {C:1<i<l}c
{C/:1=<i<I'}. We denote this containment by ‘<’. Then (%,, <) is a poset, which we
call the poset of chains (on an n-set).

With the chain C we associate an interval conv(C) =[C,, C,] € $, and, conversely,
with an interval I € ., we associate the set of chains

%.(I) ={C € 6,: conv(C) =1 (5.1)
Furthermore, for any set of chains € = €, we consider the subset of chains
6(I)={C € €: conv(C)=1}. (5.2)

Similarly €%(I) are the k-chains with convex hull 1. For fixed k and n, |€%(I)| depends
only on p(I) =r, say, and shall be denoted by ¢(r). Clearly, q(r) =0, if r <k.
Now we consider intersecting chains. Two chains C and C’ are intersecting if, for

some pair (i, i'), C;=C}. We write C2C’. A family of chains € is intersecting if
C 4 C' for all C, C' € €. The maximal cardinality of such a family shall be M(n). If

only k-chains are permitted in €, then we denote the maximal cardinality of |€| by
M(n, k).
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We say that € is a simple intersecting family if, for some X < [n], all chains in 6
have X as a member (or meet X).

CoNtecTURE ESS & F. M(n, k) is assumed by the simple intersecting family €% of
all k-chains meeting & (or [r]). Since

€= U (0)) (5.3)

I=[$,Bl,Be(),r=k
and, therefore,

be=3 a0, ") (54)

the conjecture can be restated as
n+1 n
M=% a0 ") (55)
r=k r 1

THEOREM 4. The intersecting family of all k-chains in 9B, starting with the empty set
& has the maximal cardinality M(n, k).

Proor. Let € be an intersecting family of k-chains of cardinality |€| = M(n, k).
Introduce .%,(€) = {conv(C): C € €} and observe that (recalling (5.2)) (€(1));c,c¢) is a
partition of €.

Now write

jn(cg) :{[AiJ Bl]:l S T}.
Note also that the intersection property of the chains implies that %,(€) is an

intersecting system of intervals.
Therefore A; = B; for all i, j € T and hence, for all i € T,

A;c ) B;=B (say) = B;,
jeT

ie.
Bel for all I € 4,(%6).

This means that, in the terminology of Section 3,
n+1
Iu(€) = J.(B) = U I,(B)
r=0
and

M, k)y=1%= 2 16(DI< > q(p()

1€ .9,(6) 1€ 9,(6)

n+1 n+1 n
= 3 qem=% 3 q0=%(" Ja) (byLemmas). O
Ie9,(B) r=0 I<.9(B) r=0 \I

REMARK 2. ¢(r) equals the number of ways in which a set of » — 1 elements can be
partitioned into a sequence of £k — 1 non-empty subsets. This observation gave us the
idea of constructing the more direct proof of Theorem 4 in Section 6.
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6. A DIrRect PrRoOOF oF THEOREM 4

With the chain A={A, cA,c---NA} e 6~ we associate the sequence of disjoint
non-empty sets

C=A1, D1=A2\A1, D2=A3\A2, ey Dkflek\Akfl. (61)

Conversely, from (C, D, ..., D,_,) we can recover A via the equations
—1
A=C, A=CU <]U Dl-) for j =2. (6.2)
i=1

Thus we have an alternate representation of chains: (C, Dy, ..., D,_1).

We now study the intersection property of chains in this terminology. Recall that
parallel intervals are disjoint (Lemma 5 in Section 3).

Therefore, for intervals (C'; D,)*(C; D,) implies that C = C’ and thus (C'; D,)=

(C; D). This fact generalizes.

LEMMA 8.
(C'sDy, ..., D )*(C; Dy, ..., D )>C=C"

and
(C'sDy, ..., Dy_1)=(C;Dy, ..., Dr_y).

Proor. There are j and j' with
i—1 j'—1
cu <U Di> -C'U (’U D,-) . (6.3)
i=1 i=1
We subtract C U C’ from both sides and obtain, using (6.1),

Un=(eu( o)\ cves

J=

(eu(o)ever-Ua

Now, necessarily, C = C". O

Proor oF THEOREM 4. By Lemma 8, for a family € of intersecting k-chains |€| does
not exceed the cardinality d(n, k) of the set %X of all distinct sequences
Dy, ..., D) with D,ND; = (i#j)and D, [n] fori=1,..., k—1

Thus M(n, k) <d(n, k). Instead of determining d(n, k) by counting we just observe
that there is a bijection W: 9% — {(&, Dy, ..., Dy_1): (D4, ..., Dy_;) € 9%}. The image
is exactly ;€% and its optimality is thus proved.

ReEMARK 3. Inspection of the proofs shows that the condition D;#J (i=
1,...,k—1) was not used. Therefore also the intersection problem for chains of
length <k has a solution in the set of thus restricted chains starting in J. In particular,
this is also true for k =n + 1.

REmARK 4. We have started to think about families of d-intersecting k-chains. Here
the chains A, cA,c---cA,, and Ajc Ayc---c A,, are d-intersecting if there are
indices i; <---<izand j, <---<j,with A, =A for[=1,2,...,d.
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Applying a shifting operator as in [7], one can show that there is an optimal family &%
with a strong d-intersection property saying that for any C, C' € & there is a subset
Sc{0,1,...,n}, |S|=d, such that all X;={1,2,...,/} with jeS§ are contained in
both, C and C'. Here X,=.

This means that there is a set ¥ ={S(F): F € &} of subsets of {0, 1, ..., n} with

IS(F)NS(F")|=d

associated with F, such that for j € S(F), X; is contained in F.

It seems natural to conjecture that for some £ >0 and n large for d <n(1 — €) there
is an optimal family of d-intersecting chains all containing X,, X;,..., X;_;. The
restriction on d is essential, because otherwise the guess is false.

To see this, let us assume that n — d is bounded by a constant b. Then the number of
chains in the family just specified is bounded by a function of b only. However, the
family of chains containing {X;};.s, where S runs through all subsets of {0,1,...,n}
with cardinality at least (n +d)/2, is d-intersecting and increases with n. Our last
contribution is in the spirit of this construction.

ConjecTure. For all n,d and some w = d there is an optimal d-intersecting family of
chains, which contain at least [{w + d)/20members of X, X;,..., X, _1.

7. ANOTHER DESCRIPTION FOR .%,

Consider _ %, = 4, \{I}. We express C < [n] as a binary sequence ¢" = (cy, ..., ,)
of length n. An interval [A, B] can thus be described by a pair [a”, b"], where a, <b,
for t=1, ..., n. This pair in turn can be described by one sequence z" = (zy, . .., z,),
with

z,=2—(a,+b,), t=1,2,...,n (7.1)
We also write z" = ¢([A, B]). Conversely, z" determines [A, B] uniquely.
Moreover, if z” = ¢([A, B]) and z" = ¢([A’, B']), then

[A, B]<[A', B'|&for every ¢ € [n] with z; # 1, z, = z; holds. (7.2)

Therefore the poset _.%, can be expressed as a product of posets. [4, B] € $5*!, k=0,
means that, for z” = ¢([A4, B]), {z:z.=1,t e [n]}| = k.

Two intervals [A, B] and [A', B'] € _$*! are intersecting iff |z, — z;|#2 for all
t € [n] and z” and z” do not have the 1’s in exactly the same k positions.

This again allows us to characterize the intersecting systems in $%™' of maximal
cardinality (%).

We already have mentioned the system

FNC)={(C\D,D):D ¢ B}, Cc[n]. (7.3)

Here (C\D, D)=[C\D, CUD] and ¢([C\D, CU D]) = z", with

0 fort e C\D,
z=31 for t € D, (7.4)
2 fort ¢ CUD.

By Lemma 3, for a maximal intersecting system S, necessarily

S ={Ep, D): D € B}
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Let 7; (i =0, 2) be the components in which an i occurs for some z”. Then

,N T2:®.

Furthermore, T, U T, = [n], because otherwise not all D € % are used.

Define C = T; and observe that E, = C\D. Thus all optimal systems are of the form

(1.3).

—

10.
11.
12.
13.
14.

15.

16
17
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