Some properties of Fix – Free Codes

R.Ahlswede
Fakultät für Mathematik,
Universität Bielefeld,
Postfach 100131,
33501 Bielefeld,
Germany

B.Balkenhol*
Fakultät für Mathematik,
Universität Bielefeld,
Postfach 100131,
33501 Bielefeld,
Germany

L.Khachatrian[†]
Fakultät für Mathematik,
Universität Bielefeld,
Postfach 100131,
33501 Bielefeld,
Germany

Abstract

A (variable length) code is fix – free code if no codeword is a prefix or a suffix of any other. A database constructed by a fix – free code is instantaneously decodeable from both sides. We discuss the existence of fix – free codes, relations to the deBrujin Network and shadow problems. Particularly we draw attention to a remarkable **conjecture**: For numbers l_1, \ldots, l_N satisfying $\sum_{i=1}^N 2^{-l_i} \leq \frac{3}{4}$ a fix–free code with lengths $l_1, \ldots l_N$ exists. If true, this bound is best possible.

^{*}email: bernhard@mathematik.uni-bielefeld.de

[†]email:lk@mathematik.uni-bielefeld.de

1 Basic Definitions

For a finite set $\mathcal{X} = \{0, \dots, a-1\}$, called alphabet, we form $\mathcal{X}^n = \prod_{1}^n \mathcal{X}$, the words of length n, with letters from \mathcal{X} and $\mathcal{X}^* = \bigcup_{n=0}^{\infty} \mathcal{X}^n$, the set of

all finite length words including the empty word e from $\mathcal{X}^0 = \{e\}$, \mathcal{X}^* is equipped with an associative operation, called concatenation, defined by

$$(x_1,\ldots,x_n)(y_1,\ldots,y_m)=(x_1,\ldots,x_n,y_1,\ldots,y_m).$$

We skip the brackets whenever this results in no confusion, in particular we write the letter x instead of (x). We also write $\mathcal{X}^+ = \mathcal{X}^* \setminus \{e\}$ for the set of non–empty words.

The **length** $| x^n |$ of the word $x^n = x_1 \dots x_n$ is the number n of letters in x^n .

A word $w \in \mathcal{X}^*$ is a **factor** of a word $x \in \mathcal{X}^*$ if there exist $u, v \in \mathcal{X}^*$ such that x = uwv. A factor w of x is **proper** if $w \neq x$.

For subsets \mathcal{Y}, \mathcal{Z} of \mathcal{X}^* and a word $w \in \mathcal{X}^*$, we define

$$\mathcal{Y}w = \{ yw \in \mathcal{X}^* : y \in \mathcal{Y} \},$$

$$\mathcal{YZ} = \{yz \in \mathcal{X}^* : y \in \mathcal{Y}, z \in \mathcal{Z}\}$$

and

$$\mathcal{Y}w^{-1} = \{ z \in \mathcal{X}^* : zw \in \mathcal{Y} \}.$$

A set of words $\mathcal{C} \subset \mathcal{X}^*$ is called a **code**.

Recall that a code is called prefix–free (resp. suffix–free), if no codeword is beginning (resp. ending) of another one.

Definition 1 A code, which is simultaneously prefix-free and suffix-free, is called biprefix or fix-free. This can be expressed by the equations

$$\mathcal{CX}^+ \cap \mathcal{C} = \phi \text{ and } \mathcal{X}^+ \mathcal{C} \cap \mathcal{C} = \phi.$$

Definition 2 A code $C = \{c_1, \ldots, c_N\}$ over an a-letter alphabet X is said to be **complete** if it satisfies equality in Kraft's inequality, i.e. for $\ell_i = |c_i|$,

$$\sum_{i=1}^{N} a^{-\ell_i} = 1.$$

Definition 3 A fix-free code C is called **saturated**, if it is not possible to find a fix-free code C' containing C properly, that is, |C'| > |C|.

2 The Existence

Lemma 1 A finite fix-free code $C = \{c_1, \ldots, c_N\}$ over $\mathcal{X} = \{0, \ldots, a-1\}$ is saturated iff C is complete.

Proof:

Let $\ell_i = |c_i|$ for all $1 \leq i \leq N$.

- 1. If $\sum_{i=1}^{N} a^{-\ell_i} = 1$, then \mathcal{C} is saturated, because otherwise we get a contradiction to Kraft's inequality.
- 2. Now we show that in case $\sum_{i=1}^{N} a^{-\ell_i} < 1$, $\ell_1 \leq \ldots \leq \ell_N$, we can add another codeword to C.

Indeed, by the proof of Kraft's inequality there exists a word $x^{\ell_N} \in \mathcal{X}^{\ell_N}$ such that no codeword of \mathcal{C} is prefix of x^{ℓ_N} . Similarly, there exists a word $y^{\ell_N} \in \mathcal{X}^{\ell_N}$ such that no codeword of \mathcal{C} is suffix of y^{ℓ_N} .

Define now the new codeword

$$c_{N+1} = x^{\ell_N} y^{\ell_N}.$$

Definition 4 We define the **shadow** of a word $w \in \mathcal{X}^*$ in **level** l as

$$\delta_l(w) = \{x^l \in \mathcal{X}^l : w \text{ is prefix or suffix of } x^l\}.$$

$$= w^{-1}\mathcal{X}^l \cup \mathcal{X}^l w^{-1}.$$

For a set Z this notation is extended to

$$\delta_l(\mathcal{Z}) = \bigcup_{z \in \mathcal{Z}} \delta_l(z).$$

We are next looking for Kraft-type inequalities.

Lemma 2 $\sum_{i=1}^{N} a^{-\ell_i} \leq \frac{1}{2}$ implies that there exists a fix-free code C over $\mathcal{X} = \{0, \dots, a-1\}$ with $\ell_1 \leq \dots \leq \ell_N$ as lengths of codewords.

Proof: We proceed by induction in the number of codewords. The case N=1 being obvious we assume that we have found a fix–free code for N-1 codewords. We present these words as vertices of a tree, where a word of length ℓ corresponds to a certain vertex on the ℓ -th level (in the usual way).

We count now all leaves of this tree in the ℓ_N 'th level, which have one of the codewords as a prefix or as a suffix. (The shadow of the code in the ℓ_N 's level.)

For each codeword c_i of length ℓ_i we thus count $a^{\ell_N-\ell_i}$ leaves, which have c_i as a prefix and also $a^{\ell_N-\ell_i}$ leaves, which have c_i a suffix. These sets need not be distinct. However, their total number does not exceed $2\sum_{i=1}^{N-1}a^{\ell_N-\ell_i}$.

By our assumption this is smaller than a^{ℓ_N} and there is a leaf on the ℓ_N 's level, which was not counted. The corresponding word can serve as our N-th codeword.

We define now γ as the largest constant such that for every integral tuple $(\ell_1,\ell_2,\ldots,\ell_N)$ $\sum\limits_{i=1}^N 2^{-\ell_i} < \gamma$ implies the existence of a binary fix–free code with lengths $\ell_1,\ell_2,\ldots,\ell_N$.

Lemma 3 $\gamma \leq \frac{3}{4}$.

Proof: For any $\gamma = \frac{3}{4} + \varepsilon, \varepsilon > 0$, choose k such that $2^{-k} < \varepsilon$. For the vector $(\ell_1, \ldots, \ell_N) = (1, k, \ldots, k)$ with $N = 2^{k-2} + 2$ we have

$$\sum_{i=1}^{N} 2^{-\ell_i} = \frac{1}{2} + 2^{-k} (2^{k-2} + 1) = \frac{3}{4} + 2^{-k} < \frac{3}{4} + \varepsilon.$$

However, there are exactly 2^{k-2} words of length k without a codeword c_1 as a prefix and a suffix and, since $1 + 2^{k-2} < N$, we have shown the nonexistence of a code with the desired parameters.

There is some evidence for the

Conjecture: $\gamma = \frac{3}{4}$.

For instance we have the following observation.

Lemma 4 Suppose that

either
$$\ell_i = \ell_{i+1}$$
 or $2\ell_i < \ell_{i+1}$ for all $1 < i < N$. (2.1)

Then $\sum\limits_{i=1}^{N}2^{-\ell_i}\leq \frac{3}{4}$ implies the existence of a binary fix-free code with these codeword lengths.

Proof: We go by induction on the number n of different lengths occurring in

$$\ell_1 \leq \ell_2 \leq \ldots \leq \ell_N$$
.

Obviously the result is true, if there is only one length, that is, n = 1.

Assuming that we can construct a code with n-1 different codeword lengths we show that we can construct a code with n different codeword lengths. Let M be the largest index i with $\ell_i < \ell_N$. Thus $\sum_{i=1}^M 2^{-\ell_i} \le \frac{3}{4}$

and by induction hypothesis we have a fix–free code \mathcal{C}' with the lengths ℓ_1, \ldots, ℓ_M . We estimate now the shadow $\delta_{\ell_N}(\mathcal{C}')$. Actually, by 2.1 we get an exact formula:

$$|\delta_{\ell_N}(\mathcal{C}')| = 2\sum_{i=1}^M 2^{\ell_N - \ell_i} - \sum_{i=1}^M 2^{\ell_N - 2\ell_i} - 2\sum_{1 \le i < j \le M} 2^{\ell_N - (\ell_i + \ell_j)}.$$
 (2.2)

A code with lengths ℓ_1, \ldots, ℓ_N is constructable exactly if

$$|\delta_{\ell_N}(\mathcal{C}')| < 2^{\ell_N} - (N - M). \tag{2.3}$$

Writing K = N - M and $\alpha = \sum_{i=1}^{M} 2^{-\ell_i}$ we get after division by 2^{ℓ_N} from (2.2) and (2.3) that sufficient for constructability is

$$2\alpha - \alpha^2 \le 1 - \frac{K}{2^{\ell_N}}.$$

With the abbreviations $\beta=\sum\limits_{i=1}^N 2^{-\ell_i}=\alpha+\frac{K}{2^{\ell_N}}$ and $\delta=\frac{K}{2^{\ell_N}}$ we get the equivalent inequality

$$\beta < 1 + \delta - \sqrt{\delta}$$
.

This is satisfied for $\beta \leq \frac{3}{4}$, because $1 + \delta - \sqrt{\delta}$ has the minimal value $\frac{3}{4}$ (at $\delta = \frac{1}{4}$).

2.1 Minimal Average Codeword Lengths

The aim of data compression in Noiseless Coding Theory is to minimize the average length of the codewords (see [2, 5]).

Theorem 1 For each probability distribution P = (P(1), ..., P(N)) there exists a binary fix – free code C where the average length of the codewords satisfies

$$H(P) < \overline{L}(C) < H(P) + 2.$$

Proof: The left-hand side of the theorem is clearly true, because each fix – free code is a prefix code and for each prefix code the left-hand side of the theorem follows from the Noiseless Coding Theorem. It is also clear, that this lower bound is reached for $N = 2^m$ $(m \in \mathbb{N})$ and $P(i) = 2^{-m}$ for all $1 \le i \le 2^m$.

The proof of the right-hand side of the Theorem is the same as the proof for alphabetic codes, which can be found in [1]:

We define $\ell_i \triangleq \left[-\log(P(i))\right] + 1$. It follows that

$$\sum_{i=1}^{N} 2^{-\ell_i} \le \frac{1}{2} \sum_{i=1}^{N} 2^{\log(P(i))} = \frac{1}{2} \sum_{i=1}^{N} P(i) = \frac{1}{2}.$$

By Lemma 2 there exists a fix – free code C with the codeword lengths ℓ_1, \ldots, ℓ_N .

The average length of this code is

$$\overline{L}(C) = \sum_{i=1}^{N} P(i)\ell_i < \sum_{i=1}^{N} P(i)(-\log(P(i)) + 2)$$

$$= H(P) + 2\sum_{i=1}^{N} P(i) = H(P) + 2,$$

where the logarithm is taken to the base 2. For an arbitrary alphabet the proof follows the same lines.

3 On Complete Fix-Free-Codes

3.1 Auxiliary Results

In Chapter 3 of [3] the structure of complete fix—free codes is studied and methods for constructing finite codes are presented. To each complete fix—free code two basic parameters are associated: its kernel and its degree. The kernel is the set of codewords which are proper factors of some codeword. The degree d is a positive integer which is defined as follows:

It is well known (see [3]) that for each finite complete fix – free code $C = \{c_1, \ldots, c_N\}$ and for each $w \in \mathcal{X}^+$, there exists a positive integer $m < \max_{1 \le i \le N} |c_i|$ such that $\underbrace{w \ldots w}_m \in C^*$. Now we define

$$d \triangleq \max_{w \in \mathcal{X}^+} \quad \min_{m \in \mathbb{N}} \quad \{m : \underbrace{w \dots w}_{m} \in \mathcal{C}^* \}.$$

We need the following results of [3]:

Proposition 1 Let C be a finite complete fix – free code over a finite alphabet X and let d be its degree. Then we have the properties:

(i) For each letter $x \in \mathcal{X}$,

$$\underbrace{x \dots x}_{l} \in \mathcal{C}.$$

(ii) There is only a finite number of finite complete fix-free codes over \mathcal{X} with degree d.

(iii) If the length of the shortest codeword is d, then the length of every codeword is d as well.

Lemma 5 For each finite complete fix-free code $C = \{c_1, ..., c_N\}$ over $\mathcal{X} = \{0, ..., a-1\}$, a^2 divides the number of codewords of maximal length.

Proof: From the definition of complete fix–free codes it follows that with every codeword $c \in \mathcal{C}$ of maximal length, there are also $a^2 - 1$ other codewords which differ from c only in the first and/or last components. Hence the set of codewords of maximal length is a disjoint union of equivalent classes each of cardinality a^2 .

Lemma 6 For each binary complete fix – free code C there is at most one codeword of length 2 or all codewords have length 2.

Proof: By (i) in Proposition 1 we know that \mathcal{C} contains no codeword of length one. If \mathcal{C} contains a codeword c with |c| > 2 then by (iii) of Proposition 1 the degree of \mathcal{C} is greater than 2, and by (i) of Proposition 1 $00 \notin \mathcal{C}$ and $11 \notin \mathcal{C}$. Hence if we have two codewords of length 2 then these two codewords are 01 and 10. However, there is a codeword of maximal length starting with 01 or 10 (see Lemma 5).

3.2 Only Three Different Levels

Let C be a finite binary complete fix-free code and let $C_i \triangleq \{c \in C : |c| = i\}$. Let $bin^{-1}(c)$ be the natural number which corresponds to the binary representation of c (Note that the length of c is not fixed so that $bin^{-1}(c) = bin^{-1}(0c)$).

Lemma 7 Let $C = (c_1, ..., c_N)$ be a finite binary complete fix-free code with codeword lengths $\ell_1, ..., \ell_N$ satisfying $\ell_i \in \{k, k+1, k+2\}$ for all $1 \le i \le N$ and some k. Then for every $\mathcal{E} \subset C_k$ $|\delta_{k+1}(\mathcal{E})| \ge 2 |\mathcal{E}|$ and equality holds exactly if $|\mathcal{E}| = 2^k$.

Proof: The union of the sets $\mathcal{E}0$ and $\mathcal{E}1$ contains $2 \mid \mathcal{E} \mid$ elements. Hence always $\mid \delta_{k+1}(\mathcal{E}) \mid \geq 2 \mid \mathcal{E} \mid$, if $\mid \mathcal{E} \mid < 2^k$ then by (i) and (iii) of Proposition 1, $(0, \ldots, 0) \notin \mathcal{E}$.

Let c be the element in \mathcal{E} with smallest $bin^{-1}(c)$. We consider $0c \in \delta_{k+1}(\mathcal{E})$ and let us show that $0c \notin \mathcal{E}0 \cup \mathcal{E}1$. Assume in the opposite 0c = c'0 or 0c = c'1 for some $c' \in \mathcal{E}$. However $bin^{-1}(0c) = bin^{-1}(c) < 2bin^{-1}(c') = bin^{-1}(c'0)$ and $bin^{-1}(0c) < 1 + 2bin^{-1}(c') = bin^{-1}(c'1)$ hold, since c is the element of \mathcal{E} with smallest $bin^{-1}(c)$. Hence $|\delta_{k+1}(\mathcal{E})| \geq 2 |\mathcal{E}| + 1$ if $|\mathcal{E}| < 2^k$.

Theorem 2 Let C be a finite binary complete fix – free code with codeword lengths: $k = \ell_1 \leq \ell_2 \leq \ldots \leq \ell_N = k + 2$. Then

(i) $xcy \in \mathcal{C}_{k+2}$, $x, y \in \{0, 1\}$ if and only if $c \in \mathcal{C}_k$ and

$$(ii) \mid \delta_{k+1}(\mathcal{C}_k) \mid = 4 \mid \mathcal{C}_k \mid$$
.

Proof:

(i) Let $C_k^0 = \{c \in \{0,1\}^k \setminus C_k : xcy \in C_{k+2}, x, y \in \{0,1\}\}$, $C_{k+2}^0 = \{xcy \in C_{k+2}, x, y \in \{0,1\} : c \in C_k^0\}$ and let $\mathcal{D} = \delta_{k+1}(C_k^0) = \{c0,c1,0c,1c \in \{0,1\}^{k+1} : c \in C_k^0\}$. From Lemma 5 we know that $|C_{k+2}^0| = 4 |C_k^0|$. We consider new codes $C_1' = (C \setminus C_{k+2}^0) \cup C_k^0$ and $C_2' = (C \setminus C_{k+2}^0) \cup \mathcal{D}$. It can be easely verified, that both C_1' and C_2' are fix–free codes. Moreover, C_1' is complete, since C is complete. Therefore we can apply Lemma 7 with respect to $E = C_k^0$, $|C_k^0| < 2^k$, to get $|\delta_{k+1}(C_k^0)| = |\mathcal{D}| > 2 |C_k^0|$. However this leads to the contradiction, because C_2' is a fix-free code, but

$$\sum_{c \in \mathcal{C}'_{2}} 2^{-|c|} = \sum_{c \in (\mathcal{C} \setminus \mathcal{C}^{0}_{k+2})} 2^{-|c|} + \sum_{c \in \mathcal{D}} 2^{-|c|}$$

$$> \sum_{c \in (\mathcal{C} \setminus \mathcal{C}^{0}_{k+2})} 2^{-|c|} + \sum_{c \in \mathcal{C}^{0}_{k+2}} 2^{-|c|}$$

$$= \sum_{c \in \mathcal{C}} 2^{-|c|} = 1.$$

(ii) We consider teh lower shadow of C_{k+2} :

$$\delta_{k+1}^{-}(\mathcal{C}_{k+2}) \triangleq \left\{ c \in \{0,1\}^{k+1} : \delta_{k+2}(c) \cap \mathcal{C}_{k+2} \neq \emptyset \right\}.$$

By (i) we have $\delta_{k+1}^-(\mathcal{C}_{k+2}) = \delta_{k+1}(\mathcal{C}_k)$. Therefore $\mathcal{C}_{k+1} = \{0,1\}^{k+1} \setminus \delta_{k+1}(\mathcal{C}_k)$, since \mathcal{C} is complete. Now $|\delta_{k+1}(\mathcal{C}_k)| < 4 |\mathcal{C}_k|$ would imply $\sum_{c \in \mathcal{C}} 2^{-|c|} > 1$.

3.3 Relations to the deBruijn Network

The **binary deBruijn Network** of order n is an undirected graph $\mathcal{B}^n = (\mathcal{V}^n, \mathcal{E}^n)$, where $\mathcal{V}^n = \mathcal{X}^n$ is the set of vertices and $(u^n, v^n) \in \mathcal{E}^n$ is an edge iff

$$u^n \in \{(b, v_1, \dots, v_{n-1}), (v_2, \dots, v_n, b) : b \in \{0, 1\}.$$

The binary deBruijn Network \mathcal{B}^4 is given as an example:

A subset $\mathcal{A} \subset \mathcal{V}^n$ is called independent, if no two vertices of \mathcal{A} are connected, and we denote by $\mathcal{I}(\mathcal{B}^n)$ the set of all independent subsets of the deBruijn network. We note, that for all $b \in \{0,1\}$, $(b,b,\ldots b) \not\in \mathcal{A} \in \mathcal{I}(\mathcal{B}^n)$, because $(b,b,\ldots b)$ is dependent itself. The independence number f(n) of \mathcal{B}^n is $f(n) = \max_{\mathcal{A} \in \mathcal{I}(\mathcal{B}^n)} |\mathcal{A}|$.

Lemma 8 Let C be a binary complete fix – free code on three levels: $C = C_n \cup C_{n+1} \cup C_{n+2}, C_i \neq \emptyset$. Then

- (i) $C_n \in \mathcal{I}(\mathcal{B}^n)$ and
- (ii) for every $A \in \mathcal{I}(\mathcal{B}^n)$ there exists a complete fix free code on three levels n, n+1, n+2 for which $A = \mathcal{C}_n$, and the code is unique.

Proof:

(i) Immideately follows from Theorem 2 (ii).

(ii) For an $\mathcal{A} \in \mathcal{I}(\mathcal{B}^n)$ we construct a complete fix – free code $\mathcal{C} = \mathcal{C}_n \cup \mathcal{C}_{n+1} \cup \mathcal{C}_{n+2}$ as follows: $\mathcal{C}_{n+1} = \{0,1\}^{n+1} \setminus \delta_{n+1}(\mathcal{A}),$ $\mathcal{C}_{n+2} = \{xcy \in \{0,1\}^{n+2}, x, y \in \{0,1\}: c \in \mathcal{A}\}.$

We note, that the exact value of the independence number f(n) of \mathcal{B}^n in general is not known.

Clearly for any $x^n, y^n \in \mathcal{A} \in \mathcal{I}(\mathcal{B}^n), x^n \neq y^n$:

$$bin^{-1}(x^n) \neq 2bin^{-1}(y^n), bin^{-1}(x^n) \neq 2bin^{-1}(y^n) + 1,$$

$$bin^{-1}(x^n) \neq bin^{-1}(y^n) + 2^{n-1}bin^{-1}(y^n) \neq 2bin^{-1}(x^n),$$

$$bin^{-1}(y^n) \neq 2bin^{-1}(x^n) + 1, bin^{-1}(y^n) \neq bin^{-1}(x^n) + 2^{n-1}(x^n) + 2^{$$

Hence, the determination of f(n) is a special case of the following number–theoretical problem:

For given $m \in \mathbb{N}$, find a set $S = \{1 \leq a_1 < \ldots < a_s < m\}$ of maximal cardinality, for which $\{a_i, 2a_i, 2a_i + 1, a_i + m\} \cap \{a_j, 2a_j, 2a_j + 1, a_j + m\} = \emptyset$ holds for all $1 \leq i < j \leq |S|$.

In the case $m = 2^n$ we have exactly the problem of finding a maximal independent set with cardinality f(n) in the deBruijn network. Hence we solve this problem (for $m = 2^n$) asymptotically.

Theorem 3

$$\lim_{n \to \infty} \frac{f(n)}{2^n} = \frac{1}{2}.$$

Proof: Let $A \in \mathcal{I}(\mathcal{B}^n)$ with |A| = f(n). Clearly $f(n) < 2^{n-1}$, because for an $x^n \in A$:

$$1 \le bin^{-1}(x^n) < 2bin^{-1}(x^n) < 2bin^{-1}(x^n) + 1 < bin^{-1}(x^n) + 2^n \le 2^{n+1} - 1$$

and these integers are different for different elements of \mathcal{A} . It is easy to see, that always $f(n+1) \geq 2f(n)$, and hence the $\lim_{n \to \infty} \frac{f(n)}{2^n}$ exists. To finish the proof, we have to construct a sequence of sets $\mathcal{A}_n \in \mathcal{I}(\mathcal{B}^n)$ with $\lim_{n \to \infty} \frac{|\mathcal{A}_n|}{2^n} = \frac{1}{2}$. For this it suffices to construct only for even values of n. Let

$$S_0^n = \left\{ x^n \in \{0, 1\}^n : \sum_{i=1}^{\frac{n}{2}} x_{2i} > \sum_{i=1}^{\frac{n}{2}} x_{2i-1} \right\}$$

and

$$S_1^n = \left\{ x^n \in \{0, 1\}^n : \sum_{i=1}^{\frac{n}{2}} x_{2i} < \sum_{i=1}^{\frac{n}{2}} x_{2i-1} \right\}.$$

Clearly $|\mathcal{S}_0^n| = |\mathcal{S}_1^n|$,

$$\mid \{0,1\}^n \setminus (\mathcal{S}_0^n \cup \mathcal{S}_1^n) \mid = \sum_{i=0}^{\frac{n}{2}} {n \choose i}^2 = {n \choose \frac{n}{2}}.$$

Hence $\mid \mathcal{S}_0^n \mid = \frac{2^n - \left(\frac{n}{2}\right)}{2}$, and $\lim_{n \to \infty} \frac{|\mathcal{S}_0^n|}{2^n} = \frac{1}{2}$. It is easely seen that $\mathcal{S}_0^n \in \mathcal{I}(\mathcal{B}^n)$ and we set $\mathcal{A}_n = \mathcal{S}_0^n$.

4 Computer Results

1.) For $2 \le n \le 6$ we have calculated the independent number (f(n)) of the binary deBruijn network of order n via a computer program. A maximal independent set $\mathcal{S} = \{1 \le a_1 < \ldots < a_s < 2^n\}$ is greedy constructable as follows:

If n is odd we take $a_1 = 1$ and $a_1 = 2$ otherwise. Now if a_i is choosen in a step we take in the next one a_{i+1} as the smallest possible number greater than a_i .

From this constructions we obtain that

$$f(n) = \frac{4}{9}2^n - \frac{4}{9} - \frac{n}{6}$$
 and $f(n) = 2f(n-1) + \frac{n}{2}$, if n is even and $f(n) = \frac{4}{9}2^n - \frac{5}{9} - \frac{n}{3}$ and $f(n) = 2f(n-1)$, if n is odd.

For even n the set $|\mathcal{S}| < |\mathcal{S}_0^n|$ (see Theorem 3) for n = 8 and for all $n \ge 52$.

2.) In [4] one finds an example of a complete \mbox{fix} – free code with the codeword lengths

We know from (i) of Proposition 1 that it is not possible to choose 00 or 11 as codeword of length 2 for this code.

This result suggests the question: "Suppose there is a fix – free code with codeword lengths $\ell_1 \leq \ldots \leq \ell_t$, $\ell_1 > 1$. Is it possible to construct a fix–free code with these length, where the codewords of smallest length are not the all–zero vector and the all–one vector?"

The following fix – free code $\{11,000,100,010,001,10110\}$ with lengths 2,3,3,3,3,5 shows that the answer is negative. Indeed, assume that the codeword of length 2 is 01. There are exactly 4 codewords of length 3 which are prefix – and suffix free with 01: 000, 100, 110, 111.

Suppose there is a codeword *abcde* of length 5. Let us show that it is impossible.

 $21:3 \times 3 + 6 \times 4 + 4 \times 5 + 8 \times 6$

```
Necessary d = 1,
                     because in case d = 0, we have e = 0, for otherwise,
                     the codeword 01 would be suffix. However, 00 is
                     excluded, because otherwise 000 or 100 would be suffix.
                     because for c = 1 we get 110 or 111 as suffix.
             c=0,
             b = 1,
                     because for b = 0 we get 000 or 100 as prefix.
    Finally a \neq 0,
                     because for a = 0 we get 01 as prefix.
       and a \neq 1,
                     because for a = 1 we get 110 as prefix.
                                                                               This is a contradiction.
3.) We present an example of a complete binary fix – free code for each
possible length-distribution \mathcal{L} with |\mathcal{L}| \leq 29:
2:2 \times 1
 01 00
           10 11
4:4\times2
 000
      001 \quad 010 \quad 011
                          100
                                101
                                       110
                                             111
8:8 \times 3
 01
        000
                100
                        110
                               111
 0010
        1010
                0011
                        1011
9: 1 \times 2 + 4 \times 3 + 4 \times 4
        1000
                0100
 0000
                        1100
                               0010
                                       1010
                                               0110
                                                      1110
 0001
        1001
                0101
                                       1011
                        1101
                               0011
                                               0111
                                                      1111
16:16 \times 4
 001
          0000
                 1000
                         0100
                                1100
                                        1010
                                                 0110
                                                          1110
                                                 10010
 0101
          1101
                 1011
                         0111
                                1111
                                        00010
                                                          00011
 10011
17: 1 \times 3 + 12 \times 4 + 4 \times 5
 001
                   0000
                            1000
          110
                                    0100
                                             1010
                                                      0101
                                                               1011
 0111
          1111
                  01100
                          11100
                                    00010
                                             10010
                                                      01101
                                                               11101
 00011
         10011
18:2 \times 3 + 8 \times 4 + 8 \times 5
           100
 001
                     0000
                               1010
                                        0110
                                                 1110
                                                          0101
                                                                   1101
 1011
           0111
                     1111
                               01000
                                        11000
                                                 00010
                                                          00011
                                                                  010010
 110010
           010011
                     110011
19: 2 \times 3 + 9 \times 4 + 4 \times 5 + 4 \times 6
 001
           100
                     101
                               0000
                                         0110
                                                  1110
                                                           0111
                                                                    1111
 01000
           11000
                     00010
                               01010
                                         11010
                                                  00011
                                                           01011
                                                                    11011
 010010
           110010
                     010011
                               110011
20:3 \times 3 + 5 \times 4 + 8 \times 5 + 4 \times 6
 001
           010
                     011
                               0000
                                         1000
                                                   1100
                                                              1110
                                                                        1101
 1111
           10100
                     10110
                               10101
                                         10111
                                                   000100
                                                             100100
                                                                       000110
```

```
01
        0000
                 1000
                           1100
                                    1110
                                              1111
                                                        00100
                                                                10100
00010
        10010
                 11010
                                     10110
                                              00011
                                                        10011
                           00110
                                                                11011
00111
        10111
               001010
                          101010 001011
                                              101011
    22: 1 \times 2 + 5 \times 4 + 12 \times 5 + 4 \times 6
001
         100
                   110
                              0000
                                         1010
                                                    0101
                                                               1011
                                                                         0111
1111
         01000
                   00010
                              01101
                                         11101
                                                    00011
                                                               011000
                                                                        111000
010010
                             1110010 0110011
                                                   1110011
         010011
                   0110010
    22: 3 \times 3 + 6 \times 4 + 5 \times 5 + 4 \times 6 + 4 \times 7
01
          0000
                   1000
                             1100
                                       1110
                                                 0011
                                                           1111
                                                                    00100
10100
          00010
                   10010
                             11010
                                       10110
                                                 11011
                                                           10111
                                                                    001010
         000110 100110
                             001011
                                       101011
                                                 000111
                                                          100111
    23: 1 \times 2 + 6 \times 4 + 8 \times 5 + 8 \times 6
01
         0000
                   1000
                             1100
                                       0010
                                                  1110
                                                             1111
                                                                        10100
11010
         00110
                   10110
                             00011
                                       10011
                                                  11011
                                                             00111
                                                                        10111
000100
         100100 101010
                            101011
                                      0001010
                                                 1001010
                                                            0001011
                                                                       1001011
    24: 1 \times 2 + 6 \times 4 + 9 \times 5 + 4 \times 6 + 4 \times 7
001
         100
                   110
                             101
                                       0000
                                                  0111
                                                             1111
                                                                        01000
00010
         01010
                   00011
                             01011
                                       011000
                                                             010010
                                                  111000
                                                                        011010
         010011 011011 111011
111010
                                      0110010
                                                 1110010
                                                            0110011
                                                                       1110011
    24:4 \times 3 + 3 \times 4 + 5 \times 5 + 8 \times 6 + 4 \times 7
01
                    1000
          0000
                              1100
                                        0010
                                                  1110
                                                             0011
                                                                        1111
10100
          11010
                    10110
                              11011
                                        10111
                                                  000100
                                                             100100
                                                                        101010
          100110
000110
                   101011
                              000111
                                        100111
                                                 0001010
                                                             1001010
                                                                       0001011
1001011
    25: 1 \times 2 + 7 \times 4 + 5 \times 5 + 8 \times 6 + 4 \times 7
01
          100
                     0000
                               1110
                                         1111
                                                   11000
                                                             00010
                                                                        11010
00110
          10110
                     00011
                               11011
                                         00111
                                                   10111
                                                             001000
                                                                        101000
110010
          001010
                     101010 110011 001011
                                                   101011
                                                             0010010
                                                                       1010010
0010011 1010011
    26: 1 \times 2 + 1 \times 3 + 3 \times 4 + 9 \times 5 + 8 \times 6 + 4 \times 7
10
                                                          0011
            0000
                        0100
                                    0001
                                               1101
                                                                     0111
                                                                                1111
11000
           01100
                        11100
                                    11001
                                               00101
                                                          01011
                                                                     001000
                                                                                001001
010101
                                    0101000 0101001
                                                          0110101
                                                                     1110101
           011011
                        111011
                                                                                01101000
11101000
           01101001
                       11101001
    27: 1 \times 2 + 7 \times 4 + 6 \times 5 + 5 \times 6 + 4 \times 7 + 4 \times 8
10
          001
                     0000
                                1101
                                                                 01000
                                                                            11000
                                           0111
                                                      1111
01100
          11100
                     00011
                                01011
                                           000100
                                                      010100
                                                                 000101
                                                                            010101
010011
          110011
                     011011
                                111011
                                           0100100
                                                      1100100
                                                                 0110100
                                                                            1110100
                     0110101 1110101
0100101 1100101
    28: 1 \times 2 + 1 \times 3 + 4 \times 4 + 6 \times 5 + 8 \times 6 + 8 \times 7
```

REFERENCES 14

10	0000	0100	1100	0001	1101	0011	0111
1111	00101	01011	001000	011000	111000	001001	011001
111001	010101	011011	111011	0101000	0101001	0110101	1110101
01101000	11101000	01101001	11101001				
$28: 1 \times 2 + 8 \times 4 + 2 \times 5 + 9 \times 6 + 4 \times 7 + 4 \times 8$							
10	001	0000	1100	0111	1111	01000	01101
11101	00011	01011	11011	011000	111000	000100	010100
110100	000101	010101	110101	010011	0100100	0100101	0110011
1110011							
1110011	01100100	11100100	01100101	11100101			

References

- [1] R. Ahlswede and I. Wegener, Suchprobleme, Teubner, Stuttgart, 1979.
- [2] R.B. Ash, Information theory, Interscience Tracts in Pure and Applied Mathematics 19, Interscience, New York, 1965.
- [3] Jean Berstel and Dominique Perrin, Theory of codes, Pure and Applied Mathematics, 1985.
- [4] David Gillman and Ronald L. Rivest,
 Complete variable length fix free codes,
 Designs, Codes and Cryptography, 5, 109–114, 1995.
 1995 Kluwer Academic Publishers, Boston.
 Manufactured in The Netherlands.
- [5] C.E. Shannon, Prediction and entropy of printed English, Bell Systems Technical Journal 30, 50–64, 1951.