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 Incomparability and Intersection Properties of Boolean Interval
 Lattices and Chain Posets

 R UDOLF  A HLSWEDE AND  N ING  C AI

 In a canonical way ,  we establish an AZ-identity (see [2]) and its consequences ,  the
 LYM-inequality and the Sperner property ,  for the Boolean interval lattice .  Furthermore ,  the
 Bollobas inequality for the Boolean interval lattice turns out to be just the LYM-inequality for
 the Boolean lattice .  We also present an Intersection Theorem for this lattice .

 Perhaps more surprising is that by our approach the conjecture of P .  L .  Erdo ̈  s  et al .  [7] and
 Z .  Fu ̈  redi concerning an Erdo ̈  s – Ko – Rado-type intersection property for the poset of Boolean
 chains could also be established .  In fact ,  we give two seemingly elegant proofs .
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 1 .  T HE  B OOLEAN  I NTERNAL  L ATTICE  ( n

 The main objects of our investigation are collections of intervals in the Boolean
 lattice  @ n ;  that is ,  the family of all subsets of [ n ]  5  h 1 ,  2 ,  .  .  .  ,  n j   endowed with union
 and intersection as lattice operations .

 For  A ,  B  P  @ n  ,  we define the interval

 [ A ,  B ]  5  h C  :  A  ’  C  ’  B j  (1 . 1)

 in  @ n  ,  and if  A  ’ /  B  here ,  then we speak of the empty interval  I [  .
 The Boolean interval lattice  ( n   is the set of all intervals in  @ n   endowed with the

 following ‘meet’ and ‘join’ operations denoted by ‘  ∧  ’ and ‘  ∨  ’ :

 [ A ,  B ]  ∧  [ A 9 ,  B 9 ]  5  h C  :  C  P  [ A ,  B ]  >  [ A 9 ,  B 9 ] j

 5 H [ A  <  A 9 ,  B  >  B 9 ] ,

 I [  ,

 if  A  <  A 9  ’  B  >  B 9 ,

 otherwise ,
 (1 . 2)

 [ A ,  B ]  ∨  [ A 9 ,  B 9 ]  5  [ A  >  A 9 ,  B  <  B 9 ] .  (1 . 3)

 The lattice properties are readily verified .  Note that the meet can be viewed as a
 Boolean intersection .  However ,  for the join we have

 [ A ,  B ]  ∨  [ A 9 ,  B 9 ]  ”  [ A ,  B ]  <  [ A 9 ,  B 9 ]

 and often there is no equality .
 Clearly ,  we can define a partial order ‘  <  ’ by

 [ A ,  B ]  <  [ A 9 ,  B 9 ]  ï  [ A ,  B ]  ’  [ A 9 ,  B 9 ]  or (equivalently)  A 9  ’  A  ’  B  ’  B 9 .  (1 . 4)

 We define a rank function  r  :  ( n  5  N  <  h 0 j   by

 r  ([ A ,  B ])  5 H 0 ,
 u B  \  A u  1  1 ,

 if  [ A ,  B ]  5  I [  ,
 if  [ A ,  B ]  ?  I [ .

 One readily verifies that  r   is upper semimodular ;  that is ,

 r  ([ A ,  B ]  ∨  [ A 9 ,  B 9 ])  1  r  ([ A ,  B ]  ∧  [ A 9 ,  B 9 ])  <  r  ([ A ,  B ])  1  r  ([ A 9 ,  B 9 ]) .

 This is not used in this paper .
 However ,  we frequently use an equivalent description of non-empty intervals .
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 Instead of [ A ,  B ] we write  k C ,  D l ,  where  C  5  A  and  D  5  B  \  A .  Note that  C  >  D  5  [
 and ,  given any disjoint subsets  C  and  D  of [ n ] ,  k C ,  D l   is the interval corresponding to
 [ C ,  C  <  D ] .

 Now  k C ,  D l  <  k C 9 ,  D 9 l  ï  C 9  ’  C  and ( C  \  C 9 )  <  D  ’  D 9  é  C 9  ’  C  and  D  ’  D 9 .
 One also readily verifies that

 k C ,  D l  ∧  k C 9 ,  D 9 l  5  k C  <  C 9 ,  D  >  D 9 l ,   if  k C ,  D l  ∧  k C 9 ,  D 9 l  ?  I [ .  (1 . 5)

 Finally (with a little abuse of notation) ,  we also use  r   for the second interval
 description :

 r  ( k C ,  D l )  5  u D u  1  1 .  (1 . 6)

 2 .  T HE  AZ- IDENTITY ,  THE  LYM -INEQUALITY ,  AND THE  S PENCER  P ROPERTY FOR  ( n

 Let us introduce  @ k
 n  5  ( [ n ]

 k  ) and let us denote by  (  k
 n   the set of intervals from  ( n   of

 rank  k  (0  <  k  <  n  1  1) .
 Observe first that ,  for all  I  P  ( k

 n ,

 u h I 9  P  ( k 1 1
 n  :  I 9  ”  I j u  5  n  2  k  1  1  (2 . 1)

 and that
 u h I 9  P  ( k 2 1

 n  :  I 9  ’  I j u  5  2( k  2  1) .  (2 . 2)

 This regularity property of a lattice is suf ficient for the LYM-inequality to hold .  We
 move directly to the AZ-identity .  For any  !  ’  ( n   and any  I  5  [ A ,  B ]  P  ( n   with

 ! I  5  h K  P  ! :  K  ’  I j  ?  [  (2 . 3)
 write

 ! I  5  h [ A i  ,  B i ] :  1  <  i  <  a  j  (2 . 4)
 and define

 W ! ( I )  5 S u B u  2 U !

 a

 i 5 1
 A i U D  1 S U "

 a

 i 5 1
 B i U  2  u A u D .  (2 . 5)

 If (2 . 3) does not hold ,  set  W ! ( I )  5  0 .

 T HEOREM  1 (AZ-identity) .  For any  !  ’  ( n  ,

 O
 I P ( n

 W ! ( I )

 2 n 2 r  ( I ) 1 2 ( r  ( I )  2  1) S  n
 r  ( I )  2  1

 D
 ;  1 .

 P ROOF .  By (2 . 1) (or (2 . 2)) ,   ( n   has exactly

 2 n  P n 1 1

 k 5 1
 ( n  2  k  1  1) S or  2 n  P n 1 1

 k 5 2
 ( k  2  1) D  5  2 n n !

 maximal chains .  Also ,  exactly

 ( n  2  r  ( I )  1  1)!  W ! ( I )2 r  ( I ) 2 2 ( r  ( I )  2  2)!

 maximal chains leave the upset  8 ( ! )  5  h K  P  ( n :  ' I 9  P  !   with  K  >  I 9 j   in  I  5  [ A ,  B ] .
 Since  r  ( I )  5  u B  \  A u  1  1 ,  we obtain

 O
 I P 8 ( ! )

 ( n  2  r  ( I )  1  1)!  W ! ( I )2 r  ( I ) 2 2 ( r  ( I )  2  2)!  5  2 n n !

 Since  W ! ( I )  5  0 for  I  ̧  8 ( ! ) ,  the identity follows .  h
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 The Whitney numbers  w k   of  ( n   are defined by

 w k  5  u ( k
 n u  for 0  <  k  <  n  1  1 .  (2 . 6)

 They can be evaluated .

 L EMMA  1 .  We ha y  e :
 (i)  w k  5  (  n

 k  2  1 )2 n 2 k 1 1   for  0  ,  k  <  n  1  1  and w 0  5  1  and , consequently ,
 (ii)  u ( n u  5  o n 1 1

 k 5 0  w k  5  3 n  1  1 .

 P ROOF .  The set  ( k
 n   is exactly the set of intervals  k C ,  D l   with  D  P  @ k 2 1

 n    and
 C  ’  D c  5  [ n ]  \  D .  Therefore (i) holds and (ii) follows ,  because  u ( n u  5  o n 1 1

 k 5 0  u ( k
 n u .  h

 C OROLLARY  1 (LYM-inequality) .  For any antichain  !  ’  ( n  ,

 O n 1 1

 k 5 0

 u !  >  ( k
 n u

 w k
 <  1 .

 P ROOF .  For  (  P  ! ,  by the antichain property and by (2 . 5) ,

 W ! ( I )  5  ( u B u  2  u A u )  1  ( u B u  2  u A u )  5  2( r  ( I )  2  1)

 and ,  by Theorem 1 ,

 O
 I P !

 2( r  ( I )  2  1)

 2 n 2 r  ( I ) 1 2 ( r  ( I )  2  1) S  n
 r  ( I )  2  1

 D
 <  1 .

 Using Lemma 1(i) ,  we obtain

 O
 I P !

 1
 w r  ( I )

 <  1

 and thus the result .  h

 C OROLLARY  2 (Sperner property) .  (i)  For e y  ery antichain  !  ’  ( n  ,

 u ! u  <  max
 0 , k < n 1 1

 w k  5

 n

   n  1  1
 3    2  1

 2 n 2   n  1  1 – 3   1 1 .A B
 (ii)

 max
 0 , k < n 1 1

 w k  5 5  w l 1 1  ,
 w l 1 1  ,
 w l 1 1  5  w l  ,

 if  n  1  1  5  3 l  1  1 ,
 if  n  1  1  5  3 l  1  2 ,

 if  n  1  1  5  3 l .

 (iii)  The antichains  !   of maximal length are

 !  5 H ( l 1 1
 n  ,

 ( l
 n ,

 if  n  1  1  5  3 l  1  m ,  m  5  0 ,  1 ,  2 ,
 if  n  1  1  5  3 l .

 Thus , if  3  u  n  1  1 , then there are two optimal antichains .

 P ROOF .  Corollary 1 implies that  u ! u  <  max 0 , k < n 1 1  w k .  The condition  w k  >
 max( w k 2 1  ,  w k 1 1 )   gives the necessary condition for  w k   to be maximal :     n  1  1 – 3    <  k  <
  n  1  1 – 3    1  1 .  It can also be verified to be suf ficient .  Thus (i) follows .  Also (ii) is a
 consequence .

 The antichains specified in (iii) are thus optimal .  It remains to be seen that there are
 no others in the case 3  u  n  1  1 .
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 Let  !   be a antichain of maximal length  w l .  By Theorem 1 (or even Corollary 1) ,
 necessarily ,

 u !  >  ( l
 n u  1  u !  >  ( l 1 1

 n  u  5  w l

 and ,  again by Theorem 1 ,   W ! ( I )  5  0 for  I  ̧  ! .  Now suppose that  !  ?  ( l
 n ,  ( l 1 1

 n  .  For all
 I  5  [ A ,  B ]  P  ( l 1 1

 n  \  ! ,  by its definition  W ! ( I )  5  0 implies that ,  for all  x  P  B  \  A ,
 A 9  5  A  <  h x j   satisfies [ A 9 ,  B ]  P  !  >  ( l

 n   and  B 9  5  B  \  h x j   satisfies [ A ,  B 9 ]  P  !  >  ( l
 n .  This

 means that all sub-intervals of  I ,  which have a rank  l ,  are in  !  >  ( l
 n .  However ,  no

 I  P  !  >  ( l 1 1
 n    has a sub-interval in  !  >  ( l

 n .  This means that the bipartite graph
 ( ( l

 n ,  ( l 1 1
 n  ,  ’  )   has two connected components .  This is impossible ,  because  I  5

 [ A ,  B ]  P  ( l 1 1
 n    is connected to  J  5  [ [ ,  B 9 ]  P  ( l 1 1

 n    by alternating deleting elements from
 A  and  B  and each two vertices [ f  ,  B 9 ] and [ f  ,  B 0 ] are connected in this graph .  h

 3 .  I NTERSECTING  S YSTEMS IN  ( n   AND   ( k
 n ,  THE  E RDO ̈  S – K O – R ADO  P ROPERTY

 AND  U NIQUENESS

 The goal of our investigations is to understand how intersecting systems ,  which have
 been studied extensively in Boolean lattices [see [4 ,  6]) and also in other structures (see
 [4] and [5 ,  8 – 10 ,  14 ,  15]) ,  behave in  ( n   and  (  k

 n .
 We call  S  ’  ( n   an  intersecting system ,  if for all  I ,  I 9  P  S ,

 I  ∧  I 9  5  I  >  I 9  ?  [ .  (3 . 1)

 Also ,  we say that  S  is  saturated ,  if it is not a proper subset of an intersecting system .
 A simple and basic saturated intersecting system is ,  for  C  ’  [ n ] ,

 ( n ( C )  5  h I  P  ( n :  C  P  I j .  (3 . 2)

 We show first that its cardinality is independent of  C .

 L EMMA  2 .  For all C  ’  [ n ] ,
 u ( n ( C ) u  5  2 n .

 P ROOF .  The intervals containing  C  are of the form [ A ,  B ] , A  ’  C  ’  B .  Clearly ,  there
 are 2 u C u 2 n 2 u C u   such intervals .  h

 Next we show that all saturated intersecting systems are of the form (3 . 2) .

 L EMMA  3 .  For e y  ery intersecting system S  ’  ( n  a D  P  ( n  , D  ?  I [  , exists with D  <  I
 for all I  P  S . Furthermore , if S is saturated , then S  5  ( n ( C )  for some non - empty C  ’  [ n ] .

 P ROOF .  Write  S  5  h [ A t  ,  B t ] :  t  P  T  j   and note that  A i  ‘  B j   ( i ,  j  P  T  ) implies

 !

 t P T
 A t  ’  "

 t P T
 B t .  (3 . 3)

 So ,  the interval  D  5  [ ! t P T  A t  ,  " t P T  B t ] satisfies  D  ?  I [   and  D  <  I  ( I  P  S ) .  Further-
 more ,  when  S  is saturated ,  then  D  5  [ C ,  C ] for some  C  ’  [ n ] and  D  P  S , S  5  ( n ( C ) .  h

 Whereas in  ( n   the intersecting systems  ( n ( C ) ( [  ?  C  ’  [ n ]) are exactly the largest
 intersecting systems ,  in  @ n   the systems  h X  ’  [ n ] :  x  P  X  j   ( x  P  [ n ]) are not the only
 intersecting systems of maximal cardinality .

 However ,  connections between these lattices can be established via their Whitney
 numbers .  For this ,  we define

 ( k
 n ( C )  5  ( n ( C )  >  ( k

 n .  (3 . 4)
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 L EMMA  4 .  u ( k
 n ( C ) u  5  (  n

 k  2  1 ) .

 P ROOF .  Note that

 ( k
 n ( C )  5 H k C  >  E c ,  E l :  E  P S  [ n ]

 k  2  1
 D J  5 H [ C  \  E ,  C  <  E ] :  E  P H  [ n ]

 k  2  1
 D J

 and thus the claimed identity .  h

 We now consider intersecting systems of intervals of rank  k .  This is analogous to the
 case of  k  elements sets ,  considered originally in [6] .  It is remarkable that in the new
 situation we have uniqueness in the sense that only the  ( k

 n ( C )’s appear as optimal
 systems .

 T HEOREM  2 .  For e y  ery intersecting system S  ’  ( k
 n ,

 S  < S  n
 k  2  1

 D
 and the  ( k

 n ( C ) ( C  ’  [ n ] ,  1  <  u C u  <  n  2  k  1  1)  are exactly the intersecting systems
 achie y  ing equality .

 The analysis proceeds in terms of a useful concept of parallelism .
 We say that the interval  k C ,  D l  P  ( n  \  h I [ j   has  direction d ( k C ,  D l )  5  D .  The empty

 interval  I [   has no direction .
 Intervals with the same direction are called parallel .  We write  I  i  I 9 ,  if  I  and  I 9  are

 parallel .  Obviously ,

 r  ( I )  5  r  ( I 9 ) ,  if  I  i  I 9 .  (3 . 5)

 The next property is familiar from geometry .

 L EMMA  5 .  Parallel inter y  als are disjoint or , formally ,

 I  i  I 9 ,  I  ?  I 9  é  I  >  I 9  5  I  ∧  I 9  5  I [  .

 P ROOF .  For  I  5  k C ,  D l  5  [ C ,  C  <  D ] , I 9  5  k C 9 ,  D l  5  [ C 9 ,  C 9  <  D ] , C  ?  C 9  and  C  >
 D  5  C 9  >  D  5  [   we have  I  >  I 9  5  [ C  <  C 9 ,  ( C  <  D )  >  ( C 9  <  D )]  5  [ C  <  C 9 ,  ( C  >  C 9 )  <
 D ]  5  I [  ,  because ( C  <  C 9 )  >  D  5  [   and  C  <  C 9  ’ /  C  >  C 9  for  C  ?  C 9 .  Consequently ,
 C  <  C 9  ‘ /  ( C  >  C 9 )  <  D .  h

 Using this result one readily verifies the next statements ,  which shed new light on
 Lemmas 1 and 4 .

 L EMMA  6 .  (i)  For e y  ery direction D  ’  [ n ] , the inter y  als  k C ,  D l   and C  ’  D c  partition
 ( n .

 (ii)  ( n  can be partitioned into  2 n  families of parallel inter y  als .
 (iii)  ( k

 n  can be partitioned into  (  n
 k  2  1 )  families , each ha y  ing  2 n 2 k 1 1   parallel inter y  als .
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 P ROOF OF  T HEOREM  2 .  Clearly ,  Lemma 6(iii) and Lemma 5 imply that  u S u  <  (  n
 k  2  1 ) .

 Furthermore ,  by Lemma 3 ,   S  ’  ( n ( C ) ,  and since by assumption  S  ’  ( k
 n ,  we conclude

 that  S  ’  ( n ( C )  >  ( k
 n .  If  S  is optimal ,  then necessarily  S  5  ( n ( C )  >  ( k

 n  5  ( k
 n ( C ) ,  by

 Lemma 3 .  h

 R EMARK  1 .  It is natural also to consider intersecting systems with a qualified
 constraint .  We call  S  ’  ( n  d - intersecting  if ,  for all  I ,  I 9  P  S ,

 r  ( I  ∧  I 9 )  >  d .  (3 . 6)

 Our previous definition is included in the case  d  5  1 .
 There is a simple reduction for the cases  d  >  2 .
 For  I  5  k C ,  D l , I 9  5  k C 9 ,  D 9 l ,  (3 . 6) is equivalent to  k C ,  D l  ∧  k C 9 ,  D 9 l  5  k C  <  C 9 ,

 D  >  D 9 l   with  u D  >  D 9 u  >  d  2  1 and  D  ?  D 9 .
 Therefore for every  d -intersecting system  S  ’  ( n   there corresponds a ( d  2  1)-

 intersecting system of  @ n   $  5  h D :  ' k C ,  D l  P  S j   of the  same cardinality .  Conversely ,  to
 every ( d  2  1)-intersecting system of  @ n  $   there corresponds a  d -intersecting system of
 ( n   of the same cardinality ;  namely ,  for any  E  P  @ n  ,

 S  5  hk E  \  D ,  D l :  D  P  $ j .

 Similarly ,  there is such a correspondence between intersecting systems  S  ’  ( k
 n   and

 $  ’  @ k 2 1
 n  .

 4 .  F ROM  L OCAL TO  G LOBAL  I NTERSECTION OF  I NTERVALS AND  I NTERSECTING  A NTICHAINS

 The fact that parallel intervals are disjoint (Lemma 5) has a useful extension .

 L EMMA  7 .  For two non - disjoint inter y  als  k C 1  ,  D 1 l   and  k C 2  ,  D 2 l , with D 1  ’  D 2  ,
 necessarily

 k C 1  ,  D 1 l  <  k C 2  ,  D 2 l
 or  ( equi y  alently )

 [ C 1  ,  C 1  <  D 1 ]  ’  [ C 2  ,  C 2  <  D 2 ] .

 P ROOF .  Recall the definition (1 . 4) of the partial order .  By our assumption ,  for some
 X  ’  [ n ] ,

 C 1  ’  X  ’  C 1  <  D 1  ,  C 2  ’  X  ’  C 2  <  D 2

 and therefore
 C 1  ’  C 2  <  D 2  ,  C 2  ’  C 1  <  D 1 .  (4 . 1)

 Since  D 1  ’  D 2  ,  we conclude first that

 C 1  <  D 1  ’  C 2  <  D 2 .  (4 . 2)

 Since  C 2  >  D 1  ’  C 2  >  D 2  5  [   and  C 2  ’  C 1  <  D 1  we conclude further that
 C 2  ’  C 1  .  (4 . 3)

 Finally ,  (4 . 2) and (4 . 3) say that

 C 2  ’  C 1  ’  C 1  <  D 1  ’  C 2  <  D 2

 and thus [ C 1  ,  C 1  <  D 1 ]  ’  [ C 2  ,  C 2  <  D 2 ] .  h
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 A well-known inequality of Bollobas [3] states that ,  for any intersecting antichain
 ̂  ’  @ n  ,

 O  n /2 

 k 5 1

 u ̂  >  B k
 n u

 S n  2  1
 k  2  1

 D
 <  1 .  (4 . 4)

 What is the Bollobas-type inequality for  ( n ? The answer follows by simple reasoning .
 For an intersecting antichain  6  5  hk C i  ,  D i l :  1  <  i  <  m j   in  ( n   by Lemma 7 necessarily
 h D i :  1  <  i  <  m j   is an antichain in  @ n .  We obtain the following inequality .

 T HEOREM  3 .  For an intersecting antichain  6   in  ( n  ,

 O n 1 1

 k 5 1

 u 6  >  ( k
 n u

 S  n
 k  2  1

 D
 <  1 .

 Conversely ,  we can translate this inequality backwards .  Thus the LYM-inequality for
 the Boolean lattice is exactly the Bollobas-type inequality for the Boolean interval
 lattice .

 5 .  A N  I NTERSECTION  T HEOREM FOR  C HAIN  P OSETS

 We now introduce chain posets and prove for them an intersection property
 conjectured by Erdo ̈  s  et al .  in [7] .  There and also by Fu ̈  redi (according to [7]) ,  this
 conjecture has been verified in over large range of parameters .  The methods used do
 not seem to be suitable to settle the conjecture .  Our approach does this ,  and is very
 simple .  In Section 6 we give an even simpler and more direct proof .

 A strictly increasing sequence of subsets of [ n ] and of length  k  is claled a  k -chain .   # k
 n

 denotes the set of all those chains and we define  # n  5  !
 n 1 1
 k 5 1  # k

 n .  The chain  C  5  h C 1  ’
 C 2  ’  ?  ?  ?  ’  C l j   is contained in the chain  C 9  5  h C 9 1  ’  C 9 2  ’  ?  ?  ?  ’  C 9 l 9 j ,  if  h C n :  1  <  i  <  l j  ’
 h C 9 i  :  1  <  i  <  l 9 j .  We denote this containment by ‘  ’  ’ .  Then ( # n  ,  ’ ) is a poset ,  which we
 call the poset of chains (on an  n -set) .

 With the chain  C   we associate an interval conv( C )  5  [ C 1  ,  C l ]  P  ( n   and ,  conversely ,
 with an interval  I  P  ( n   we associate the set of chains

 # n ( I )  5  h C  P  # n :  conv( C )  5  I j .  (5 . 1)

 Furthermore ,  for any set of chains  #  ’  # n   we consider the subset of chains

 # ( I )  5  h C  P  #  :  conv( C )  5  I j .  (5 . 2)

 Similarly  #  k
 n ( I ) are the  k -chains with convex hull  I .  For fixed  k  and  n ,  u # k

 n ( I ) u   depends
 only on  r  ( I )  5  r ,  say ,  and shall be denoted by  q ( r ) .  Clearly ,   q ( r )  5  0 ,  if  r  ,  k .

 Now we consider intersecting chains .  Two chains  C   and  C 9  are intersecting if ,  for
 some pair ( i ,  i 9 ) , C i  5  C 9 i 9 .  We write  C  , l

 C 9 .  A family of chains  #   is intersecting if

 C  , l  C 9  for all  C ,   C 9  P  #  .  The maximal cardinality of such a family shall be  M ( n ) .  If
 only  k -chains are permitted in  #  ,  then we denote the maximal cardinality of  u # u   by
 M ( n ,  k ) .
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 We say that  #   is a  simple  intersecting family if ,  for some  X  ’  [ n ] ,  all chains in  #
 have  X  as a member (or meet  X  ) .

 C ONJECTURE  ESS  &  F .  M ( n ,  k ) is assumed by the simple intersecting family  [ # k
 n   of

 all  k -chains meeting  [   (or [ n ]) .  Since

 [ # k
 n  5  !

 I 5 [ f  ,B ] ,B P (  [ n ]
 r 2 1 ) ,r > k

 #  k
 n ( I )  (5 . 3)

 and ,  therefore ,

 u [ #  k
 n u  5  O n 1 1

 r 5 k
 q ( r ) S  n

 r  2  1
 D ,  (5 . 4)

 the conjecture can be restated as

 M ( n ,  k )  5  O n 1 1

 r 5 k
 q ( r ) S  n

 r  2  1
 D .  (5 . 5)

 T HEOREM  4 .  The intersecting family of all k - chains in  @ n  starting with the empty set
 [  has the maximal cardinality M ( n ,  k ) .

 P ROOF .  Let  #   be an intersecting family of  k -chains of cardinality  u # u  5  M ( n ,  k ) .
 Introduce  ( n ( # )  5  h conv( C ) :  C  P  # j   and observe that (recalling (5 . 2)) ( # ( I )) I P ( n ( # )  is a
 partition of  #  .

 Now write
 ( n ( # )  5  h [ A i  ,  B i ] :  i  P  T  j .

 Note also that the intersection property of the chains implies that  ( n ( # ) is an
 intersecting system of intervals .

 Therefore  A i  ’  B j   for all  i ,  j  P  T  and hence ,  for all  i  P  T ,

 A i  ’  "

 j P T
 B j  5  B I    (say)  ’  B i  ,

 i . e .
 B I  P  I  for all  I  P  ( n ( # ) .

 This means that ,  in the terminology of Section 3 ,

 ( n ( # )  ’  ( n ( B I  )  5  !

 n 1 1

 r 5 0
 ( r

 n ( B I  )

 and

 M ( n ,  k )  5  u # u  5  O
 I P ( n ( # )

 u # ( I ) u  <  O
 I P ( n ( # )

 q ( r  ( I ))

 <  O
 I P ( n ( B I  )

 q ( r  ( I ))  5  O n 1 1

 r 5 0
 O

 I P (  n
 r ( B I  )

 q ( r )  5  O n 1 1

 r 5 0
 S  n

 r  2  1
 D q ( r )  (by  Lemma  4) .  h

 R EMARK  2 .  q ( r ) equals the number of ways in which a set of  r  2  1 elements can be
 partitioned into a sequence of  k  2  1 non-empty subsets .  This observation gave us the
 idea of constructing the more direct proof of Theorem 4 in Section 6 .
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 6 .  A D IRECT  P ROOF OF  T HEOREM  4

 With the chain  A  5  h A 1  ’  A 2  ’  ?  ?  ?  >  A k j  P  #  k
 n ,  we associate the sequence of disjoint

 non-empty sets

 C  5  A 1  ,  D 1  5  A 2  \  A 1  ,  D 2  5  A 3  \  A 2  ,  .  .  .  ,  D k 2 1  5  A k  \  A k 2 1  .  (6 . 1)

 Conversely ,  from  k C ,  D 1  ,  .  .  .  ,  D k 2 1 l   we can recover  A   via the equations

 A 1  5  C ,  A j  5  C  < S !

 j 2 1

 i 5 1
 D i D  for  j  >  2 .  (6 . 2)

 Thus we have an alternate representation of chains :   k C ,  D 1  ,  .  .  .  ,  D k 2 1 l .
 We now study the intersection property of chains in this terminology .  Recall that

 parallel intervals are disjoint (Lemma 5 in Section 3) .
 Therefore ,  for intervals  k C 9 ;  D 1 l , l  k C ;  D 1 l   implies that  C  5  C 9  and thus  k C 9 ;  D 1 l  5

 k C ;  D l .  This fact generalizes .

 L EMMA  8 .

 k C 9 ;  D 1  ,  .  .  .  ,  D k 2 1 l , l  k C ;  D 1  ,  .  .  .  ,  D k 2 1 l  é  C  5  C 9

 and
 k C 9 ;  D 1  ,  .  .  .  ,  D k 2 1 l  5  k C ;  D 1  ,  .  .  .  ,  D k 2 1 l .

 P ROOF .  There are  j  and  j 9  with

 C  < S !

 i 2 1

 i 5 1
 D i D  5  C 9  < S  !

 j 92 1

 i 5 1
 D i D  .  (6 . 3)

 We subtract  C  <  C 9  from both sides and obtain ,  using (6 . 1) ,

 !

 j 2 1

 i 5 1
 D i  5 S C  < S !

 j 2 1

 i 5 1
 D i D D

 Ñ  ( C  <  C 9 )

 5 S C 9  < S  !

 j 92 1

 i 5 1
 D i D D

 Ñ  ( C  <  C 9 )  5  !

 j 92 1

 i 5 1
 D i .

 Now ,  necessarily ,   C  5  C 9 .  h

 P ROOF OF  T HEOREM  4 .  By Lemma 8 ,  for a family  #   of intersecting  k -chains  u #  u   does
 not exceed the cardinality  d ( n ,  k ) of the set  $ k

 n   of all distinct sequences
 ( D 1  ,  .  .  .  ,  D k 2 1 )   with  D i  >  D j  5  [   ( i  ?  j ) and  D i  ’  [ n ] for  i  5  1 ,  .  .  .  ,  k  2  1 .

 Thus  M ( n ,  k )  <  d ( n ,  k ) .  Instead of determining  d ( n ,  k ) by counting we just observe
 that there is a bijection    :  $ k

 n  5  hk [ ,  D 1  ,  .  .  .  ,  D k 2 1 l :  ( D 1  ,  .  .  .  ,  D k 2 1 )  P  $ k
 n j .  The image

 is exactly  [ #  k
 n   and its optimality is thus proved .

 R EMARK  3 .  Inspection of the proofs shows that the condition  D i  ?  [   ( i  5
 1 ,  .  .  .  ,  k  2  1)   was not used .  Therefore also the intersection problem for chains of
 length  < k  has a solution in the set of thus restricted chains starting in  [ .  In particular ,
 this is also true for  k  5  n  1  1 .

 R EMARK  4 .  We have started to think about families of  d -intersecting  k -chains .  Here
 the chains  A 1  ’  A 2  ’  ?  ?  ?  ’  A m   and  A 9 1  ’  A 9 2  ’  ?  ?  ?  ’  A 9 m 9  are  d -intersecting if there are
 indices  i 1  ,  ?  ?  ?  ,  i d   and  j 1  ,  ?  ?  ?  ,  j d   with  A i l  5  A 9 j l   for  l  5  1 ,  2 ,  .  .  .  ,  d .
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 Applying a shifting operator as in [7] ,  one can show that there is an optimal family  ̂
 with a  strong d - intersection property  saying that for any  C ,   C 9  P  ̂    there is a subset
 S  ’  h 0 ,  1 ,  .  .  .  ,  n j ,  u S u  >  d ,  such that all  X j  5  h 1 ,  2 ,  .  .  .  ,  j j   with  j  P  S  are contained in
 both ,   C   and  C 9 .  Here  X  0  5  [ .

 This means that there is a set  6  5  h S ( F  ) :  F  P  ̂  j   of subsets of  h 0 ,  1 ,  .  .  .  ,  n j   with

 u S ( F  )  >  S ( F  9 ) u  >  d

 associated with  F ,  such that for  j  P  S ( F  ) , X j   is contained in  F .
 It seems natural to  conjecture  that for some  »  .  0 and  n  large for  d  <  n (1  2  »  ) there

 is an optimal family of  d -intersecting chains all containing  X  0  ,  X  1  ,  .  .  .  ,  X d 2 1  .  The
 restriction on  d  is essential ,  because otherwise the guess is false .

 To see this ,  let us assume that  n  2  d  is bounded by a constant  b .  Then the number of
 chains in the family just specified is bounded by a function of  b  only .  However ,  the
 family of chains containing  h X i j i P S ,  where  S  runs through all subsets of  h 0 ,  1 ,  .  .  .  ,  n j
 with cardinality at least ( n  1  d ) / 2 ,  is  d -intersecting and increases with  n .  Our last
 contribution is in the spirit of this construction .

 C ONJECTURE .  For all  n ,d  and some  w  >  d  there is an optimal  d -intersecting family of
 chains ,  which contain at least   ( w  1  d ) / 2    members of  X  0  ,  X  1  ,  .  .  .  ,  X w 2 1  .

 7 .  A NOTHER  D ESCRIPTION FOR  ( n

 Consider  2 ( n  5  ( n  \  h I [ j .  We express  C  ’  [ n ] as a binary sequence  c n  5  ( c 1  ,  .  .  .  ,  c n )
 of length  n .  An interval [ A ,  B ] can thus be described by a pair [ a n ,  b n ] ,  where  a t  <  b t

 for  t  5  1 ,  .  .  .  ,  n .  This pair in turn can be described by one sequence  z n  5  ( z 1  ,  .  .  .  ,  z n ) ,
 with

 z t  5  2  2  ( a t  1  b t ) ,  t  5  1 ,  2 ,  .  .  .  ,  n .  (7 . 1)

 We also write  z n  5  w ([ A ,  B ]) .  Conversely ,   z n   determines [ A ,  B ] uniquely .
 Moreover ,  if  z n  5  w ([ A ,  B ]) and  z 9 n  5  w ([ A 9 ,  B 9 ]) ,  then

 [ A ,  B ]  <  [ A 9 ,  B 9 ]  ï  for every  t  P  [ n ] with  z 9 t  ?  1 , z t  5  z 9 t    holds .  (7 . 2)

 Therefore the poset  2 ( n   can be expressed as a product of posets .  [ A ,  B ]  P  ( k 1 1
 n  , k  >  0 ,

 means that ,  for  z n  5  w ([ A ,  B ]) ,  u h z t :  z t  5  1 ,  t  P  [ n ] j u  5  k .
 Two intervals [ A ,  B ] and [ A 9 ,  B 9 ]  P  2 ( k 1 1

 n    are intersecting if f  u z t  2  z 9 t  u  ?  2 for all
 t  P  [ n ]   and  z n   and  z  9 n   do not have the 1’s in exactly the same  k  positions .

 This again allows us to characterize the intersecting systems in  (  k 1 1
 n    of maximal

 cardinality ( n
 k ) .

 We already have mentioned the system

 ( k
 n ( C )  5  hk C  \  D ,  D l :  D  P  @ k

 n j ,  C  ’  [ n ] .  (7 . 3)

 Here  k C  \  D ,  D l  5  [ C  \  D ,  C  <  D ] and  w ([ C  \  D ,  C  <  D ])  5  z n ,  with

 z t  5 5  0  for  t  P  C  \  D ,

 1  for  t  P  D ,

 2  for  t  ̧  C  <  D .

 (7 . 4)

 By Lemma 3 ,  for a maximal intersecting system  S ,  necessarily

 S  5  hk E D  ,  D l :  D  P  @ k
 n j .
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 Let  T i   ( i  5  0 ,  2) be the components in which an  i  occurs for some  z n .  Then

 T 0  >  T 2  5  [ .

 Furthermore ,   T 0  <  T 2  5  [ n ] ,  because otherwise not all  D  P  @ k
 n   are used .

 Define  C  5  T 0  and observe that  E D  5  C  \  D .  Thus all optimal systems are of the form
 (7 . 3) .
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