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ABSTRACT

In the first two sections we define and classify multi-way channels of
various kinds. The study of these channels was started by Shannon in his
basic paper Two-way Communication Channels. Multi-way channels are
much more complex than one-way channels and some definitely new phe-
nomena occur. For instance the difference between the concept of a code
with maximal error and the concept of a code with average error, which is
unessential for one-way channels, is relevant for multi-way channels as was
shown in [1]. Closely connected with this is the fact that maximal code
methods, which have been developed for one-way channels (Feinstein [4],
- Wolfowitz [10]), do not exist until now (or may not exist at all) for multi-
way channels. The only method which has been used successfully in proving
coding theorems for multi-way channels (see [8]) is Shannon’s random cod-
ing method [7]. Using this method and a lemma of Fano [3] we determine
the capacity regions of the following multi-way channels:

(a) A channel with two senders and one receiver (Theorem 1 in Section 3)
- (b) A channel with three senders and one receiver (Theorem 2 in Section 4),

Results for channels with two receivers will be presented in a forthcoming
paper The Capacity Region of a Channel with Two Senders and Two Re-
cetvers. '

1. INTRODUCTION

In [8] Shannon mentions (pp. 636 and 641) different kinds of multi-way
channels and he makes some remarks on their capacity regions. We shall
comment on those remarks later in connection with the results we obtain.

In order to have a clear and unique notation for the present paper and
also for further papers we give now a formal description of various types
of multi-way channels and we state the coding problems for them. However,
for reasons of conceptual and notational simplicity we restrict ourselves to
the cases with three or fewer senders and receivers. The extensions of our
definitions to more general cases are straightforward. '
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Let X={1,...,a}, Y={1...,b},Z={1,...,¢}, X={1,...,
@), Y={1,..., byand Z= {1,..., c} be finite sets. X, ¥, and Z are
the input alphabets for the senders Sx, Sy and S,,and X, Y and Z are the
output alphabets for the receivers Bx, Ry and Rz. Let Xt=X,¥"=17,

=7, X=X, ¥'=Y and Z'=1Z7Z for t=1,...,n and define
n n n _ n __ _ n __
Xn = _[/ Xt’ Yn= _I] Yt» Zn= -Z{ Zt’ ‘Xn: 11 Xt’ Y,,=_[l Y' and
=1 =1 i= =1 i=1
Z_nr:]n[ Zt for n =1, 2, ... . Let w(x,y,z|z,y,2) be a non-negative
=1 '

function, which is defined on X XY X Z X X x Y XZ and satisfies
> ¥ SoEyz|lrny)=1 | (1.1)

for every (z, y, 2z) € X X ¥ X Z. The transmission probabilities of a three-way
channel are defined by

. n *
P(:—Um ymzn !xn’yn’zn) - Izw (Et’_y-r)? l xt, .7/'»2') ’ (12)
. t=1
for every z, = (2, ..., 2V €X,, yn= (', ..., yYNET,, z, = (2, . ..
M €Z,, = (F, .., TVEX, Y=, ..., ¥)€Y, and every
2 = (3, ..., 2€Z,, n=1,2...).

In an actual communication situation several senders and receivers may
be located at the same terminal and can exchange their “‘information”.
In order to give a complete description of the communication situation
we have to specify at which terminal the senders and receivers are located.
We therefore introduce a system of sets T' = (T, .. ., T,), where

6 __ —
UT;= {Sx,Sy, 8z, Bx, Ry, Rz} and T, NT;= @ foris=j. (1.3)
i=1

We shall say that for instance Sy is at terminal T, if Sy € T;. It may be
that some of the T,’s are empty. (We exclude here the case where a sender
or a receiver “is’’ at more than one terminal, which would mean that the
“information’’ at several terminals is available to him.) A three-way channel
is completely described by a pair (P, T'), where P denotes the transmission
probabilities — as defined in (1.2) — and T = (T, ..., Tg) says at which
terminals the senders and the receivers are located. (P, T is said to be of
pure typeifnoset 7;(i =1, ..., 6) contains an element of {Rx, Ry, Rz}
and an element of {Sy, Sy, Sz}. Otherwise we say that (P, T') is of mized
type. Shannon’s two-way communication channels [8] and also the channels
introduced by van der Meulen [9] are of mixed type. We limit ourselves
~ throughout this paper to channels of pure type, since they are already very
complex. We denote by (P, T';;) a channel with ¢ senders and j receivers,
each at a different terminal. This is actually already the general case of a
channel of pure type. If a channel of pure type has more than one gender
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(or receiver) at one terminal, then we always can consider those senders
(or receivers) as one sender (or receiver). However, a channel (P, T';;) can
be used in general in several different ways for communication between
the senders and the receivers. We classify now the various communication
problems. For the channel (P, T,,) we have the following possibilities:

I) S, sends to Rx or to Ry
II) Sy sends to Rx and to Ry .

In the first case we have just a discrete memoryless channel. In the second
case we have a compound channel, where the “receiver knows the individual
channel which governs the transmission”. (See [10]. paragraph 4.5.) In
both cases the capacities are known. ,

We consider now the channel (P, T';). Again there are two cases:

I) Both SX and S, send to Bx

II) S, sends to Rx, whereas Sy sends lettersin order to help
maximizing the transmission of information from Sy to

Rx.

We denote the first case by (P, T, I) and the second case by (P, 7,5, II).
The treatment of the coding problem for the case (P, T, 1I) is easy. ISy
keeps sending the same letter y then the transmission from Sy to Sx is
governed by a discrete memoryless channel with a capacity C,.C = maxC,
' ’ yeY
is the capacity in case (P, Ty, 1I). The case (P, Ty, I) for y€ Y will be
treated in Section 3. In parsgraph 17 of [8], Shannon writes: “In another
paper we will discuss the case of a channel with two or more terminals
having inputs only and one terminal with an output only, a case for which
a complete and simple solution of the capacity region has been found.”
The paper cited appeared in 1962 and till now Shannon did not publish his
results. It is not clear what kind of a characterization for the capacity re-
gion he had in mind. If this characterization is similar to the one given for
two-way channels in paragraph 15 of [8], then this characterization cannot
be considered to be simple or even useful. (Compare [6] for a stronger re-
sult.) For the channel (P, Ty) we can think of the following possibilities:

I) Sy sends to Bx and Sy sends to Ry

II) Sy and Sy send to Rk and to Ry
III) S, sends to Rx and to Ry, Sy sends to Ey only
IV) S, sends to Rx and to Ry, Sy, sends letters in order

to help maximizing the transmission of information
from Sy to Rx and to Ry. . :

We denote these four cases by (P, Ta, I), (P, To, II), (P, Ty, I1I) and
(P, Ty, IV). Very likely Shannon had case (P, Ty, I) in mind when he
mentioned in the bottom lines of page 636 of [8] that the capacity region
can be obtained by using independent sources. But this conjecture has — as
far as we know -- never been proved or disproved. A partial result — a
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characterization of the capacity region by using dependent sources — is
given in Section 2. (It is perhaps surprising that in case (P, Ty, 1I) a cha-
acterization of the capacity region in terms of independent sources can
be given. This result will be stated and proved in a forthcoming paper.)
The capacity in case (P, Ty, 1V) can easily be determined by using results
for compound channels. One can give similar classifications in general for
channels of type (P, T;)).
We consider only the channel (P, Tj). There are 1wo new cases:

I) Sy, Sy and Sz send to Rx ‘ ,
II).Sy, Sy send to Ex. S, helps Sy and Sy to achieve
long and good codes. ,

The capacity regions for both cases are determined in Section 4.

‘We give now the definitions of the codes which are appropriate in the
various situations, which we consider in the following sections. These are
the cases: (P, Ty, 1), (P, Ty, 1), (P, T, I1) and (P, T, I). The transmission
probabilities for the channel (P, T,,) are defined by

3

P, |z, y.) = f§ 0@y (1.4)

t=1
for every x, = (x!, ..., "), Yo = (yt, ..., yMEY,, and z, = (¥},
L, EX, n=1,2, ...) @ (% z,y) is a non-negative function de-

fined on X x Y x X and satisfies

S>o (z | x,y) = 1 for every (z,y) e XX Y.
x€X

A code (n, N,, N,) for the communication situation (P, Ty, I) is a systefn
{(ui,vj,A,-j)‘iz 1,. . .Avl;jz 1,. .. ,1\72} , : (1.5)

where u; € X,, v;€ Y, Ajj cX, fori=1 ..., Ny;j=1 ..., N,
and 4;; N A4 = @ for (i,7) # (@ J)- ‘
A code (n, N, N,) is an (n, Ny, N,, 4) code for (P, Ty, I), if
’ 1 N, N,

ﬁzx .ZlP(AijEui,‘Uj)zl——;s. ) (1;5)
14¥2 i=1 j=

The transmission probabilities of the channel (P, T',,) are defined by

P(En ‘ Tn» Yno z,) = HCO (ft i xt, yt, zt) (1.7)
: t=1

—

for every z, = (z!, ..., 2") €X,, Y= Y oo .s YVEY 2= (2 -,
z)€Z, and Z,= (z', ..., VE€EX,(n=1,2, ) o (T YR s de-
fined on X XY xZx X and stochastic as usual.
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A code (n, N, N,, N;) for the communication situation (P, T4, I)i1s a
system

{(w;y ) Wy A )i = 1 ..., Nysji=1 ..., Ny (1.8)
. k == 1 e sy Ns} y
where u;€ X,, v, € Y, wkEZn, A C X, for i=1, ..., Vl;‘ j=1,
Ny k=1, , Ny;and Ay N Aijoe = @ for (4, g ky== (3,5, k).
A code (n NI,N)IS an (n, Ny, N2, 1) code for (P, T, 1),if
1 ’ N1 N, N, -
2 2 S“P(‘A‘z ik lul’ j? k) 2 1 — 4. (19)

Ny N, Ny 51 j=1 &=
A code (n, N;, N,) for the communication situation (P, Ty, II) is a system
{(u;, vj, w, 4;j) |4 =1,..., N; j=1...,N;}, (1.10)
where uE)&n,UEYn,wEZ,,,A CI& for i=1, ..., N, j_lg.

...,NandA ﬂAu—@for(z]) (2", 7). - ocie’(n 1N)for
(P, T, II) is an (n Nl, N,, 2) code, if

N S P up v w) =1 - A (L1
N1N2 i=1 j‘=--li Y !

The transmission probabilities for the channel (P, T'») are defined by

P@a G| 2w ya) = [J© @ F |2, ) (1.12)
) t=1 7
forevery:r—(xl..., 2 eX, ,yn=, ..., YHETY,
z, = (%, ..., ) € X, and every y, = (y,...,y)E?(n_12 ).

o (Z ¥z y) is deﬁned on X X YXX/< Y, is non-negative, and such that
Y JoE, ylry) = 1 for every (z, y) € XXY.
2 .

X€EX y€X
A code (n, N,, N,) for (P, T, I) is a system
{(u,.,v.,A,.,B li=1 ..., Nyj=1 ..., N}, (113)
where uGXn,LEY,,,A c X, B; CY for zzl ey ’\1,_7_-1
...,N, and 4 nA,,__@ for z=éz, B, NB.,=9 fory#_y.
For 4 CX,,, B c Y, define |
P(A l'cm yn) - > P(Em yn ‘ Ty yn) (1'14)
VXnEAUnEYl
and
P(B |z, y,) = S P(Zn Un | Zpo Un) 0T (200 ¥n) € XX Y-

__‘d
Xn€Xn
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A code (n, Ny, N,)is an (n, Ny, Ny, 2y, 25) code for (P, T,,, I) if

. | N, N, B
— N P4 |u, v) 214 (1.15)
NN, = =&
and .,
1 N N
— > MP(Bjlupnv) =1~ A
NN, TS = :

In (1.6), (1.9), (1.11) and (1.15) we have defined codes with average errors
< 4. Throughout this paper only average errors will be used. The coding
theory for multi-way channels for maximal errors is entirely different. This
has been demonstrated in Section 5 of [1]. In that paper we deal with Shan-
non’s two-way communication channels, but the discussion in Section 5
of [1] is relevant for all multi-way channels. Till now no coding theorem
for any nontrivial multi-way channel has been proved in case that one
requires the mazimal errors to be small. :

We define now the capacity regions for (P, Ty, 1), (P, T,, D), (P, Ty, II)
and (P, To,. 1). A pair of non-negative real numbers (R,, R,) is called a pair
of achievable rates for (P, Ty, 1) or (F, T3y, 11) if for any 2 (0 <2 < 1) and

. S 1
any € > 0 there exists a code (n, N,, N,, 2) such that —log Ny > R; — ¢
n

and L log N, > R, — ¢ for all sufficiently large n.
n
(R,, R,) is called a pair of achievable rates for (P, Ty, 1) if for any (4;, A4),
0 < Ay, 2» < 1, and any & > 0 there exists a code (n, N,, N,, 4,, 2,) such

that L log Ny >R, — ¢ and-l— log N, > R, — ¢ for all sufficiently large n.
n n

A triple of non-negative real numbers (I, R2, R,)is called a triple of achiev-
able rates for (P, T, I) if for any (0 < % < 1) and any ¢ > 0 there exists

1 ‘
o code (N, Ny, N, 7) such that —log Ny > R, — e X log N, >R, — ¢
n n

and -}—log N, >R, - ¢ for all sufficiently large n.
n

~ Let G(P,T,, 1) be the set of all pairs of achievable rates for (P, T,,, 1), let
G(P, T's,, 1I) be the set of all pairs of achievable rates for (P, T, 1I) and let
G(P, T, I) be the set of all pairs of achievable rates for (P, T, 1). The sct
of triples of achievable rates for (P, T, 1) is denoted by G(P, Ty, I).

In Section 3 we give a simple characterization for G(P, Ty, 1) and in
Section 4 we give simple characterizations for G(P, Ty, 1) and G(P, Ty, II).
The problem to find a simple characterization for G(P, T, 1) is still unsolved.
We shall discuss this problem in Section 2. .
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2. ON A CHANNEL WITH TWO SENDERS
AND TWO RECEIVERS

We consider now the channel (P, T,,) in case (P, T, I) and we present
first a characterization of G(P, T,,, I) in terms of dependent sources. This
characterization was obtained in discussions with J. Wolfowitz, who raised
the question, and with U. Augustin, who wrote down a formal proof, during
a visit in Heidelberg in the summer of 1969. We state the result as Lemma,
1 below. The result is theoretically and practically unsatisfactory, because
it cannot be used for actually computing G(P, T, I). We give the result
here, because it is interesting to compare it with the results, which we ob-
tain in Sections 3 and 4 for G(P, Ty, I), G(P, Ty, I) and G(P, T,,, II). The
ideas which led to those results may also be helpful in finding better cha-
racterizations for Q(P, T,,, 1).

Before we can state Lemma 1 we need some definitions. Let D, be a pro-
bability distribution (p. d.) on X, and let g, be a p-d.onY,.Foreveryz,€ X,,
and z, € X, we define now P(z, | z,) by

P(En l xn) = 2 gn(yn) P(En' Tn, yn) . (21)
Yn€¥n

For every y,€ Y, and 7, € ¥, we define P(7, | yn) by
Py = 3 pul) P@, | .y, (2.2)

Xn € Xn

For every x,€ X,,, y,€ ¥, we define Pa(z,) and ¢5(Z,) by

Xn € Xn
and '
9n¥n) = = 0a(yn) PHn|ya)- (2.4)
Iln‘EYn '

The “rate” functions Bi(p,, gn) and Ry(p,, g,) are given by

A . | _ , P(z
CR(ph g = 2 D pulz,) Pz, | z,) logﬁ,”l—x’-) (2.5)
}ne)—(n Xn€Xn pn(xn)
and ,
Bopmtn) = 2 2 0ulyn) PFn |y, IOg—(g,/"_]—y”—)- (2.6)
UnE?n Yn€Yn Qn(yn)

Consider the set of pairs

1
G, =‘ — Bu(ps, g0), —Bopn, 42)} | pn p- d. on X, g, p.d. on Yn}
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Lemma 1

a) QP, Ty, I) =G. ~

b) G(P, Ty, 1) is a closed convex set in the Euclidean plane, which con-
tains with every pair (R,, R,) also the projections (B;, 0), (0, R,), and (0, 0).

The proof is based on Shannon’s random coding method [7] and on
Fano’s lemma [3].

Proof. We show first that G cGP, Ty, I). Let & = (u,, - .., un,) be a
vector with N, components,' which are elements of X,, and let » =
= (v, ..., Un,) D€ 8 vector with N, components, which are elements
of Y,. Define for @ the decoding sets A, ..., AN, by

A= {F, | P, |w) >P@E,|u) for j=i} (2.7)
for i=1, ..., Ny. . . |

Similarly we define the decoding sets B,, ..., Byyfor 9 by

B, = (7| P, |v) > P, |v) for k>j} (2.8)
forj=1,..., N, '

Let A¢ be the complement of 4, and BS be the complement of B;. The
average errors for the code {(wpv 45, B) li=1, ... JNj=1,...,N,}
are given by

. X i 1 N, N, . '
Alu, v) = > 2> P(4§ | w;, v) : (2.9)
1 Np 51 =1
and ' ‘
Wi ¥) = —— 3 3 P(Bf |u,v) (2.10)
u, V) == Clu;, v;). 2.
* NN, = A !

We select now 4t and © independently at random according to the proba-
bility distributions p, and ¢, given by

mm=ﬁmw (2.11)
o |
for all ;€ X, i=1,..., N;, and
| i) = [ 0w) ey
for all v, €Y,,j=1 ..., N,. "
We give now an upper bound on /, given by
L= 3 3 buli) 4ul5) Ui 9) + Jalils 9)]- (2.13)
a o . -

If I is small, then there exists a pair (#&,, ¥,) with small decoding error
probabilities. :
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In order to obtain an upper bound on ! it suffices for symmetry reasons
to give a bound on /;, given by

il
u 14

. N, N
- zf)nw)én(é)[N — 33 P(As!u,-,v,o]. (2.14)
u v 14V (=1 j=I
Since i, ¥ are selected independently we obtain
A 1 M )
ll = 2 Pn(‘l() [T y P(I‘If ; ui)J . (2.15)
i ‘LVI =l

To (2.15) we can apply the usual error bound which one obtains in con-
nection with Shannon’s random coding method in case of a one-way chan-
nel ([53], [7], [11]). Choosing p, = pz...xp, q, = qx . . . xq yields (as for
discrete memoryless channels) that G, < G(P, Ty, I). Replacing in our
arguments X by X, Y by ¥,, X by X, and Y by ¥, yields G, < G (P, T, 1)

fort =1,2,... . We thus have proved: G — G(P, T,,, I).
Let now { (u; v, 4, B)|i=1 ..., N;; j=1,...,N,} be an
(n, Ny, Ny, 7), %) code for (P, T, I). Then we have ‘
; L3S s u,, v)  (2.16)
L > Pl U, v; . _
' . NN, t=21 .% ! '
and
L3 SPGB u ) (2.17)
— , S up, v;) . A7
' ) AzZNlNz i=21 Jﬁ ’ !
Define p,, on X, by
_ . .
() = —, i=1,..., Ny, 2.18)
Pn (1) N, 1 (
and ¢q, on Y, by
1
n(v)=—, =1, ..., N,. (2.19)
qn (v)) N, J 2
Then we obtain
e NS L pas e = S Py (220
I_N“-f{ j=1 N, o N, Z ’ '., ' .

and similarly

P(Bj|v). (2.21)
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Fano’s lemma ([3], [3], [11]) yields

: lOg Nl g Rl (pn’ Qn) + 1 (222)
, 1— 2,
and
lOg sz g R2(pm qn) + 1 ) (223)

1— 7,

One can show — by a similar argument as Shannon gave in paragraph 12
of [8], (see also Section 3) — that G is convex and closed under projections.
It follows therefore from the definition of G(P, T, 1) and from (2.22) and
(2.23) that @ D G(P, Ty, I). This completes the proof of Lemma 1. The
conjecture made in the last sentence of page 630 in [8] means in our ter-
minology that G(P, Ty, I) equals the convex hull of ;.

In order to verify this conjecture one might think of the following possi-
bilities: |

1) One tries to find a new Fano type estimate for (P, T, 1), which then
might yield the desired result.
2) One tries to prove directly that ¢ equals the convex hull of &;.

We introduce now a special channel (P, T,,) which may be helpful in or-
der to disprove the conjecture. Let ¥ = Y and let the transmission matrix
be such that

w(y,|z,y)y=1for y=ye¥Y. - ’ (2.24)

w(Z | z, y) can be chosen as appropiate.

3. THE CAPACITY REGION OF A CHANNEL WITH TWO SENDERS
AND ONE RECEIVER

We consider now the channel (P, T,,) in case (P, Ty, I). We recall its
definition — given in Section 1 — and also definitions (1.4), (1.5), (1.6) and
(1.16). We need now some more definitions.

Let p be a p. d. on X and let g be a p. d. on Y. We define now the func-
tions R(p, ¢), Ry(p, q), Rh(p, 9), Bu(p, ) and B3, (p, 9) by

» _ (z | z,y)
R(p,q) = () g(y) w(E |z, ) | ed - :
i gg%pquwxlxzj) > p@)q(y) w(z | z,y)
xeX yeY :
(3.1)
Ripa= S S T ple)aly) wl| .y) log 2V (32

p(x)w(z |z, y)

=
x€X yeY xtX ex
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> plz)w(z |z, y)

BYp,q) = 3 p()gly) w(Z | z,y) log ~—== T
2P, 9) ﬁyé‘% 4 l Y 2 2 Py wx |z, y)

- x€X yeEY
(3.3)
yEZ;, q(y)w(@ | z,9)
Byp.g)'= 3 I Xpl)qy)w@ |z, y)log -
: X yev 5 | | IEX%Z; p)q(y) w(z | z, y)
(3.4)
and
- . _ (Z |z, y)
Rip,g)= > p(x) q(y) w(Z | z.y) log ———1 22 . (3.5)
xeX yezy é yGZ", q(y)w(z |z, y)
One easily verifies that . |
R(Pnfq) = R|(p,q) + EL (p,q) = R, (p,q) + R (p,q) . (3.6)

Define the sets

G = {(B (p,9), Rh(p,¢) | pp.d. on X, ¢ p.d. on Y},
G = {(B4(p.9), By (p,q) |pp-d. on X, ¢ p.d. on Y}
and ¢ = G U G. Finally we define G* as the convex hull of G.

Let €, = max max R, (p, q) and let C, = max max R, (p, q). It follows from
‘ P g P g
the definitions (3.2) and (3.5) that

C, < max Zq(y)l:inax S p(x)w(z|z, y) log
q y P xx

w(T |z, y)
S playe( | x,y)]'

X

Let y, be such that the term in brackets is maximal. The p. d. g, which

assigns probability 1 to y, maximizes the right side of the inequality. We
therefore have C, = max R,(p, g,)- It is easy to see that Ria(p, g5) = 0 for

P
all p. Similarly one can find a p,, which is concentrated on one point, such
that C, = max Ry(p,, ¢) and &3,(p,, ¢) = 0 for all ¢ . It is also easy to see

p, .
that for (p,, g,), for instance, R (p,, ¢o) = Rl (P4, ¢,) = 0. It follows from a
convexity argument (see Lemma 2in Section 4) that Rl(p, q) < R, (p, q)
and E3(p, q)< E,(p, q). Hence, for any element (R,, R,) in G* we have

R, <C, and R, <C,.

Since (0, 0) € ¢* and G* is convex, we obtain that (R, 0) and (0, R,) are
also in G*. We are now ready to state '

Theorem 1

(a) The capacity region G(P, T,,, I) for (P, T,,, I) equals G*.
(b) G(P, Ty, 1) is a closed convex set in the Euclidean plane and contains:
with every point (E,, R,) also the projections (R,, 0), (0, R,), and (0, 0).

3



34 B. Ahlswede

Proof. We show first that G*c G(P, T,,, I). For this it suffices to show that
for any pair (p, q) (By(p, q), BL(p, q) ) €G(p, Tn, I). The proof that
(R (p, q), R,(p, q) ) is contained in G(P, Ty, I) is symmetrically the same.
Once we know that @ < G(P, T, 1) we can show that G*c G(P, T,,, 1) by
concatenation.

Let &4 = (u,, ..., uy,) be a vector with N; components, which are ele-
ments of X, and let ¥ = (v, ..., vn,) be a vector with N, components,
which are elements of Y ,. Let p, be a p.d.on X, and let ¢, be a p. d. on
Y ,. We select now and v independently at random according to the pro-

babllltv distributions p, and ¢, glven by

Pal@t) = Hpn - (3.7)
i=1 - -
forall ;€ X,,i=1,..., N,, and
N,
= [] a:(z)) (3.8)
j=1 ,
for all v;€Y,,j=1,..., N,.
Define for every ¥, E Y,,, z, E Y, Pz, |y, by
xnlyn' = anxnp(fnlxn! yn) o (3'9)
Xn€Xn
We define for ¥ the decoding sets B,, ..., By, by
= {z, | P(z, | v;)) > P(x, | v)) for k 5= j} | (3.10)
forj=1, ..., N,. '

For the pair (u,v) we define the decoding sets A*(z =1, ..., Ny
j=1..., N,) by

Ay = {z,| P(x Iu,, 1)>P [u,, ;) for 1524} (3.11)
for 1 = 1 /4 j = 1, V ,
Obviously, for every fixed j, 4 5 N A = @ for 2 5= ¢
Define 4;; by
We have 4, N4y = @ for (4, j) = (¢, ) Let Af; be the complement
of 4; Tne average efror for the code {(u z A;)|i=1, yNyig=1,
N,} is given by -
A, B) = S ¢ | w, v)) - (3.13)
N, N == iyl

We want to give an upper bound one = 3 3 5,.(%) ¢,(9) A(%, D) . We re-
write first (3.13) as R
A&, §) =

1 N N
P(A%f U BS 'u,,'v ). (3.14)
N1N23=21 f=21 [



Multi-way communication clannels 35

It follows from (3.14) that

aga 1 N'lv R =C ¢ =
i, 8) < S S[PAy | un ) + P(BS u,v)]. (3.15)
(3.15) yields

S S 50 4uld) = S S P43 w1 +
el 2 Pa\W) q@p\t) = > 2 (< *C ’lt,,’L’

T?‘ N1ZV2 = j=1 '

w0 1 Na
+ () S P(Bf|v)) . (3.16)
7 N, o

We choose nowp,=pzx...zp, ¢,= gx...xgand wedenote the first term in
the sum above by e; and the second term by e,. e, is an error term which
occurs by applving the random coding method to Shannon’s two- -way
channels (see [8] or [12], p. 5). Shannon’s estimates for e, yield that for any
8 >0 we can choose N, = I®1=9" where R, equals R,(p, q), and we
can find an ¢ >0, such that ¢; = ¢ (¥;) < e for all sufﬁcwntlv large
7. €, is the usual error term occurring in applving the random codmrr meth-
od to the discrete memoryless channel whose transmission matrix w( | )
1s given by

w(x|y) = X plwx|z, y) for every y€ 7Y, 2¢ X . (3.17)
xe X .

We therefore have that for any 6 >0 and N, = eR:=9" where R,
equals Rl,(p, g), we can find an ¢ > 0 such that e, = e,(N, ) e~ " for all
sufficiently large n. We thus have proved that G* < G(P T, , J We shall
prove now that G*’:‘DGU_’ Ty, I). Let {(u;, v, A4,)| i=1,..., Ny
J=1...,N,} bean (n, Nl, N,, %) code for (P, Tol, I\ From the lnequahty

5‘ P(AG [ uy,v) <4
N Nﬂ 121 1—1 »
we obtain that
1 N ‘ | N, ,
v > P4 | u;, v;) <24 for at least [—‘—)—] u;’s . (3.18)
Vo j=1 ' <

We can change the numbering such that these u;’s are Uy« oo Uy, With

, N,
N = [-* Similarly we can pick — after renumbering — vy, ..., v5*,
5 2

-

with N = [fYE-J ,.such that
2

ZP AGlu,v) <2 forj=1, ..., Nt (3.19)

4V f=1

g*
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It follows from (3.18) that

1 N: \ . |
e _.ZI‘P(AZ' |unv)<Ldifori=1, ..., Nt (3.20)
2 j= . ‘

and it follows from (3.19) that

N1
z;- S P(A5|uv) <4l forj=1, ..., N. (3.21)
2 =1 .

(3.20) or (3.21) imply that

1 N: N:
- 2 2‘ P(A,j | u,-, 'v!) g 4}. . (3.22)
Nf ' 2‘ =1 j=1

We write now 1*¥ instead of 4. Henceforth we consider the (n, N1, N2, 2%
code {(u;v;,4;)|i=1,...,N}; j=1,...,N%}. Upper bounds on
N7 and N3 yield immediately upper bounds on N, and N,. We define now
a discrete memoryless channel P with input alphabet Z = X x ¥ and output
alphabet X. The transmission matrix @ for P is defined by oz lz) =
= o(Z |z,y) for all z = (x,y)€ XXY.Forevery z,€Z, and z,€ X, we
define P(z, |z,) by ’

P&, |z) = JT & |2) . T (3.23)
t=1

Write w; = (u}, ..., u}) fori=1, ..., N, and vy = (v}, ..., v]) for |
J=1 ..., N, If we define wj; by

wi = (uf, v}) | (3.24)
fori=1,...,N;j=1, ..., Nyandt=1,2,..., n;andﬁ_ifwedeﬁn‘e
w;; by

v wy; = (Wi, ..., wh) (3.25)
fori=1,...,N;j=1, ...,'Nz;-then we have that |
P4, | %, v;) = P(Aij l wy) (3-26)

for i=1,...,N55=1,..., N3 {(w; 4,)|i=1,..., Nt; j=1,
..., XN3%} is because of (3.26) an (n, N¥, N%, 1*) code for the channel P. Let
N equal N$ X N% and define the probability distribution 7, on Z, by

ra(w;;) = 1% | (3.27)
fori=1,...,N;j=1,...,N,.
Fano'’s lemma yields that
log N < (R(r,, P) 4+ 1) (1 — A)~1, where R(r,, P) equals
' Pz, | 2,)

S ro(z,) P(En | 2,)

In€Ln

(3.28)

S ralzn) P | 2,) log

Za€/n Xn€Xn
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Let * be the tth 1- dlmensmna.l margmal distribution of r,, and define
R(r', @) by

> XA BEF | 2) o _""z‘) 7(t—12...,n).(3.29)
il Zr“‘)wﬂ?l"‘) o

It is well known (see [3] or [5], Theorem 4.2.1) that

Rir,, P)< 3 R, @). (3.30)
t=1
"Define now
A Hilut==z,1€ {1, ..., Nt}}|
i) = 1 E ) 831
forx €X', t=1,2,...,n; and
{ilt=y9.5€{1, ..., N3}}|
! p— 3.32
fory e, t=1, 2, ...,‘-n.

p( )isap.d. onX'and¢ ( )isa p.d on Y'. It follows from our
definitions that

rl(z) = plx) - ¢'(y) for all z="(x, y) €Z',t=1,2,...,n. (3.33)
It follows from (3.1), (3.29), (3.33) and the definition of @ that
R(F,w) = R(p', ¢) fort=1, ..., n. (3.34)
(3.28), (3.30) and (3.34) imply that

log N g[ZR(p', q) + 1](1 — - (3.35)
: =1

We give now upper bounds on N%{and N3. For evéry v = (e} ..., v7),

j=1,..., N%, define P(-|-, ) by |

n
Pz, |2, v) = [ w(@ |, ) (3.36)
. =1 o

for everv 7, = (z,, ..., 2,) €X,, z,= (2!, ..., z") € X, . For every

wp = (ul, ..., uf), i =1, ..., N, define P( -l'ui,-)by
P(x nn ,,Jn)—Hw(x‘lu,, y) (3.37)

for every I, € X, y, € ¥,. Let B(p', w(- | -, v}) and R(¢, o(- |u', -))
be defined as R(r!, w) in (3 29). (3.20), (3.21) and Fano’s lemma yleld

log N¥ < ()(R(p o ,vj)>+ 1) (1 — i%)- ]for] =1,...,N3 (3.38)

L A,
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and ,
log N3 < [ 3 R(ho(-[uf, )+ 1)1 =2971) . (3
=1 ‘

It follows from the definitions (3.1), (3.5), (3.31) and (3.32) that

N? n n :
3 3 R(pol(-]-,e))= 3 R(p.q) (3.40)
N2 o= =1
and that
: 1 n n
; 2 3 R o U, )= 3 By(p',q) - (3.41)
N i=1 t=1 =1 .

(3.38) and (3.40) imply

log N;g[ N Ry(phq) + 1] (1 — 2%)-1. (3.42)
t=1 '
(3.39) and (3.41) imply
log N*g (‘:R2( )+1 (1 — 2%)-1, (3.43)
=1

(3.6), (3.35), (3.42) and (3.43) suffice to prove the desired result. We consider
two cases

a) longg[j

=1

R (p' ¢') + 1] (1 — 3%)-1

Then the desired result follows by choosing 4 suﬁimently small from (3.43)
and the definitions of G* and G(p, Ty, I).

b) locrN’l">[Z R% (9!, q) -1 1](1-—2*)"1
This and (3.42) imply the existence of an o, 0 <<« < 1, such that

log Nt = [i‘ aR (P, ¢") + (1 — «) R4(p, ¢") + 1] (1 — 2%)~1. (3.44)

t=1

It follows from (3.6 tha.t R(p', ¢') = aR{(P',q") + o B}, (p',qi) +
+ (1 —a) R, (P ¢") + ( — a) R (p',q") . This, (3.35) and (3.44) imply
~that

log Ng = log N IOOng{z(“Rlzp ) + (1 — ) Ry(p, g) +

—

+ 1](1 — A*)-1. (3.45)

(3.44), (3.45) and the definition of G* yield that llog N,, —1-log N,| is
n n

arbitrarily close to G* for 2 sufficiently small and all large n. This proves
that G(P, T, I) © G* and thus completes the proof of the theorem.
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We define first several functions in P, q and r, which shall play a similar role
to the functions R(p,q), RB,(,9), R.(p, 9), Bl,(p, q) and R%(p, ¢) inSection 3.

w(z | z, y, z)

R(p,q, 1) = (@)g(y)r(z)w(z |z, y,2) lo 4.1
x,g';pxqu xlf Y,z gxyz @) 0z 2.9.7) (4.1)
. _ |z, y,2)
B(p.g.r)= 3 pla)gly)ruwElz, v, z) log — 12 4.2
r x,f;,; q{y)r uxl Y Og);",'p(x)w(xlx,y,z) (4:2)
RBip.g.r= 3 pEyrEwE|z,y.2) log wz |z, y,2) (4.3)
x,_y,,,; %‘ qly) w(z |z,y, 2)
| w(x |z, y,z)
R = 1 ' s log .
a(p,q,7) Ax.,y_,i;p(:c)q(‘/ zyw(z |z, y, ) log z_'r(z)w(5|:c,y, 2 (4.4)
| S p@)wz|2,y,2) ‘
Rl I & - S‘ ( ) (?) .(:)u'(— 1‘ 4 ) log = _ 4.5
L(p,q,7)= ‘}'?,;pqu-1 x|z,y,z2 gp(x)q(y)w(xlx,y,z) (4.5)
: N Zp(x) 'lU(:—Clx, Yy, Z)
Rly(p.q,7)= plx)g(y) r(z)w(z | 2, y,2) log
C xye Zp )q(y)w(z | z,y,2)
(4.6)

Analogously we define functlons R" (p,q,7), R‘,3 (p, q, r), B3 (p q,7) and
R%(p. ¢, 7) -
| 3 p@)ely) 0 | 2., 2)
Rib(p, ¢, 7 p()g9(y) r2) w(@ | z,y,2) log —* — -
m x%x | 2 px)gly) riz) w(x | z,y,2)

X,V,2
(4.7)

R, (p,q, r) and Rz:n (p, q, r) are defined analogously.

For reasons of brevity we omit now the arguments p, ¢ and r. The follow-
ing six identities can easily be verified:

R =R, + R + RS (4.8)
R = R, + R% + RS, | (4.9)
R =R, + R3, + R | (4.10)
R =R, + Ry + B3, (4.11)
R = R, 4 R}, + RE, : (4.12)

R=R,+ Ry + B% . (4.13)



Multi-way communication channels 41

We define the sets of triples of real numbers
G, = {(R,, R}, R%,) |pp.donX,gqp.donY,rp.d.onZ},
G, = {(Rl, R13., R},) |for all p. d. p, g, and r },
G3 = {(R}, R,, R%,) |for all p. d. p, ¢, and 7},
G, = {(R%Z,, R,, R%) |for all p.d. p, ¢, and 7},
Gy, = {(R},, R}l,, R,) |for allp.d. p,q,andr},
G, = { R'g'gl, R%, R,) | for all p. d. p, g, and 7},

and G = U G;. We denote the convex hull of G by G** .

i=1
~ Lemma 2
For every triple (p, ¢, r) the following inequalities hold:
1) R, > Ry > RE,
2) B, > R} > BB,
3) R, > R}, > R3;
4) R, > 3, > R
5) By > Ri; > Rij
6) By > B3 > Rl .

Proof. Tt is well known that the function R(z, ), given by

32 L w(J | 1)
B(z, o) —z;gniw(J | 7) log . . (4.14)
== Z; T (g | 1) ’
==
for every probability vector = = (=, ..., 7,) and every stochastic mat-
rix (w(g]e)) v+ =1,...,a,j = 1,...,b is convex in o, that is,

for two stochastic matrices w, and w, and o = (2, &), where 0 <o, 2, <1
and ¢, + «, = 1, we have

R(n, a0, + a,w,) < o B(w, w,) + a B, w,) . (4.13)

The inequalities stated in Lemma 2 follow by the iterated apphcatlom of
inequality (4.15).

There is a close relationship between the communication situations
(P, Ty, II) and (P, Ty, I). Let ,0(z |z, y) —co(a:lx y, z) for all z€ X,
y€Y, z€Z, z€X. Define ,R(p,q), .Ri(p La(p, 0), R (p, 9),
i (p g) and ,G* for ,w(.|.,.) as R(p, q), Rl(p, q) etc. in Section 2.

Finally, define G*** as the convex hull of U, G*. We shall prove in pa-
ragraph 4 that G*** = G(P, T,,, II). 2€Z
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Lemma 3
Let L,s=1,...,dbe non-negative random variables, defined on the
same probability space, such that EL,<«, s=1,...,d. For any

e > 0 the probability of B* = {L; < d (@ + e)fors =1,..., d} satisfies
P(B*) > — | |

o+ €

This is a trivial refinement of the Lemma in [8]. For a proof see [.2, p-467].

, 2. The main results
Theorem 2

a) The capacity region G(P, T,, I) for (P, Ty, I) equals G**.

b) G(P, Ty, I) is a closed convex set in Euclidean 3-space and contains
with every point (B;, Rp, Bj) also the projections (£, 0, 0), (0, R,, 0),
(0, 0, R,), and (0, O, 0). :

Theorem 3

a) The capacity region G(P, T, II) for (P, Ty, 1I) equals G***.

b) G(P, Ty, 11) is a closed ‘convex set in Euclidean 3-space and contains
with every point (R, By, Bj) also the four projections (B;, 0,0), (0, By, 0),
(0, 0, R;), and (0, O, 0). ‘

3. The proof for G** < G(P, T4, I)

It can be shown by the arguments used in Section 3 that G** is closed
under projections. '

In order to show that @** < G(P, Ty, 1) it suffices to prove that for any
triple (p,q,7) (By(P. 4. 7)5 RL(p,q,7), Blas(p, 4, 7) }is contained in G(P, T, 1).
The proof that G; (i =2, ..., 6) is contained in G(P, T5,, I) is symmetri-
cally the same. Once we know that G c G(P, T, I) we can show that G** C
C G(P, T, I) by concatenation.

Let ¢ = (uy, ..., un,)and o= (v, - - ., vn,) be defined as in Section 3,
and let w = (wy, - - - , Wn,) be a vector with N, components, which are ele-
ments of Z,. Let p,beap.d.on X, g, be ap.d.on Y,, and let r, be a p.d.
on Z,. Define p, and ¢, as in (3.7), (3.8) and define 7, by

N,
fn(z‘b) = H Tn(wk)' . (416)
. ' k=1
for all w, €Z,, k=1, ..., Nj.
Define for every z, € Z,, Z, € X, P(z,|z,) by

Pz |z,) = ZX‘ 2; (@) 4nlyn) P(En | Tns Yo 20) (4.17)
Xn€Xn Yn€EYn . ‘
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and ‘define for every 2z, € Zn, ¥n € Y, T, € X P(Z, | Yns 2a) bY

P(xn l yn’ zn 2 pn(x n i xn’ yn’ zn) M : (4'18)
Xn€ Xn

We define for i the decoding setsCy, . .., C N, by

Cr = (%, | P(Z, | wi) > P, | w) for 1=k} (4.19)
for k=1,..., N,.
For the pair (9, w) we define the decoding sets B (j=1,..., N,;
k=1,..., N,;) by '
= {Z, | P(Z, | v w) > P@, | v w0y) for m = J} (4.20)v

forj=1,..., Npsk=1,..., N,.
Obviously, for every fixed &, B N Bf= g forj=j".
For the triple (, 9, w) we define the decodmrr set A} Tk by
Al = {Z, | P, | ui, v, wi) > P(Z, | up vy, wy) for 15213} (4.21)

fori=1,..., N;j=1,..., Nyk=1,..., N;.

We have for every fixed pair (j, k) that A% N 4AF = O for i’ 5= 1.
Define — for all index constellations — 4, by '

Aijk =A% N Bi NCy. - (4.22)
It follows from our deﬁnltlons that A,Ik NAppi= O for (1, 7, k) ==

(W, 5", &)
Let Afj be the complemenb of A4,

The average error for ‘the code {(u;, v;, Wy, Aip) |[(E=1, ..., Ny;j=1,
, Ny k=1, N,)} is given by
A A A : 1 N, % N, ,
}'(u7 v, w) T —— 2 2 2 ljk l Ui v wk) . (423)

N1N2N3 i=1 j=1 k=1

We want to give an upper bound on [, given by

L Sl o) ) 25, ) (4.24)
It follows from (4.22) that A = A,J,‘U % U Cﬁ. This and (4.23) imply
Mityb,i) < —2 — 3 3 S P(A3 P(B
U, D, w U, W U
VN]V:,,_”_U‘_S ( uk[u k)+ ( Jklu wk)

+Hmhm AR o (4.29)
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It follows from (4.25) that
' N, N, N,

» (1N (D)7 (17 1 N N *c
1< S pa@) a0 Fuld) —— ¥ 5 X P4 [0y, 5, 0,
IJA..,I‘;‘} AINZN:! =1 j=1 k=1 )

o 1 N N _
+ 2 4nl0) Falit) == 3 3 P(B3 | v, w,) (4.26)
o, C AV AV g =1 K=l ,
.o ey 1o N; ¢ r
+ 3 i) — X PCEIW).
w Y3 k=1
We choosenow p,, = pr .. .2p,q, =qr...zq, 7, = rx ... 2r and we denote

in the sum above the first term by I, the second term by I, and the third
term by I,. ], is an error term which occurs by applying the random cod-
ing method to Shannon’s two-way channels in case Y XZ serves as one in-

Y

put alphabet. As in Section 3, we obtain the estimate:

for any 6 >0 we can choose N, = exp {(R,(p, q, r) — o)n} ahd we can
find an & > 0, such that I, = [(N,) < e~ for all sufficiently large n. I,
can be treated as the first term in (3.16). We obtain the result:

for any é >0, we can choose N, = exp {(RL(p, q, r) — 0)n} and we can
find an & > 0, such that I, = I, (N,) < e~ for all sufficiently large n. /,
can be treated as the second term in (3.16). Thus we have:

- for any & > 0, we can choose N; = exp {(Ri% (p, ¢, r) — 6)n} and we can

find an & > 0, such that I; = I,(N) < e~* for all large n.

The existence of a pure code follows by means of Lemma 3 as in [é]. We
thus have proved that G** — G(P, Ty, 1).

4. Results whicl are needed for proving G** > G(P, Ty, 1)
Let {(w;,vj,w,, A)|(i=1,... ,N;ji=1,...,N,; k'=1,..., N}
be an (n, N;, N,, N, 7) code for (P, T, I). From
1 Ni N, N,

-2 2 3 Pl | u, v, w) <2 (4.27)

T AT
A1A2 3 i=1 j=1 k=1

we obtain — by a similar conclusion as the one which led to (3.20), (3.21)
and (3.22) — that we can pick «;’s, vj’s and w, ’s such that after renumber-
ing: '

SP(Aicjk!ui’vj’wk)gsz for i=l""9N1" (4'28)

[e—
¥4
4o

]V;j'v; Jj=1 k:l

1 Nt Nr@

— > X PAfj | v, v, w) <82 for j=1,..., N}, (4.29)
Nf §i=lvk=l ’

- % S:P(Af | u;, v, w,) < 84 for k=1 Nt (4;30)'
NiNziE S TS T
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wnd (as a consequence)
1 Nt N3 ‘ |
— VP U, Ty W) g81 (4.31)
N;N; ; é 1_2; k‘_‘l tjk ‘ j k

'{, Ng and N? can be chosen as [A;-l], [2\272] and [{—3] . We write A* in-

stead of 8 1.
We establish now upper bounds on K,, = (1— 1*) log (N1N3) —

= (1—2*%) log (N1N3) — 1, Ky = (1—/ *) log (N2N2) — 1,
— (1—3*) log (NIN3N3) — 1, K, = (1—2*) log NT — 1,
= (1—-1%) logNz——la.ndK = (1—A4*) log N§ — L.

We derive first an upper bound on K ,. For this purpose we introduce for
“every we(k =1, N3) a nonstatlonary discrete memoryless channel
P, with input alphabet X x Y, output alphabet X and with transmission
probablhtles given by

P(E, | 20 g w) = JT 0F |23, ) (+.32)
, t=1 , |
for every z, €X,, z, €X, and y, € Y,.
{(u;, v, A,Jk) | (2 =1, N j=1, ..., N3} is because of (4.30) an
(n, NT - N3, A*) code for Pk

Deﬁnep( ) and ¢'(-) as in (3.31) and (3.32). We define r’(-) by
[{k|wi=2ke{l,...,N3}}|

r(z 4.33
&= e (4.33)
forz €2,t=1,2,..., n.r(-) is ap.d.onz.
Fano’s lemma leads to the estimate:
w(Z | z, y, wi)
K. < Pl(@) ¢yho(E | 2, y, wl) - (4.34)
52 01 T gl
x,y

forall k=1,..., N3i.
It follows from (4.34) and the definition of 7!(-) that

K< [2’L S pla) ¢'(y) (=) w(Z | 2, y,2) log wZ|z,y,2) }

t=1 x,y,2 Zp (x)q‘(y) 'LU(:C l z, y’ z)

| » (4 35)
The right side of this inequality is equal to

S B(p. e, ) + Rl(p' ¢, )] = _§_ [Ry(p' ¢', ") + Bh(p'. ¢, )] . (4.36)
=1 )

t=1
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Similarly one can show that
K < 2 [R, (p'.¢',7") + Ri(p',¢', )] = Z (R (' ¢" ) + Rgx(ﬁ', g, )]
=1 ’ =1 .
(4.37)

and that

b/a

Ky < Z[BAp' ', ') + Bo(p, ¢ )] = S [By(p'.q" 7)) + Ri(p'. ¢', )] .
t=1 :
(4.38)

We give now an upper bound on K,,;. Let us consider the discrete memo-
ryless channel P** with transmission matrix w** given by

w** (Z|z*) = w.(:lex,y,z) for all z* = (z,y,2) € XX Y xXZ and all ¢ X .
| (4.39)

The results obtained for the channel P* in Section 3 immediately gener-
alize to the channel P**. Instead of inequality (3.35) we obtain now

T
o)

Ky < S R(p'q', 1) (4.40)

=1

In trying to give nontrivial upper bounds for K, K, and K, we are facing
a difficulty, which is not present for the cases above or in the corresponding
problems in Section 3. This difficulty comes from the fact that it is in gen-
eral impossible to select u;’s, ;’s and w,’s such that — for instance —

1 M o :
N* :_l P(Afj}t ‘ u;, vj’ wk) __<_ 2¥*
i=

forj=1,..., N;k=1,..., N% where 2** tends to 0 as 1 tends to 0
and N}* equals cN, for i = 1, 2, 3; ¢ is a constant. _

This follows from an asymptotic estimate concerning a problem of
Zarankiewicz which we derived in [1]. The discussion in Section 5 of 1
~ is also valid in the present situation. We can resolve the difficulty here by
an approximation argument.

Let (2, m) be a probability space, where

Q —= {’Ul, e ey 'U?qz} X {wI’ se ey w?\/a}

and m is the equaldistribution on 2. Define a random variable L, by

1 Nt
Ly (v;, w,) = — S PAgy | vy, v wy)  for all (v, w,) € 2. (4.41)
’ 1 i=1

(4.31) implies that the expectation EL, < A*. Applying Lemma 3 for

d 1 we obtain that there is a subset B¥* of .Q such that

1 M . . ) ‘
Ll('Uj,v wk) = ﬁgp(fivh | Uu;, 'Uj, wk) g L* + e for (uj, ’w,‘) € B* (4.42)
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and

!B*Iz N:N3. (4.43)

l*-}-e

We derive now an upper bound on K, = K,(4*). We introduce for every
(v;, w,) € B* a nonstationary_discrete memoryless channel P; with 1nput
alphabet X, output alphabet X and with transmxssmn probablhtles given by

Pz, |z, v, Uw(x‘ | !, of, w}) for every z,€ X, and =z, ¢ X,x .
| (4.44)
{(w;, Ay)|i=1. ..., Ni} is because of (4.42) an (n, N3, i* + ¢)

code for P;. (4.42), (4 44) and Fano’s lemma yield

log Nt g[iR(p’,w(-- | -, oh, wh ))+ 1]-(1 — * — )7t for (v, w,) € B*.
t=1
(4.45)
If (4.45) held for all (v;, w,) € ©2, then we would obtain that

N N! n ’ .
[2 > ZR(p‘,w(- | -,v},wﬁ))-{— 1](1 — ¥ — )1,

j=1 k=1 t=1

The right side of this 1nequahty is because of the definitions of p’( ), ¢'( - ),
r(-) and definition (4.2) equal to

[ZRl(p‘,q’, 1] - a e
_ t=1
Since (4.42) holds only for elements of B* we obtain
log NT < [j R(p' ¢, ) +1] (1 —2A* — )71+ E (A%, ¢), (4.46)
t=7

~where £, is an “error” term, which we bound now from above. Since
log N <nloga - (1-2*—¢)~1 and because of (4.43) we obtain

a*
A* ¢

I3

E_ (7%, s) < (1 — A* — e)"lln -loga. (4.47)

Since lim —E, (i*, ¢) = 0, uniformly in #n, and since we are 1n}terested
A*=0 7 ‘

only in results for i* arbltramly close to 0 we ignore the term E, (1*, &)
completely Since (1— i*) (1- ¢)~!also tends to 1 as 2* and ¢ tends to
0, we just write for convenience

K, < SR(p'.¢. 1. | (4.48)

I VE
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The proof that

K. <L é Ry(p' ¢, ) | (4.49)
t=1 : .
and |
K; < é Ry(p', ¢, ") | (4.50)
t=1

is symmetrically the same.

We introduce now a convenient notation. We shall write R, R, R,
I, etc., where for instance R}, is given by

Rh—=L ¥ Bup', g\ r; B stands for— 3 R(sd' ).
n =1 n =1

We also introduce K, K, K,, K, etc., where for instance K, = lKlz .

Using this notation we summarize our results [(4.35), (4.36), (4.37), (4.38),

(4.40), (4.48), (4.49) and (4.50)] in

Lemma 4

1) K, <R,

2) K, < R,

3) K, < R, .

4) K, <R +R.=DR,+ Rh
- 5) E13$R1+Rié=]—z3+§gl
6) Kyy < B, + By = Ry + R
7) K< R

5. The proof for G** D G(P, Ty, 1)
From (4.8)-(4.13) we obtain the system of equations

R=F, +Fh + B

R=R, + R+ B

E=ry+B +Bh% (1.51)
E=Fh+ R +F |
B=FR% +RhL+ By

R=F + Rh+ By
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Ve also make use of the matrix
(B, Rl R

el
Hm
6
=

= _|B R B%
RZ, R, Ry
RE, R: R,

B Rl R, |
It follows from our definitions that the sth row vector of R is contained in.
G%, the convex hull of Gy, for s=1,..., 6. We shall prove now that
(K,,K,, K;) — and therefore also [l log Nl,-l— log N ,_—1- log N,| —1is contai-
n n n
ned in an arbitrary e neighbourhood of G** for 1 sufficiently small.
We consider now two cases: a) K, = R, and b) K, < R,. We begin with

a) K, = R,. ;
Lemma 4, 7) and (4.51) imply
| R,+ R%>K,+ K, (4.52)
and
B3 + R, >K, +K,. | (4.53)

We can assume that for some z, 0 <a <1, &« Bl + (1—a) B3, > K, .
(Otherwise we obtain a similar inequality for K,.) If there exists an «,,
0 < a9y < 1, such that actually

ao 1?{2 + (1 - ao) Rl3" —_ Kz ’
then we obtain from (4.52) and (4.53) that
Ky <oy RBifs+ (1 — )

The result is proved in this case.

If such an «, does not exist, then R}, > R, (Lemma. 2) implies B3, >
> K,. Since Kl+ K=K, < R + R}; (Lemma 4) and K, = R,, we also
have K < B3 . Thus

(Kli K‘h K3) g (Pli Pln‘n i ) EG - G**

Since G** is convex and contams the pro;ectlons we also obtain the
desired result in this case. :

b) K, < R,..

We can assume that
K, > R3,, . (4.54)
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because otherwise we could conclude — using 2), 3) and 6) of Lemma

4 — that a suitable convex combination of row vectors 4 and 5 in R gives
the solution.

K, < R, and (4.54) 1mply that there exxsts afp 0L ﬂ < 1, such that

——ﬂfn’ + (1—p) R%,. (4.55)

Choose 8, = ﬁ B, = ﬂ , B3=0, By=—— 1-8 y Bs= l——ﬁ » Be=0. We obtain
from Lemma 4,7) and (4.51) that ? ?

ﬂl ]_?{2 + 52 13" + ﬁ4 R + 185 Rg" + ﬂl R}23 _f_ ﬂ2 (456)

+ B4 §3+55R32K2+33=K123”K1-
For symmetry reasons we can assume w.l.o.g. that
By R, + B Ry + By Ry + B B, > K,. ‘ (4.57)

Decrease f; and increase f§,, but such that their sum remains constant.

Since R}, > R}, the left side in (4.57) decreases under this operation.

Let ) = p; — Y: Bz = By +_y for 0 <y < B, . If for some y, f] R}, +
+8: B3, + By By + B, B3, = K,, then a convex combination of the row-

vectors in R with_coefficients (8, Ba, O, ﬂ,,, Bs, 0) is componentwise not
smaller than (K,, K,, K,). The result follows in thls case.

If such a y, does not exist, then we have
BERB:+ B By + B B > K, (4.58)

Now we apply the same trick once more. We replace Bsby B, =8,— &
and B by f; = B, + 6 for some 6, 0 << 6 < B,. Since R, > R3,, the left
side in (4.58) decreases under this replacement. If we can achleve equality,
then we are finished as usual. Otherwise we have the following situation:

K,= B8R, + (1 — B) RE,
E <BRZ%H+(1—pB)RS.
We can assume that _ _

because otherwise we could conclude — using 1), 3) and 3) of Lemma 4 —

that a suitable convex combination of row vectors 2 and 6 in R gives the -
solution. (The argument is the same as the one given in (4.54).) We are left
with

K, <R}. | (4.60)

Define now new coefficients a, = f, a; =1 — f— n, ag = m, where

0<n<1—§.
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