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Abstract

A (variable length) code is fix — free code if no codeword is a prefix
or a suffix of any other. A database constructed by a fix — free code is
instantaneously decodeable from both sides. We discuss the existence of
fix — free codes, relations to the deBrujin Network and shadow problems.
Particulary we draw attention to a remarkable conjecture: For numbers

N
l1,...,In satisfying > 2-li < % a fix—free code with lengths [, ... [y exists.

=1
If true, this bound is best possible.
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1 BASIC DEFINITIONS

1 Basic Definitions
For a finite set X = {0,...,a — 1}, called alphabet, we form X" = [[ X,
1

[e.e]
the words of length n, with letters from X and X* = [J A", the set of

n=0
all finite length words including the empty word e from X% = {e}, X* is
equipped with an associative operation, called concatenation, defined by
(1, Tn) (Y1 ooy Um) = (T, s Ty Y1y e o+ s Ym)-

We skip the brackets whenever this results in no confusion, in particular
we write the letter z instead of (z). We also write Xt = X* \ {e} for the
set of non—empty words.

The length | 2" | of the word 2" = z1 ..., is the number n of letters in

™.

A word w € X* is a factor of a word z € X* if there exist u,v € X* such
that x = uwv. A factor w of z is proper if w # z.
For subsets )V, Z of X* and a word w € X*, we define

Yw={yw € X* :y € Y},

VZ={yze X*:yeY,z€ Z}
and

Yuw™' = {z€X*: 2w eV}

A set of words C C X* is called a code.

Recall that a code is called prefix—free (resp. suffix—free), if no codeword
is beginning (resp. ending) of another one.

Definition 1 A code, which is simultaneously prefiz—free and suffix—free,
is called biprefix or fiz—free. This can be expressed by the equations

CXTNC=¢and XTCNC = ¢

Definition 2 A code C = {¢1,...,cn} over an a-letter alphabet X is said
to be complete if it satisfies equality in Kraft’s inequality, i.e. for
l; :| Ci ‘7

N
Z a b =1.
i=1

Definition 3 A fiz—free code C is called saturated, if it is not possible to
find a fiz—free code C' containing C properly, that is, | C' |>| C |.
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2 The Existence

Lemma 1 A finite fiz—free code C = {c1,...,cn} over X ={0,...,a—1}
is saturated iff C is complete.

Proof:
Let 4; =| ¢; | forall 1 <i < N.
N
LI Y a % =1, then C is saturated, because otherwise we get a con-
i=1
tradiction to Kraft’s inequality.

N
2. Now we show that in case ) a b < 1, /1 < ... < /{y, we can add
i=1
another codeword to C.

Indeed, by the proof of Kraft’s inequality there exists a word zf~ €
XV such that no codeword of C is prefix of zfV. Similarly, there
exists a word y¥ € X!~ such that no codeword of C is suffix of y/~.

Define now the new codeword

In, b
CN_|_1=£ENyN.

Definition 4 We define the shadow of a word w € X* in level | as
Si(w) = {z! € X' :w is prefiz or suffiz of z'}.
=w ' xtuxtw!.

For a set Z this notation is extended to

a(Z2) = U di(2).

2€2
We are next looking for Kraft—type inequalities.

N
Lemma 2 Y a7 % < % implies that there exists a fiz—free code C over
=1

X =A{0,... ,;— 1} with £ < ... < /¢y as lengths of codewords.

Proof: We proceed by induction in the number of codewords. The case
N = 1 being obvious we assume that we have found a fix—free code for
N — 1 codewords. We present these words as vertices of a tree, where a
word of length ¢ corresponds to a certain vertex on the /—th level (in the
usual way).

We count now all leaves of this tree in the £n’th level, which have one of
the codewords as a prefix or as a suffix. (The shadow of the code in the
In’s level.)
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For each codeword ¢; of length ¢; we thus count atv—ti leaves, which have
¢; as a prefix and also a/~ % leaves, which have ¢; a suffix. These sets need
N—1
not be distinct. However, their total number does not exceed 2 > a
i=1
By our assumption this is smaller than a*~ and there is a leaf on the £x’s
level, which was not counted. The corresponding word can serve as our

N-th codeword.

Iy —4;

We define now v as the largest constant such that for every integral tuple
N

(b1, la,...,0N) 3275 < 4 implies the existence of a binary fixfree code
i=1

with lengths fl,gg, Ces ,KN.

)

Lemma 3 v <

Proof: For any v = % +e,6 > 0, choose k such that 2% < . For the
vector (£1,...,0x) = (1, k,..., k) with N = 2*=2 + 2 we have

N 1 3 3
2t = Z 4o kb2 Y= 40k Dy g
;_1 5+ ( +1) 1+ < te

However, there are exactly 2¥=2 words of length k without a codeword
¢ as a prefix and a suffix and, since 1 4+ 2¥72 < N, we have shown the
nonexistence of a code with the desired parameters.

There is some evidence for the

Conjecture: v = %.

For instance we have the following observation.

Lemma 4 Suppose that
either £; = li1q or 20; < 0y for all 1 <i < N. (2.1)

N

Then S 274 < % implies the existence of a binary fix—free code with these
i=1

codeword lengths.

Proof: We go by induction on the number n of different lengths occurring
in
U <ty <...<[y.

Obviously the result is true, if there is only one length, that is, n = 1.

Assuming that we can construct a code with n — 1 different codeword
lengths we show that we can construct a code with n different codeword

M
lengths. Let M be the largest index i with ¢; < £y. Thus 3274 < %
i=1



2 THE EXISTENCE

and by induction hypothesis we have a fix-free code C' with the lengths
l1,..., . We estimate now the shadow dy, (C'). Actually, by 2.1 we get
an exact formula:

M M
100, (C)| =2 2fv=hi = N ptw=2b g N ofv=lith) - (2.9)

1<i<j<M
A code with lengths /1,..., ¢y is constructable exactly if
1625 (C")] < 2V — (N — M). (2.3)

Writing K = N — M and a = Z 2=t we get after division by 2¢¥ from
(2.2) and (2.3) that sufficient for constructablhty is

K
2

With the abbreviations § = Z 27t = a+ £ and § = 2[ we get the

i=1 2[N
equivalent inequality

B<1+6—V6.

This is satisfied for § < %, because 1+ & — v/ has the minimal value % (at
§=1).
1

2.1 Minimal Average Codeword Lengths

The aim of data compression in Noiseless Coding Theory is to minimize
the average length of the codewords (see [2, 5]).

Theorem 1 For each probability distribution P = (P(1),..., P(N)) there
exists a binary fix — free code C where the average length of the codewords
satisfies

H(P)<L(C) < H(P) +2.

Proof: The left—hand side of the theorem is clearly true, because each fix
— free code is a prefix code and for each prefix code the left-hand side of
the theorem follows from the Noiseless Coding Theorem. It is also clear,
that this lower bound is reached for N = 2™ (m € N) and P(i) = 2™ for
all 1 <3 <2m,

The proof of the right-hand side of the Theorem is the same as the proof
for alphabetic codes, which can be found in [1]:



3 ON COMPLETE FIX-FREE-CODES

We define £; 2 [—log(P(i))] + 1. It follows that

N 1 Y 1 1
2*31‘ < Z 2108;(P(i)) = = P(i) = =.

By Lemma 2 there exists a fix — free code C with the codeword lengths
O, ..., UN.

The average length of this code is

_ N N
L) = ;P(z)él < ;P(i)(—log(P(i)) +2)
N
= H(P)+2Y P(i) = H(P) + 2,
i=1

where the logarithm is taken to the base 2. For an arbitrary alphabet the
proof follows the same lines.

3 On Complete Fix—Free—Codes

3.1 Auxiliary Results

In Chapter 3 of [3] the structure of complete fix—free codes is studied and
methods for constructing finite codes are presented. To each complete fix —
free code two basic parameters are associated: its kernel and its degree. The
kernel is the set of codewords which are proper factors of some codeword.
The degree d is a positive integer which is defined as follows:

It is well known (see [3]) that for each finite complete fix — free code

C ={cy,...,cny} and for each w € X', there exists a positive integer
m < max | ¢; | such that w...w € C*. Now we define
1<i<N ~——
m

d2 max min {m:w...w€C*}.
weX+t meN —
m

We need the following results of [3]:

Proposition 1 Let C be a finite complete fiz — free code over a finite
alphabet X and let d be its degree. Then we have the properties:

(i) For each letter x € X,
...z eC.
e
d
(ii) There is only a finite number of finite complete fix—free codes over X

with degree d.
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(iii) If the length of the shortest codeword is d, then the length of every
codeword 1s d as well.

Lemma 5 For each finite complete fiz—free code C = {¢1,...,cn) over
X ={0,...,a — 1}, a® divides the number of codewords of mazimal length.

Proof : From the definition of complete fix—free codes it follows that with
every codeword ¢ € C of maximal length, there are also a®> — 1 other code-
words which differ from ¢ only in the first and/or last components. Hence
the set of codewords of maximal length is a disjoint union of equivalent
classes each of cardinality a?. O

Lemma 6 For each binary complete fix — free code C there is at most one
codeword of length 2 or all codewords have length 2.

Proof : By (i) in Proposition 1 we know that C contains no codeword
of length one. If C contains a codeword ¢ with | ¢ |> 2 then by (iii) of
Proposition 1 the degree of C is greater than 2, and by (i) of Proposition 1
00 € C and 11 € C. Hence if we have two codewords of length 2 then these
two codewords are 01 and 10. However, there is a codeword of maximal
length starting with 01 or 10 (see Lemma 5). O

3.2 Only Three Different Levels

Let C be a finite binary complete fixfree code and let C; £ {c € C :| ¢ |= i}.
Let bin~!(c) be the natural number which corresponds to the binary rep-
resentation of ¢ (Note that the length of c is not fixed so that bin~!(c) =
bin~'(0c)).

Lemma 7 Let C = (c1,...,cn) be a finite binary complete fiz—free code
with codeword lengths £1,..., 4y satisfying ¢; € {k,k + 1,k + 2} for all
1<i< N and some k. Then for every £ C Ci

| 0k11(E) |> 2| €| and equality holds exactly if | £ |= 2F.

Proof : The union of the sets £0 and £1 contains 2 | £ | elements. Hence
always | 0p11(E) |> 2| £, if | € |< 2¥ then by (i) and (iii) of Proposition 1,
0,...,0) g €.

Let ¢ be the element in £ with smallest bin~!(c). We consider Oc € 6;41(&)
and let us show that Oc ¢ £0 U £1. Assume in the opposite Oc = c/0 or
Oc = c'1 for some ¢ € £. However bin~!(0c) = bin~!(c) < 2bin~!(c) =
bin='(c'0) and bin '(0c) < 1 + 2bin (c') = bin~'(c'1) hold, since c is
the element of £ with smallest bin~!(c). Hence | dx1(E) |> 2| € | +1 if
| € |< 2. O

Theorem 2 LetC be a finite binary complete fix — free code with codeword
lengths: k=401 <ty <...<¥lny=k+2. Then
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(i)
(i1)

xey € Cryo, x,y € {0,1} if and only if ¢ € Cy, and
| Ok41(Cr) |=4 [ Cg |-

Proof :

(i)

(i)

Let C) = {c € {0,1}*\ Cy, : zcy € Cp10, 7,y € {0,1}},

Chiy = {mcy € Chya,m,y € {0,1} : c € C}}} and let

D = 641(CY) = {c0,¢1,0c,1c € {0,1}F+1 1 c € CD}.

From Lemma 5 we know that | Ci,, |= 4 | C) |. We consider new
codes Cf = (C\ C),) UC] and Cy = (C\ C),,) UD. It can be
easely verified, that both C{ and C) are fix-free codes. Moreover, C}
is complete, since C is complete. Therefore we can apply Lemma 7
with respect to & = CY,| CY |< 2k, to get | dx41(CY) |=| D [>2|C |.
However this leads to the contradiction, because C} is a fix-free code,
but

Z 9—lel  — Z 9~ lel 4 Z 9-—lel

ceCl ce(C\CP 1) ceD
> > 2ldg Y ok
ce(C\CP 1) ceCy L,
= Y 2 l=1.
ceC

We consider teh lower shadow of Cyo:

i1 (Crin) 2 {e € {0,110 1 61a(0) N Crpn £ 0}
By (1) we have 5]:+1(Ck+2) == 6k+1(Ck)
Therefore C 1 = {0, 111\ 641 (Cy), since C is complete.

Now | dx41(Cr) |< 4| Ck | would imply 3 271 > 1. 0
ceC

3.3 Relations to the deBruijn Network

The binary deBruijn Network of order n is an undirected graph B" =
(V™ E™), where V" = X" is the set of vertices and (u",v™) € E™ is an edge

iff

u™ € {(b,v1,...,0n-1), (v2y...,0p,0) : b€ {0,1}.

The binary deBruijn Network B% is given as an example:
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(0901 ]‘9 1)

(11 ]‘902 0)

(070’071) (170’070)

A subset A C V" is called independent, if no two vertices of A are con-
nected, and we denote by Z(B") the set of all independent subsets of the
deBruijn network. We note, that for all b € {0, 1}, (b,b,...b) & A € Z(B"),
because (b, b,...b) is dependent itself. The independence number f(n) of
B"is f(n) = max |A].

AET(Bn)
Lemma 8 Let C be a binary complete fix — free code on three levels:

C=ChUCpt1 UCpya,Ci # (. Then
(i) C, € Z(B™) and

(11) for every A € Z(B™) there exists a complete fixz — free code on three
levels n,n + 1,n + 2 for which A = C,,, and the code is unique.

Proof :

(i) Immideately follows from Theorem 2 (ii).
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(ii) For an A € Z(B") we construct a complete fix — free code
C = Cp UCpy1 UCpya as follows: Cpyq = {0,131\ 6,41 (A),
Cnyo = {zcy € {0,1}"2, 2,y € {0,1} : c € A}. O

We note, that the exact value of the independence number f(n) of B" in
general is not known.
Clearly for any z",y" € A € Z(B"),z" # y™:

bin~(z™) # 2bin~ (y"), bin " (&™) # 2bin~ (y") + 1,
bin~ (z") # bin~ (y") + 2" 'bin T (y") # 2bin~ ! (z"),
bin~t(y") # 2bin~t(z") + 1,bin" L (y") # bin"(z") 4+ 271

Hence, the determination of f(n) is a special case of the following number—
theoretical problem:

For given m € N, find a set S = {1 < a; < ... < ag < m} of maximal
cardinality, for which {a;, 2a;, 2a;+1, a; +m}N{a;, 2a;,2a;+1,a;+m} =0
holds for all 1 <i < j <| S|

In the case m = 2" we have exactly the problem of finding a maximal
independent set with cardinality f(n) in the deBruijn network. Hence we
solve this problem (for m = 2™) asymptotically.

Theorem 3

lim £ _ 1

Proof : Let A € Z(B") with | A |= f(n). Clearly f(n) < 2"!, because
for an z" € A:

1 < bin Y(z") < 2bin~ 1 (z") < 2bin t(z")+1 < bin~ H(z")4+2" < 2"l —1

and these integers are different for different elements of A. It is easy to
see, that always f(n + 1) > 2f(n), and hence the li_)m fQ(Zf) exists. To
n—oo

finish the proof, we have to construct a sequence of sets A, € Z(B") with

lim ‘“24,’}‘ = % For this it suffices to construct only for even values of n.
n—oo
Let
bl bl
861 =<{z" € {0, 1}“ : ZLEQZ' > ngi_l
i=1 i=1
and . .
3 B
S{Z =" € {0, 1}" : Z:EQZ < me—l
i=1 i=1

Clearly | 8 |=| 87 |,

10
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0.\ (SpUSY) | = (
0

2" —

— i s Sel 1
Hence | §f |= —5=~, and nll)rgo Sl = 5.
It is easely seen that S§ € Z(B") and we set A, = Sf. O

4 Computer Results

1.) For 2 < n < 6 we have calculated the independent number (f(n)) of the
binary deBruijn network of order n via a computer program. A maximal
independent set S = {1 < a; < ... < as < 2"} is greedy constructable as
follows:

If n is odd we take a1 = 1 and a; = 2 otherwise. Now if a; is choosen in a
step we take in the next one a;4; as the smallest possible number greater
than a;.

From this constructions we obtain that

f(n) = %2" - % — % and f(n) =2f(n—1) + 5, if n is even and
f(n)=32" =2 — 2 and f(n) = 2f(n — 1), if n is odd.

For even n the set | S |<| S | (see Theorem 3) for n = 8 and for all
n > 52.

2.) In [4] one finds an example of a complete fix — free code with the
codeword lengths

2,3,3,3,3,4,4,4,4,

We know from (i) of Proposition 1 that it is not possible to choose 00 or
11 as codeword of length 2 for this code.

This result suggests the question: “Suppose there is a fix — free code with
codeword lengths £; < ... < /4, 11 > 1. Is it possible to construct a fix—free
code with these length, where the codewords of smallest length are not the
all-zero vector and the all-one vector ?”

The following fix — free code {11,000, 100,010,001,10110} with lengths
2,3,3,3,3,5 shows that the answer is negative. Indeed, assume that the
codeword of length 2 is 01. There are exactly 4 codewords of length 3
which are prefix — and suffix free with 01: 000, 100, 110, 111.

Suppose there is a codeword abcde of length 5. Let us show that it is
impossible.

11
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Necessary d = 1, because in case d = 0,we have e = 0, for otherwise,
the codeword 01 would be suffix. However, 00 is
excluded, because otherwise 000 or 100 would be suffix.
¢ =0, because for c =1 we get 110 or 111 as suffix.
b=1, Dbecause for b =0 we get 000 or 100 as prefix.
Finally a # 0, because for a = 0 we get 01 as prefix.
and a # 1, because for a = 1 we get 110 as prefix. O
This is a contradiction.

3.) We present an example of a complete binary fix — free code for each
possible length-distribution £ with | £ |< 29:

0 1

2:2x1

01 00 10 11

4:4x?2

000 001 o010 O11 100 101 110 111
8:8x3

01 000 100 110 111

0010 1010 0011 1011
9:1x2+4x3+4x4

0000 1000 0100 1100 0010 1010 0110 1110
0001 1001 0101 1101 oO0O0O11 1011 oO0111 1111

16 : 16 x 4
001 0000 1000 0100 1100 1010 0110 1110
0101 1101 1011 0111 1111 00010 10010 00011

10011
17:1x3+12x4+4x5

001 110 0000 1000 0100 1010 0101 1011
0111 1111 01100 11100 00010 10010 01101 11101

00011 10011
18:2x3+8x4+8x5H

001 100 0000 1010 0110 1110 0101 1101
1011 0111 1111 01000 11000 00010 00011 010010
110010 010011 110011

19:2x34+9x44+4x5+4x6

001 100 101 0000 0110 1110 0111 1111
01000 11000 00010 01010 11010 00011 01011 11011

010010 110010 010011 110011
20: 3x3+5x4+8x5+4x6

001 010 011 0000 1000 1100 1110 1101
1111 10100 10110 10101 10111 000100 100100 000110

100110 000101 100101 000111 100111
21: 3x3+6x4+4x5+8x6
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01 0000 1000 1100 1110 1111 00100 10100
00010 10010 11010 00110 10110 00011 10011 11011
00111 10111 001010 101010 001011 101011
22:1x24+5x4+12x5+4x6
001 100 110 0000 1010 0101 1011 0111
1111 01000 00010 01101 11101 00011 011000 111000
010010 010011 0110010 1110010 0110011 1110011
22:3x3+6x4+5x5+4x6+4x7
01 0000 1000 1100 1110 0011 1111 00100
10100 00010 10010 11010 10110 11011 10111 001010
101010 000110 100110 001011 101011 000111 100111
23:1x2+6x4+8x5+8x6
01 0000 1000 1100 0010 1110 1111 10100
11010 00110 10110 00011 10011 11011 00111 10111
000100 100100 101010 101011 0001010 1001010 0001011 1001011
24:1x24+6x4+9x5+4x6+4x7
001 100 110 101 0000 0111 1111 01000
00010 01010 00011 01011 011000 111000 010010 011010
111010 010011 011011 111011 0110010 1110010 0110011 1110011
24 :4x3+3x4+5x5+8x6+4x7
01 0000 1000 1100 0010 1110 0011 1111
10100 11010 10110 11011 10111 000100 100100 101010
000110 100110 101011 000111 100111 0001010 1001010 0001011
1001011
25:1x2+7x4+5x5+8x6+4x7
01 100 0000 1110 1111 11000 00010 11010
00110 10110 00011 11011 00111 10111 001000 101000
110010 001010 101010 110011 001011 101011 0010010 1010010
0010011 1010011
26: 1x2+1x3+3x4+9x5+8x6+4x7
10 0000 0100 0001 1101 0011 0111
11000 01100 11100 11001 00101 01011 001000 001001
010101 011011 111011 0101000 0101001 0110101 1110101 01101000
11101000 01101001 11101001
27:1x24+7x4+6x54+5x6+4x7+4x8
10 001 0000 1101 0111 1111 01000 11000
01100 11100 00011 01011 000100 010100 000101 010101
010011 110011 011011 111011 0100100 1100100 0110100 1110100
0100101 1100101 0110101 1110101

28:1x24+1x3+4x4+6x5+8x6+8x7
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10 0000 0100 1100 0001 1101
1111 00101 01011 001000 011000 111000
111001 010101 011011 111011 0101000 0101001
01101000 11101000 01101001 11101001
28:1x2+8x4+2x54+9x6+4x7+4x8

10 001 0000 1100 0111 1111
11101 00011 01011 11011 011000 111000
110100 000101 010101 110101 010011 0100100

1110011 01100100 11100100 01100101 11100101
29:1x24+1x3+4x4+6x5+9x6+4x7+4x8
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