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On Interactive Communication

Rudolf Ahlswede, Ning Cai, and Zhen Zhang, Senior Member, IEEE

Abstract— Almost two decades ago Ahlswede introduced an
abstract correlated source (V x W, §) with outputs (v,w) € S C
V x W, where persons Py and Py observe v and w, respectively.
More recently, Orlitsky considered the minimal number C,, of
bits to be transmitted in m rounds to “inform Py about v over
one channel.” He showed that C> < 4C + 3 and that in general
C: # Cx. We give a simple example for C3 # Co.. However,
for the new model “inform Py over two channels,” four rounds
are optimal for this example—a result we conjecture in general.
If both Py and Py are to be informed over two channels about
the other outcome, we determine asymptotically the complexities
for all sources. In our last model “inform Py and Py, over one
channel” for all sources the total number 73 of required bits is
known asymptotically and 7, is bounded from below in terms
of average degrees. There are exact results for several classes of
regular sources. An attempt is made to discuss the methods of
the subject systematically.

Index Terms— Communication complexity, abstract sources,
hypergraph covering and coloring, worst case complexity, aver-
age degree bound.

I. INTRODUCTION

HE study of channels with several senders and receivers

was initiated by Shannon [1] and the first multi-user
coding theorem was proved ten years later by Ahlswede in [2].
This led to intensified research activity during the 1970’s in an
area which is usually called multi-user information theory. On
the source coding side, a strong impetus came in 1973 from the
paper by Slepian and Wolf [3], which concerns a probabilistic
model of correlated sources. In the same year, independently
and almost unnoticed, in [4] a hypergraph coloring lemma
was presented (see Lemma 1), which yields asymptotically
optimal list codes for abstract (purely combinatorial) correlated
sources. This work was continued in [5]. There it is shown
that hypergraph coloring concepts are at the root of several
probabilistic, semi-probabilistic, and nonprobabilistic multi-
user source coding problems.

Whereas in [4] correlated sources are modeled as a sequence
of independent and identically distributed (i.i.d.) pairs of RV’s
(X¢,Y1)524, in [5] also just one pair (X,Y") is considered.

Again simultaneously and independently this more abstract
view was also taken in [6] using a model for information
exchange in distributed computing: We are given a function
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f:VxW — Z, where V, W, and Z are usually finite,
V outputs v and W outputs w. A person Py, observes v and
another person P, observes w. They can transmit messages to
each other alternately over a binary noiseless channel and their
goal is to find out the value f(v,w) with minimal worst case
transmission time. We denote this quantity by C(f; Py, Pw).
Specific ingredients here are as follows:

1) No probabilistic assumptions on the source (V, W, f)
are made.

2) Correct decoding for all source outputs is required.

3) Both persons send messages according to a protocol.
Each message is based on the input known to the
transmitter and on his previously received messages.
When a communicator transmits a message, the other
knows when it ends, and when the last message ends,
both communicators know that communication has
ended.

4) Both persons use the same channel for transmitting their
bits.

5) Both persons compute f(v,w).

There are some basic variations of this model. We start with
the work of Ahlswede and Csiszar [7], which was performed
independently of Yao’s work [6].

I. We keep here assumptions 1) and 2) and otherwise

assume that

37) Py sends bits to P)y.

57) Py computes f.

The one-way communication complexity Ci(f; Py) is the
minimal number of bits to be transmitted from P to Py,
so that Py can compute f.

Example 1: Choose

(VaW) = ({1525 o 'aa}na{la2a o _’a}n)

and consider the parity of the Hamming distance ¢,,, that is,
for (z™,y") € Vx W

1, if dg (2", y") is odd
n o, ny __ ) )
on(a™,y") = {0, if dg(z™,y™) is even.

Then
Ci(en; Pw) = [n -log, ]

because for any z™,z'™ € V there is a y* € W with
on(2™,y") # @n(2'™,y"™) and, therefore, the outputs of V
have to be encoded differently.

II. Problems studied in [7] include the following. Suppose
that (X, ¥3)§2, is a discrete memoryless source, where X" =
X --- X, (respectively, Y™ =Y; ---Y,) takes values in A™
(respectively, V™), and suppose that f, : X" x J® — N is
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to be computed correctly with a probability tending to 1 as
n — oo by Py, who observes Y. How many bits must Py,
transmit to P?

Example 2: Let X, and Y; be independent for ¢t = 1,2, .-
and let them take their values with equal probabilities. The
so-called 1-Bit Theorem [7], [8] implies that a computation
in the sense described requires for the parity function ¢,, a
one-way transmission rate log, o for o > 3. Even though one
bit of information about the value of f is obtained by Py, Py
has to give full information about X!

ITII. An unsolved problem is concemned with the situation,
where both Py, and Py can inform a third person, say P,
about their source outputs. What are the necessary rates of
transmission to enable P to compute f, : A" x Y* — N
with probability approaching 1 as n — oo? This problem can
be considered in a purely combinatorial setting. An encoding
is a product of partitions of A™ and )", with monochromatic
members. This in turn is a special case of a strict coloring [5] of
orthogonal hypergraphs. A special case of such hypergraphs
is a triple (V,W,S) with § C V x W, that describes the
possible values of (v, w).

An exchange of ideas from abstract source coding theory
[S] and distributed computing [6] has been very fruitful
for the advancement of other models and new methods. In
particular, in 1983, during a visit of the first author to the
Information System Laboratory at Stanford University, where
Yao’s ideas were popular, there were stimulating discussions
with El Gamal, Pang, Cover, and Orlitsky. The effect was that
starting with [9], [10] there was great interest in determining
communication complexity for specific functions. This also
gave impetus to combinatorial extremal theory [11]-[15] and,
as one of the highlights, led to the 4-words inequality [16].

Whereas [17]-[19] concern C(f; Py, Pyy), a seemingly es-
sential progress in the study of C(f; Py) (only Py computes
f) was made in [20].

On the other hand, the Stanford group picked up the idea
of abstract source coding in [21]-[23] and combined it with
Yao’s idea of exchanging messages in several rounds.

(Cum grano salis it can be said, that this can be traced back
to [1]. See also the discussion in [26].)

It is very interesting to see what has happened in the last
decade in this direction, called interactive data communication
(see [21]-[25] and [27]-[29]), mainly in several contributions
of Orlitsky ([22]-[25]).

IV. We recall first in our terminology the model studied.
Given are the (abstract) correlated source (V, W, S) and two
communicators Py, an informant, and Py, a recipient. Py
knows output v € V and Py knows output w € WW. Both
communicators want the recipient P)y to learn v without error,
whereas the informant P, may or may not leam w. They
alternately transmit messages with finite sequences of bits over
the same binary noiseless channel by a predetermined protocol.
The total number of bits are counted. C,,,(V,W,S), Pw) is
then the minimal number of bits to be exchanged in m rounds
in the worst case for a best protocol.

Since hypergraph terminology is more common we write
Cr(H, Pg) instead of C,,,((V,W,S), Pw). The main known
results about C,,,(H, P ) are mentioned in the Appendix. After
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Orlitsky [23] showed that C may be much smaller than C,,
and Zhang and Xia [29] showed that even C'3 is not optimal,
that is, may be smaller than C,,, we conjecture that Cy is
optimal. So far we have the following results:

Already for a nice structure such as the uniform k-regular

hypergraph
(2 (%))

Cy ~ C3 and C3 > Cjy. Thus we have now a simpler example
for “four messages are better than three” than the one of [29].
We actually determine Cs.

In addition, we study a question from [28] about C5 for
product hypergraphs.

V. As in the contexts of [4] and [5], hypergraph coloring
and covering play a key role also in establishing achievability
results (direct parts) for “interactive communication.” Again,
as in [5], they often have to be used in combination. Key roles
are played by the following three lemmas.

Coloring Lemma 1 [4]: Let H = (V,£) be a hypergraph
with Dg = maxgeg |E| < L. If for some ¢t € N

|5|(€f) Lt el

then a coloring ¢ : V — {1,2,---, L} exists with

(1.1)

o~ (i)NE|<tforalli=1,---,Landall E € £.

We give the proof, because it is very simple.
Proof: For every A C V define

FA)y={p:V—{1,---,L}: p is constant on A}.

Hence, the set %, of colorings that are bad on edge E (that
is, have the same color on ¢ vertices in E) is given by

o= F&)
ACE
[Al=t

and the set F* of all bad colorings equals | J, F.

The set F of all colorings ¢ : V — {1,---,L} has the
cardinality |F| = LIV and we also have

. (1.2)

75| < (DS) L-LM
Because |E| < Dg for all E € €, (lfl) < (Df), one of L
colors is needed to color the vertices in A, and there are Lvi—t
possible colorings of the vertices outside A.
The rough union bound gives now

|7 < |8|([;5>L-L|V|_t. (1.3)
Therefore
W—| <|€] De L'~ < 1 (by assumption)
7] t
and there exists a good coloring. O
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In [5] several other coloring concepts were introduced.

For (L, A)-colorings of H = (V,£) in every edge E € £
at least (1 — A\)| E/| colors occur only once. An (L, 0)-coloring
is called strict coloring or simply L-coloring. Their analysis
reduces to coloring the associated graph (V, £*), where £* =
{{v,v'} :v,v' € V and {v,v'} € E for some E € £}.

The greedy algorithm gives the following simple result.

Coloring Lemma 2: For a graph (V,€) with maximum
degree

Dy 2 maxdeg(v) < D
v I:?erllbﬂ( eg(v) <

there exists a strict L-coloring, if L > D 4 1.

For the results in IV we use another lemma.

Covering Lemma 3 [5]: For a hypergraph H = (V,€)
there is a covering C,C C &, of the vertex set V (that is,
Ugec £ = V) with

€] < [I€]dy" In V]

where dy = min, ¢y deg(v) (defined in (2.2)).

To get an idea of the scope of this Covering Lemma we
discuss several applications.

Many problems in interactive communication reduce to
covering a hypergraph H* = (V*,£*) by a family F of sub-
hypergraphs of H*, with minimal size and/or certain required
properties in the following sense. “For all E* € £* there is an
H = (V*, &) € F, such that E* € £.” It is clear that to such a
covering of H* by its subhypergraphs corresponds a covering
of H=(V,&) in the sense of [5], if we define Hby V=¢£7,
E={EH):H e FY},and E(H)={E*cV:E* ¢},
where F* is the family of subhypergraphs of H* with the
required properties.

1) Among the concepts, not already contained in [5], the
most basic is “perfect hashing,” which comes from
computer science (cf. [30]). The concept can be looked
at in several ways.

Strict colorings of hypergraphs often require a large
number of colors. In many cases it suffices to work

with several functions fi,---,fx : V — B, B =
{1,2,---,b}.
f=1{(f1, -, fr) is a perfect hashing of H = (V,£), if

for every E € £ there is an f; with

fi(v) # f;(v), forw,v € E;v#v'.
This means that H can be decomposed into hypergraphs
H; =V, &), ;& = € such that f; is a strict coloring
of H,. In other words, a perfect hashing of H is just
a covering of H by its b-colorable subhypergraphs.
Thus the Covering Lemma is applicable. The proof of
Theorem 10 i) in Section VII uses the Covering Lemma
along these lines in order to get a perfect hashing for
M = ([, (&)

In applications it is relevant that kb is usually much
smaller than x(H).

2) “The football league problem,” of [22] means covering
the edges of a complete graph by the edge-sets of
bipartite graphs.

Actually, here the result of [22] is better, because it
is constructive.

3) In this last example we show how to get the major part
of [28, Lemma 1] from the Covering Lemma:

For H = (V, £) with D¢ > 31 and J = [0D¢ log |V]|
(for a constant §), there is a family { f; }:jI:l of functions
fi :V—={1,2,---, D¢} such that for all E there exists
aje€{l---,J} with

|77 () N E| < log D¢

for all & € {1,---,D¢}.
Indeed, let V* = £ and let H* = (V*,£*) be defined such
that to each f : V — {1,2,..-, D¢} corresponds an edge

Ef={EeV*:|fHa)NE|<logDsg,

forall w € {1,2,---,D¢}} € &*

and conversely. Then the above follows from the Covering
Lemma for H*.

We have made our point that we are dealing with a covering
problem. Special properties can sometimes yield better bounds
than the general bound in the Covering Lemma.

Finally, we mention that Lovasz’s Local Lemma has been
used by Orlitsky in coloring problems, for instance in [24]. It
yields the following improvement of Coloring Lemma 1.

Strengthened Coloring Lemma: Let H = (V,&) be a hy-
pergraph with
D¢ = max |E| < L.
Eet
If for some ¢t € N
-DiD
CTERY < (1.4)
t!
then a coloring ¢ : V — {1,2,---, L} exists with
o *G)NE|<t, foralli=1,2,---,L

and all £ € €.
Proof: A consequence of the Local Lemma states (see
[31, pp. 53-55]):
Let A;,---, A, be events in an arbitrary probability space.
Suppose that each event A; is mutually independent of a set
of at least n — d other events A;. If

1

max Pr(4;) < At then Pr (/\ Ai) > 0. (1.5)

1<i<n .
i=1

Imagine now that a coloring function ® is choosen according
to the uniform distribution on F. Then the event Ap = {® €
FL;} has by (1.2)

|f—t | < ) Ll_t.
Il =

Instead of the rough union bound leading to (1.3) we use now
that by (1.5) for L = D¢

Prob ( /\ Ag)>0
Ee€

Prob (Ag) = (1.6)
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(and there exists the desired coloring), if
De .1
t! — eDg- Dy
The Covering Lemma can be strengthened in the same way.
Since it is not used in this paper, we omit the details and refer
to the analogous version for perfect hashing in [24, Lemma 3].

VI. We recall that previous work on interactive communi-
cation (see [21]-[25] and [27]-[29]) addresses the case where
P¢ is to be informed about the vertex v € V. It also addresses
the case when Py, and Pz communicate over the same binary
noiseless channel and the total number of bits is counted.

In [5, p. 236] we point out that it makes a difference whether
the transmission in different directions runs over different
channels (a distinction between the actual and the potential
rate!).

Here it is not the sum of the number of bits that matters,
but the “capacity” of each channel to cope with the possible
bits in each direction. We indicate the two channels by writing

a1.7n

now C. 'm (H, Pg) for the m-round communication complexity.

Moreover, we denote by C,, (H, P¢) the region of possible
pairs of bit numbers. Our results for this model are almost
complete. In particular, we have a nice general lower bound,
that is, for instance, tight for the uniform k-regular hypergraph.

VIIL. To our surprise the study of other models was even
more rewarding. As has already been considered in Yao’s
model, we consider situations where both persons, P and
P¢, have to inform each other about their outputs. We write
here C,,,(H, Py, P¢) for the communication complexity.

The corresponding region for two channels is denoted by

E_m (H, Py,P¢) and its minimal rate sum is denoted by
Cm (H, Py, Pe).
It turns out that Coloring Lemmas 1 (and its strengthening)

and 2 are already sufficient tools for deriving upper bounds.
More specifically, Coloring Lemma 1 alone already gives us

Clyte (H, Py, Pg)

that is, the respective communication complexities, where £
is known to Py, and v is known to P¢ only as a member of
lists of sizes ¢y and {¢, respectively.

The reduction to list sizes 1 uses Coloring Lemma 2. It
essentially states that both persons are to be informed!

List size 1 complexities and complexities for small list sizes
are essentially equal. This changes drastically if only Pg is
to be informed. (Compare [4] for a similar phenomenon for
zero-error problems in channel coding.) Here the hashing idea
becomes relevant. _

We obtain complete results for C,,, (H, Py, Pr). We actually
show that

Cs(H, Py, Pe) = Coo (M, Py, Pe).

We also give a lower bound on C..(H, Py, P¢), which we
expect to be tight. It uses the idea of decomposing H, which
was motivated by the decomposition in [5, p. 225].

Finally, we mention that we have constructions based on
Baranyai’s Theorem ([32] and [33, pp. 50-56]) and also on
Vizing’s Theorem [34].
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The presentation of our results and proofs proceeds as
follows. We begin with the model for two recipients and
two channels. This has not been considered in the literature.
However, mathematically there is a very close connection
with [24]. Nevertheless, for the benefit of the reader we give
complete proofs, because they help to build up a certain
intuition for the analysis of the other models. Also these proofs
in Sections II and III are short and the examples are new by
all standards.

We start from first principles by considering first the easier
case of list decision in Section II.

The result appears in Theorem 1. It is based on Coloring
Lemma 1. In Section III we get via Coloring Lemma 2 the
bit numbers regions for exact decisions and m > 3 rounds
(Theorem 2). We also settle the case m = 2 (and thus all
cases) with Theorem 3.

Next we consider Cy,, (H; Py, Pc), that is, the smallest worst
case bit number achievable in m rounds for two recipients.
For m = 2 we give what are essentially exact bounds for
two special cases, the general graph (using Vizing’s Theorem)
and the complete k-uniform hypergraph (using Baranyai’s
Theorem).

In the same Section IV we then settle the general case with
Theorem 6.

Next we show in Section V that

Coo(H; Pe, Py) > log Dg +1og Dy

(Average-Degree Lemma).

The study of the model with one recipient starts in Section
VI for two channels. Again we investigate the complete k-
regular hypergraph and derive a lower bound on the bit number
be on the channel £ — V), if the bit number by, on the channel
V — £ is fixed (Theorem 8). This bound is for m = oo. It
coincides with the upper bound for m = 4 (Theorem 9).

We have not yet succeeded in deriving an analogous result,
when only one channel is used. However, we determined
C, for the same hypergraph (Theorem 10). Whereas the
upper bound uses a familiar Covering Lemma from [5], the
lower bound is based on new ideas of some independent
combinatorial interest. Moreover, we establish C> ~ C3 for
k = 0(logn) and demonstrate that C3 < Cy. Thus we have
obtained a simpler hypergraph than that of Zhang and Xia
[29], for which three “messages™ do not suffice.

In Section VIII we study a question of Noar, Orlitsky, and
Shor [28] concerning their “amortized complexity” As and
take first steps toward a characterization of this two rounds
quantity.

Finally, in an Appendix, some earlier basic results of
Orlitsky are stated for the orientation of the reader.

II. A CHARACTERIZATION OF CLy+% (H; Py, Pr)
FOR SMALL LIST SIZES fy,{¢
The essential parameters here are
Dy, = maxdeg d D¢ = deg(E 2.1
v = max eg(v) an ¢ = 1pax eg(F) 2.D

where

deg(v) = {E €& :ve E}
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and

deg(E)=|{veV:ve E} =|E| 2.2)

We begin with m = 2. Clearly, on the channel V — & the

number of bits by, to be transmitted in the worst case satisfies
by > [log D¢]. (2.3)

Analogously, the number of bits bg to be transmitted in the
worst case over the channel £ — V satisfies

beg > [log Dy].

Moreover, if we require v to be on a list V(v, F) and E to
be on a list £(v, E), where

(2.4)

V(v, E)] < &y and [E(v, B)| < Le (2.5)
then the numbers of bits needed satisfy
boty) > [bg &} 26)
Ly
D
be(Le) > [hg —"] .7
Le

Also, these bounds hold for any m > 2.

Next we show that they are essentially optimal.

Actually, this readily follows from Coloring Lemma 1, one
of the most basic tools in this area. There are only very few
methods of comparable significance for the subject.

We choose L = D¢ and ¢t = £y. The coloring ¢ of Coloring
Lemma 1 serves as encoding function fy, and the list for Pg
is then

V(w,E)={v:v € E, fy(v") = fu(v)}.
Any list size ¢y, with

Lyl > |E|Dg (2.8)
is achievable, because |£|L < ¢! is sufficient for (1.1).
Since 4! > (£2)%, we can choose ¢y, such that
£y (logly —loge) > log |€|De
and certainly such that
4y = [log |€|De] + 6. (2.9
We need
[log L] = [log D¢] (2.10)

bits on the channel ¥V — €&,
Symmetrically, there is an encoding fe¢ which requires
[log Dy bits on the channel £ — V and leaves P, with a list

Ev,E)={E":v e F fe(E') = fe(E)}
of size
le = [log|V|Dy] + 6. (2.11)
To see this, apply the former proof to the dual hypergraph

VNV =€ ={E,={F:veEE}:veEV}]L
(2.12)
We summarize our findings.

Here and later we use the notation ¢ ~ ¢, if a = ¢+ o(c) and

if (a1, a2) = (c1,¢2) + (o(cr), o(c2)).
(2.13)

(a1, a2) ~ (c1, c2),

We say that pairs of numbers of bits (by,be) are achievable
with list sizes (¢y,, £¢) iff there are encoding functions ( fy, f¢)
with these list sizes and

by ~log| fvll be ~logl|fell. (2.14)

Theorem 1: For the list size pairs
(4y,Le) ~ (log [V| Dy, log €| De)

the set of achievable pairs of bit numbers in m rounds is
given by

Clyte (H; Py, Pe) ~ {(by, be) : by > log Dy, be > log De}

for m > 2.

Remark I: This result can be improved by using the
strengthened Coloring Lemma. For this see [24] with an
analogous situation. We demonstrate the effect in Section IIT
while improving Theorem 2A to Theorem 2B.

_ T A CHARACTERIZATION OF
Cw (H; Py, Pg): THREE ROUNDS SUFFICE

Now we use the simple Coloring Lemma 2 in conjunction
with the previous result. Suppose that ( fy(v), fe(E)) = (4, 5),
then both, Py and Pg, know that v € V; = {v' : fy,(v') =i}
and E € £ = {E': f¢(E’) = j}. Thus the hypergraph (V, &)
has been reduced to M, ; = (V;, ;). Furthermore, we know
that

Dy, < g = [log [V|Dy]
Dg; <ty = [log |€|De.

3.1
(3.2)

We introduce the associated graph G, ; = (V;,€;), where
Vi, =V,

& ={(v,v") :v,v’ € V; and for some F € &; {v,v'} C F}.
Notice that

D;, < Dy, (Dg; —1) < Le(fy — 1)

< [log [V|Dy] - [log |€] De]. (3.3)
By Coloring Lemma 2 P, can inform Pg about v with
log(¢y - £¢) + 1 bits via an encoding function gy. Pe can
then inform Pg about £ with [log#y] bits via an encoding
function gg.

The whole protocol is then to send fy,(v) over channel
V — &, then fg(E) over channel £ — V), then gy (v) over
channel V — &, and finally g¢(v) over channel £ — V. This
uses four rounds.

However, there is a better way! Just follow the order f¢(E),
then fy(v) and gy(v), and then gg(E). This requires three
rounds. We state the result.
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Theorem 2A: For m > 3

an(H;Pv,PS) ~{(by,bg) : by > log De,be > log Dy}
if

log(log |V| + log |€]) = o(log min(Dy;, Dg)). (3.4
What happens in case m = 27

The key parameters are here x(H), the chromatic number
(vertex coloring), and ind (M), the chromatic index (edge
coloring), of H. In a protocol we have either fyy and then
fe to be transmitted or g¢ and gy. In the first case necessarily
lfv]] = x(H) and in the second case necessarily ||ge| >
ind(H). This is a simple consequence of conditions 2) and
3) in the Introduction, and an analogous proof appeared in
[22, Lemma 2]. Similar inequalities will be used in the sequel
without saying. Furthermore, in the first case ||f¢(v,-)|| >
deg(v). So in the worst case

a I = . .
max || fe (v, )l 2 Dy (3.5)

On the other hand, a coloring fy, with x(H) colors and
a labeling fe(v,E) = j, if E is the jth set in £, C
{E1,---, Ejy|} achieve the lower bounds.

Theorem 3: For every hypergraph H = (V,€)

Ca (H; Py, Pe) = {(by, be) : by > log x(H), be > log Dy
or by >log Dg,be > log ind (H)}.

From Theorems 2 and 3 we conclude that for many hyper-
graphs

Ca (H; Py, Pe) # C3(H; Py, Pe) ~ Coo (H; Py, Pe).

We also notice that condition (3.4) is rather restrictive. Before
we present an improved condition in Theorem 2B below, we
discuss some examples.

Example 3: H = ([n],(11)).

Clearly, D¢ = k, Dy = (371) V| = n, €] = (})s
x(H) = n, and Baranyai’s Theorem in its generalized form
(see [32] and [33, pp. 50-56]) asserts that

w0 = [(3)/12]]

The two minimal pairs in Theorem 3 are

<logn,log (Zj)) and <Iogk,log[(2)/L%J)-‘.

If £ | n, then ind (H) = (Z:i) and there is only one

minimal pair, namely, (log k,log(}"1)).
The optimum is achieved already for two rounds.

27

Example 4: Consider any graph
g= (V,é’),V = {Ulﬂ o '7’Un}-

By Vizing’s Theorem [34], a deep improvement of Shan-
non’s edge coloring result for multigraphs [35]

Dy <ind () < Dy + 1. (3.6)

Therefore, by Theorem 3, we have
(by,be) = (1, [log ind (G)]).

One may analyze whether the pair ([logx(G)], [log Dy])
can be smaller in the second component, if ind (G) = Dy + 1.
Example 5: Consider a k-uniform hypergraph H = (V, &)

with € C (;j) Notice that
Dy <ind (H) <k-Dy +1. 3.7)

Example 6: A protocol for the complete graph

- ()

We present the vertices by binary strings
v = ('Ula ot )Urn)a m = |—10g |V|-|
and encode the edge {v,v'} as

,U;n):(w]_,---,wm)

(binary addition mod 2).

(vl’...71}nl) + (vi’...

Py, knowing V' = (v1,---,vn,), calculates

(”(1)1,---,wm)+(’01,---,vm) = (v,l""av;n)'

Thus he knows also v/ and he tells Pe whether v or v/ has
the smaller label. Thus (by,be) = (1, [log |V[]) is achievable
and |V| = n = Dy + L.

We see that the pair must be optimal, if [log(Dy + 1)] =
[log Dy/|. Moreover, the following argument shows that it is
always optimal. In the remaining cases we have |V| = n =
Dy +1=2™ 41 for some m € N. The protocol provides a
tight bound too, because for all £ € N

ind (Kaeq1) > 20+ 1(= Dy + 1)

holds. In fact, assume the

(224—1

) >:£(2£+1)

edges of K41 are already colored by 2¢ colors, then there
must be

ey

— 41
2zw+

edges with the same color. However, there are only 2¢ + 1
vertices. So there must be a pair of edges among them with
a common vertex.

Finally, we improve Theorem 2A by using the strengthened
Coloring Lemma.
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Since ¢! > (%)%, it suffices to choose

2log D¢ +log Dy +loge < tlogé
or
t = logmax (Dg, Dy),t > et (3.8)
Theorem 2B: For m > 3
Con (M Py, Pe) ~ {(by, be) : by > log D, be > log Dy}
if
log(log D¢ + log Dy) = o(logmin(Dy, D¢)). 3.9)

Proof: Use the proof for Theorem 2A and replace (3.1)
and (3.2) by the sharper bounds (for Dg, Dg > c%)

Dy, < lg = [logmax(Dg, Dy)]| (3.10)
D¢, <ty = [logmax(Deg, Dy)] (3.11)
which follow from (3.8). |

Remarks 2: Using a different approach, estimates for prob-
abilities of events with small dependencies were also found in
[5]. However, they appear to be not as sharp.

Remark 3: Since

E(m (H;PV7P€) S Cm—l(H;Pg) +1OgDV

for m > 4, the same upper bound (after ignoring the constant
term) can be obtained from the upper bound for C3(H; Pr)
in [24, Theorem 1]. However, for m = 3 there is no direct
implication between the two theorems.

IV. C3(H; Py, Pe): SHARP ESTIMATES IN TWO SPECIAL
CASES AND ASYMPTOTICALLY SHARP BOUNDS IN GENERAL

We begin with the special cases, because this way we build
an understanding for the general case.
Theorem 4. For any graph G = (V,€)

Cy(G; Py, Pe) = [log ind (G)] +¢,e € {0,1}
and
Dy <ind(G) £ Dy + 1.

Proof: By Vizing’s Theorem there is an edge coloring
fe:€ = N with ||f¢]| — 1 < Dy. We can use the protocol:
For a given (v, E) with v € E, Pr sends fg(F) with
[log ind (G)] bits to Py, who can recover E.
With one bit he informs Pg about his vertex. Then we have
shown that

Ca(G; Py, Pe) < [log ind (G)] + 1. (4.1)

Now, conversely, even if Pg knows the outcomes v, he has
to transmit [log Dy/| bits in the worst case and even if Py
knows the outcome F/, he has to transmit one bit in the worst
case. Therefore

Ca(G; Py, Pe) 2 [logDy] +1 > [log(ind (G) — 1)] + 1.

The upper and lower bounds coincide for 2" < Dy, < 2" +L,

Example 7: If G = ([3],([21)) is a triangle, then Dy, = 2
and inspection shows that C»(G; Py, P¢) = 3 (the upper bound
(4.1)).

Remark 4: Again we can use the nice protocol in Example
6. Can this idea be generalized to k larger than 27

Next we consider again the complete k-regular hypergraph
([n], ( [21 )). The lower bound is derived as before. In any case,
Pg has to transmit [log(7 1 )] bits (even if he knows v) and
Py, has to transmit [log n| bits (even if he knows F). Formally,
this follows from the Average-degree Lemma in Section V.
Thus we get

Cm(([n], <[Z]>>;PV,P5> > [log k] + [103; (2: iﬂ

m > 2.

Baranyai’s Theorem in its generalized form (see [33, pp.
50-56]) asserts

(:23) s (2(2) =[G /3]

Now P uses an edge coloring with ind ([n], [Zl ) colors and
sends the color with [log ind ([n], ([Z] ))] bits. Py encodes in
a binary string the position of v = w; in E. This requires
[log k] bits.

Theorem 5: For the k-uniform complete hypergraph H =

([l (%)

Co(H; Py, Pe) = [logk+ [log (Z - }) n E-‘, e {0,1}.

Furthermore

-1
(s P Pe) = o] + [tog (7 71 ) |
for all m > 2.

Remark 5: For m = 2, if Py, starts sending, then necessar-
ily by = [logn] and bg = [log( Z:i)] This, of course, is not
as good as the reverse order.

We turn to C,,,(H; Py, Pc) for general hypergraphs H. The
situation for one channel is quite different from that of two
channels studied earlier.

As a strategy, we cannot just add max, by(v) and
max, g bg(v,E), because, as in our earlier work [18],
[19], now a small by(v) may be coupled with a large
maxg be (v, E), and vice versa.!

On the other hand, if

deg(v) = Dy forall v € V “4.2)

and

deg(E)= D¢ forall E€ & 4.3)

or these equations “almost” hold, then log Dy, and log D¢ are
the crucial parameters again and they can be added! (See again
the Average-degree Lemma in Section V.)

'We have been informed that this idea appeared already in Orlitsky [23].
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Example 8: |V| = |[€] = n, (4.2) and (4.3) hold, and,
particularly, Dy, = Dg = k; k = k(n) with lim,,_,.. k(n) =
00.
Then (3.9) holds and by Theorem 2B and the previous
observation

Ci(H; Py, Pe) ~ log Dg + log Dy.

On the other hand, further insight is gained from the next case.
Example 9: Consider the multi-hypergraph (V, W, S) with

S={(vi,w;):1 <5< n}U{(v;,w):1<i<m}.
Then Dy = n, Dy = m, and if m > n, then
Co((V, W, S); Py, Py) = [logmax (n,m —1)] + 1.

Protocol: If v # vy then necessarily w = w; and Py, knows
this. Py does not act before Py acts. Py sends a string of
length 1 4 [log(m — 1)]. He begins with 0. Then Pr knows
v. If v = vy, then Py sends 1 and Pr sends j with [logn)|
bits. Thus the result.

Notice that Cyo= [logm] + [logn].

From Example 9 we learn that the coloring numbers
X(H),ind (H) and maximal cross-section numbers Dy and
D¢ alone do not suffice for a characterization of Cs. We give
a somewhat refined analysis.

For s = 1,2,---, [log D¢ define

E={FE€&:27°Dg < |E| < 27" D¢} (4.4)

and Hy, = (V;, &) with V, =V,

Let fs : & — N be an edge coloring of H, with ||f;|| =
ind (Hs).

For a given (v, F), Pg sends s, if F € &, and also f,(E).
Py, sends the position g(v, s, F) of v in E.

How many bits are needed for this? Let s be represented
by the string «(s) and let f,(E) be represented by the string
Bs(E). Finally, let g(v, s, E) be encoded as y(v, s, E'). Thus

be +by(E) = |a(s)| + |8:(E)| + (v, s, E)|-
Clearly, we have
[log De] +  max [(log ind (H)] — 5)
< n&égc(bg + by (E))
< [logflog D] + max[(log ind (,)]
+ [logDe] — s+ 1)
~ log D¢ +  Jmax, (log ind (Hs) —s+1) (4.5)

because all edges in £; have up to the factor 2 the same size.
Of course, we can exchange the roles of V and &.
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Theorem 6A: For any hypergraph { we have (see the
bottom of this page).
The bounds differ by at most

max([loglog D¢, [loglog Dy]) + 1.

Now we give an even better protocol and achieve a difference
of the upper and lower bound by two bits!

For any hypergraph H = (V,£) we weigh subsets of
vertices and edges by the degrees

Dy = max deg(v), UCV (4.6)
Dr max deg(E), FCE& 4.7)
To a given c-coloring ¢ : V — {1,2,...,c} of V, we associate
a weight
W, = Z D1 (4.8)
=1

and we define the weighted chromatic number X() as the
minimal weight among the vertex colorings of . Analo-
gously, we define the weighted index ind (M) of H.

Now we consider a two-rounds protocol (yp,x) starting
with P,. Obviously ¢ must be a vertex coloring and also, if
v € ¢~ 1(4), then after knowing v P has to use a D -1(;y-size
code in the second round to inform Py, about his F.

This means that the protocol must use at least W, sequences
and therefore at least log W, bits. We have therefore

Co(H, Py, Pe) > [log X(H)].

On the other hand, we use again our old adaptive coding idea
[18], [19].
Let the coloring ¢ : V — {1,---,c} achieve x(H) and set

M-I’ fori:]_’...’c_
)

4.9

4 = lrlog (4.10)

e
By Kraft’s inequality one can code ¢ with a prefix code
C = {u1, -+, u.} such that u; has length ¢; and ¢(v) is
encoded by w,, if ¢(v) = .

The following protocol works:

1) For given v € V, Py sends uy(y).

2) After having received Up(v)s Pr recovers v and informs
Py, about the given E via a block code of a length not
exceeding [log D131, if v € o™ (3).

By (4.10), the total number of bits is always bounded by
log X(H) + 1. Introducing
d(H) = min(x(H), ind (H)) 4.11)

and exchanging the roles of V and £ we can draw the following
conclusion.

i) Co(H,Py,FPg) <

min ( max [log ind (V, & )—s+1]4[log De|+[loglog De] max [log x(Vt, £)—t+1]+[log Dy ] +[loglog Dy])
s lg Sty

1<

T1<

T1<

i) Co(H, Py, Pe) > min(ng:fjg [log ind (V, &) — s| + [log D¢] max [logx(Vt,€) — t] + log Dy).
hSLhS =/ =Py
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Theorem 6B: For any hypergraph H we have
[log5(H)] < Ca(H, Py, Pe) < [log6(H)] + 2.

V. A LOWER BOUND ON Coo(H; Py, Ps)
We know already that under condition (3.9)

Eg(H,Py,Pg)NlogDv +10ng (51)

Clearly
Cs(H; Py, Pe) < C3(H; Py, Pe)

and Example 9 shows that already C>(H; Py, Pr) can be much
smaller than log Dy, + log Dg. C4(H; Py, Pg) can be much
smaller in general.

We give here a lower bound on C,,(H; Py, Pc), which we
conjecture to be tight. We also believe that it can be achieved
in four rounds. The bound uses a decomposition idea.

We start with a purely combinatorial problem. We call a
0—1-matrix a quasi-permutation matrix, if at most one 1 occurs
in every row and in every column. Thus a permutation matrix
is a square quasi-permutation matrix such that there is exactly
one 1 in every row and in every column. A quasi-permutation
decomposition {A; = i € I} of M, is a partition of M
into submatrices A;, which are quasi-permutation matrices.
Partition here means that every entry of M occurs in exactly
one member of {A4; : i € I}.

We also introduce the average degrees for H =

Dy = |V| Zdeg De = |g| Z deg (E

veyY EcE

(V,&) b

(5.2)

and similarly for M = (V,W, S) Dy is the average number
of 1’s in the rows and Dyy is the average number of 1’s in
the columns.

Obviously, we have for the total number of 1’s

|V|- Dy = |W| - Dyy. (5.3)
Decomposition Lemma: If {A; : ¢ € I} is a quasi-
permutation decomposition of the 0—1-matrix M, then

[I| > Dy - Dyw. 5.4
Proof: Assume that (5.4) does not hold for {4, : i € I}
and that A; contains 7; rows, ¢; columns, and \; 1’s.
By the definition of a quasi-permutation matrix

Ai Lmin(ry,¢), foriel. (5.5)
Suppose now that M has V| rows and |W)| columns, then by

the partition property

> e = V|[W (5.6)
i€l
and
> X = [V[Dy = |W|Dw. (5.7

i€l

Consequently, by (5.7)

(Sir) =

|2 |V|DV|W|DW

1 1— —
i€l
1 s,
> Z m"z

iEI

q) (by assumption)

2 5.5
—lel (by (5.5)).

el

This contradicts the Cauchy-Schwarz inequality. We readily
derive now a basic lower bound.
Average-Degree Lemma: For any multi-hypergraph H =

(V, ) (or, equivalently, the 0—1-matrix M = (V, W, S))
OO(H, Pv,Pg) > 10gﬁy+10gﬁg (5.8)
Proof: Each protocol partitions M into quasi-

permutation submatrices (just as in Yao’s case f : VxW — Z
it partitions My into “monochromatic” submatrices) and the
number of bits used in the protocol is bounded by the
logarithm of I(M) £ the usual size of a quasi-permutation
decomposition of M.

By the Decomposition Lemma

log I(M) > log Dy + log Dyy = log Dy + log D¢

the desired inequality.

Example 9 shows that (5.8) is not tight. However, it can
be used to derive a much better bound. For this we write
M' < M iff M’ is a submatrix of M and H' < H iff H’
is a subhypergraph of H. Also with M’ = (V' W', S5’) we
associate

|52

n A
o) =

Since obviously

C(M; Py, Pg) > Cp(M'; Py, Piy)
or in terms of hypergraphs

Cm(H; Py, Pe) > Cp(H'; Py, Per)

we get the following consequence of the Average-degree
Lemma in hypergraph language.
Theorem 7. For any multi-hypergraph H = (V, €)

; > .
oo(H; Py, Fe) 2 max (1)
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VL. A LowER BOUND ON Ca (([n], (111)), P)

Consider successful protocols with by = [ and let
Voo(n, k; 3) be the minimal bs among these protocols. Let
(2 be a protocol with this property and set o = voo(n, k; 3).

For any (v, E) with v € E

Qv, B) = 21 (E)yr (v, 1) w2 (B, 1) - - -
(here z; can be the empty word), and we can form the strings
z(E)z2(E,y1) -

which we extend in any way to strings of length « and S,
respectively.

Let X, C {0,1}* be the set of all strings of length
produced this way by P¢ under €, if v is given to P),. Every
v € V defines then a function F, : X, — {0,1}”, because
Py’s operations are dependent only on the messages from Pg
and on wv.

Clearly, there are in total at most 272" such functions and
if 272" < n or, equivalently, if

and Z/l(U; 371)@!2(11; Z1, $2)

a < loglogn — log 3 (6.1)
then at least two functions must be the same, that is,
F,=F,, forsomev,v €V. 6.2)

But then Pg receives the same strings if v or v/ are given
to Py. Therefore, for any £ D {v,v’} there is no way for
P¢ to separate v and v/. Obviously, in a complete k-uniform
hypergraph there is such an edge E. Therefore, (6.1) cannot
hold and we have proved the following inequality.

Lemma 1: For all k < n and 3 < [logn]

Voo (n, k; 3) > loglogn — log . (6.3)

This simple fact will yield inductively the main result of this
section.
Theorem 8 For 3 < logn and £ < logn

Voo(n, 24 8) > loglogn + £ — 1 — log 3. (6.4)

Furthermore, for 2¢~1 < £k < 2¢
Voo(n, k,3) > loglogn + £ — 2 — log S.

A successful strategy for the hypergraph ([n], ( [2] )) must have
fp > logk. Therefore, we get the following consequence of
Theorem 8.

Corollary 1: For [logk]? < logn

e (@ () )
> loglogn +2logk — 1 —loglogk.

Proof of Theorem 8: We proceed by induction on /.
Lemma 1 gives

Voo(n,2, ) > loglogn —log 8

which settles the case £ = 1. By induction hypothesis it holds
for ¢ — 1.

We call a protocol Q2 an («, f3,¢) protocol, if bs < a,
by < [, and it is successful (that is, Pz can separate the
vertices in his 2‘-size edges).
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Even Case: Pg sends first.
Suppose that 2 is an («, 3, £) protocol violating (6.4), that
is,

a <loglogn + ¢ —1—logf. (6.5)

After having sent his first bit, P divides the protocol {2 into
two subprotocols 2y and ;.

Here (2; is the protocol, if ; € {0,1} was sent. However,
by induction hypothesis and (6.5), both 2y and {2; are not
(w —1,8,£ — 1) protocols. So for i = 0,1 there must be a
subset 7; C V of cardinality 2¢~1, which is not separated by
;. Define 7* = Ty U T1. Then |T*| < 2¢, but 7* cannot be
separated by Q!

Odd Case: Py sends first.

Suppose that P, uses in his first round a prefix code
{wr,-++,wy} to send his message. Namely, for v € V; he
sends w; of length ¢; < B and |J]_, V; = V.

This reduces our problem to that of finding an (o, 3 — ¢;,£)
protocol in the even case for the hypergraph H, = (V;, (‘;}7 ).

If there is an ¢ € {1,---,v} with

log |Vi] S logn
p—4; = B
then with the already established (6.4) in the even case

(6.6)

a > loglog V| +£—1—log(B - 4;)

as < § logn and (6.6) imply 5—¢; < } log|V;| and |V;| > 2.
We conclude that

a>log (ﬂ;& logn> +4—1—log(B—¢)

=loglogn+¢—1—1logp

and we are done.
Otherwise

log Vi < logn
B—4t B

which is equivalent to

, fori=1,---,vy ©6.7)

4
Vil <nl™F, fori=1,---,9. (6.8)

By summation of both sides

2 v,
n= Z|Vz| < nzzn_ﬁz
i=1

=1

or

’Y .
1< S o lesn, (6.9)
=1

Since 8 < logn, this implies

1< i: 2=t
=1

which contradicts Kraft’s inequality.
In [28, Theorem 1] it is established that

C’4(<[n], ([Z])),Pg) < 2logk + loglog n.

(6.10)
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Actually, the protocol used requires always to send ~logk
bits for P and ~log k +loglogn bits for Pg. It is, therefore,
an upper bound also in case of two channels.

In conjunction with Corollary 1 we have therefore a com-
plete characterization.

Theorem 9: For [logk]? < logn and m > 4

Cm, ([n], <[Z]),P5) ~ 2log k + loglogn.

Remark 6: The pair (v, E') may determine who sends first.

Remark 7: We conjecture that also (6.10) is tight. In fact
we tend to believe that four rounds suffice for all H in the
one-channel model with one recipient.

Remark 8: In Section VII we show that for H(n,k) =

([l ()
02(H(n7 k),Pg) = 03(7'[(71, k): Pé')
> Cy(H(n, k), Pe).
It was shown first by Zhang and Xia [29] that three rounds

may not suffice. The present example is simpler.
Remark 9: With similar ideas we obtained also tight bounds

for
o (1) (%) %)

where K > L and an edge is a K-element subset with its
L-element subsets as its vertices.

VII. CHARACTERIZATION OF Cs(([n], ( [21)), Pe)

We use here the abbreviations

= (o ()

lf'm(na k) = Cm(H(nv k‘), Pg).

and
(7.1)

The following upper bound i) on po(n, k) is due to Orlitsky
and appears in [22, Theorem 4]. It is included here, because
we want to demonstrate that it is a simple consequence of the
Covering Lemma, and also in order to show that our deeper
lower bound is “almost optimal.”

Theorem 10:

i) pa(n, k) < (3logk + loglogn) for k > kg (suitable).

ii) For all ¢ > 0

u2(n, k) > (1 —e)(3logk + loglogn)

if £ = O(logn) and n, k are large.

A. The Upper Bound

We make use of a consequence of the Covering Lemma
stated in Section I. It is formulated for every hypergraph
H = (V&) with & c (1)), but will be used here only
for H(n, k).

Let A = A(H') be the automorphism group of H’, that is,
the maximal subgroup of the group X,, of all permutations on
V' = [n], for whose elements o

cE={ov:veE}ec&, forall Ecé. (7.2

A(H') is transitive, if for any E;,Es € € a0 € A(H') exists
with ¢E; = Es.

Corollary 2: For ahypergraph H' = (V', £’) with transitive
automorphism group A(H') and any subhypergraph H' =
(V',E"),E" C &, there is a subset B” C A(H') with the
following properties:

i) For every E € &' there is a ¢ € B” with

E 6 0_8// — {O_EII . EII e 8//}.
ii) |BH| < |'g,,,| In |8’H.
Proof: Choose in the Covering Lemma

V&L EL[6E 10 e AM)}).

Thus
VI = €1, le] = 1A, dy = Dy = HCDIET
and the result follows.
Proof of i) in Theorem 10: Choose
H =V, E) =H(n,k)
and partition V' into k? parts Uy,---, U2 of sizes |&] or

[z ] and define H"” = (V',£") with
E"={E"€&:|E'nUj|<1 for j=1,---,k*}.

Let B” be the set of permutations with the properties i), ii)
in Corollary 2.
Since

for suitable constants 6 and c, we get

|B"| < c-ln(Z).

Protocol: Pg tells Py the o with E € o&” and then Py,
tells Pg the index j with v € oUj;. This requires exactly
[log |B|] 4 2log k bits and not more than loglogn + 3log k
bits for k£ > ko(c). This establishes i).

(7.3)

B. The Lower Bound

Since there are two rounds, if Py, starts in a protocol he
has to send [logn| bits so that P¢ knows v. We can assume
therefore that always P starts. We split the proof into two
parts.
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Lemma 2: For a successful strategy Q = (f, g), the set of
edges with “few answers”

& 2 {E €€ {y(v, f(E) v eV} <K}

requires either “many questions.” that is,

In|{f(E): E€&} > %ké (7.4)
for some constant 6, € (0,1), or else there is a set
F={v, ,u,}CV, k= ng
such that for all £ € &; there are v;,v; € F' with
9(vi, f(E)) = 9(vj, [(E)). (7.5)

Proof: Let us write £ 2 k2% For each fixed f(E),E €
&1, there are at most (,f1 )21 edges E in (V, (,2)1 ) such that

90, [(B)) £ 9(v/, [(E)), forall v, v/ € E'(v £ ).
(7.6)
Therefore, the number of E’ € (,2}1 ) satisfying (7.6) for some
E € &; cannot exceed

(:J {%1’“ - {f(B): E€ &}l

We evaluate and upper-bound this number

(E" ()6
() ()

(1.7)

N——
i -,
Il
o
~—
—
~le
N—r

o~
&

|
—

[
7~

oS
~—
=
|
3 |-
A

.
Il
o

N (:1 ) exp{_kl(kéz— D, kl(k;n— 1) }

n k16,
< =
(@)=}

if n and k are large enough, 7
61 € (0,1) is a constant.
Further

{f(E): E€ &} =exp{ln|{f(E): E€&}}
and thus the upper bound

(ol a2

Therefore, there is the claimed F' unless (7.4) holds.
Lemma 3: Suppose that for a successful strategy 2 = (f, g)
for all possible pairs (21, y%?)

B2 < [3logk + loglogn]| =log~y
say, then for the set X = {2 = f(E): E €& =E\ &L}
|X| > (k2logn/log7)(1 - &) (7.8)

for ky = L%J = LL?J, for all ¢’ € (0, 1), and all large n, k.
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Proof: Assume that (7.8) does not hold. Partition & into
X1, , &y, such that for ¢ = 1,---, ko

X log
x| < | 1] < losn (7.9)
ko logy
Equivalent is
’le}ql <n= |v|a fOI'L:].,2,,k2 (710)

Since our assumption implies that g(-, E) takes at most -y
values for all E € &, for every ¢ € {1,---,ks} one can find
a pair {u;,u;} C V such that for all z*! € &;

g(uiaxal) = g(,u';axal)'
Let

ko
E* = <U{u“u;}> U{vt, - vk }

i=1
for the above pairs and {v, -+, v, } as in Lemma 2. Then
|E*| < k, so that an E € £ exists with E* C E.

However, when E € £, then by (7.5) Pg cannot distinguish
between some v; and v; and when E € &, there exists an ¢
such that f(F) € A, and, therefore, P; cannot distinguish
between u; and w;. This contradiction proves the theorem.

Remark 10: The strategy yielding our upper bound can be
viewed as a perfect hashing: there are strict colorings for every
V,0&").

Corollary 3: ps(n,k) > pe(n, k) if & = 0(logn) and n, k
are large.

Proof: Write the possible sequences under a strategy €2
as (y”1,2°2,y%) with y” = f(v). Now, if [{y™ = f(v) :
v € V}| < n?, then for some 4 V' = {v e V: f(v) = y*}
has cardinality at least nt.

When %' has been sent we are in the case of two rounds
for the hypergraph H' = (V/, (il )) and have the lower bound
(1 —¢€)(3logk + loglogn — 1).

We can assume therefore that there are at least 7% possible
strings y”* and one must have a length of at least 1 logn >
3log k 4 loglog n by our assumption.

Remark 11: Ts it true that ps(n, k) = pa(n, k)?

VIII. ON CARTESIAN PRODUCTS OF HYPERGRAPHS

One can come to the present hypergraphs as follows.

Consider a discrete memoryless correlated source
(XY™, where X" =X;--- X,,, Y" =Y, ---Y,.

Person Py observes the output X™ = z™ and person Py
observes Y® = y". They exchange knowledge with zero
probability of error. How many bits do they have to exchange
in the worst case until Py, knows z™?

We construct the multi-hypergraph H = (X, &), where
E={E,:y € Y} and

E,={zc & :Prob(X =z,Y =y) >0} (8.1)
and its nth Cartesian product H" = (&™",E™), where

X”:HX

1



34 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 1, JANUARY 1997

and
= H? &= {Ey” = H?:lgyt 2yt = (Y1, y0) € V0L
Clearly
deg(z")=H{E" €& : 2" € E"}| = Hdeg (z:) (82)
t=1
and
deg (Eyn) = |Eye| = [[ 1By (8.3)
t=1
Dy» = max deg(2") = HDX = (Da)"
t=1
De+ = max deg (E") = [1De = (De)™.
t=1
For Cy,,(H™, Pg») we define
Anl = lim %Cm(Hn, Pgn). (84)

Then obviously
Ap > A3 > Ay > -+ 2 Aco 2 log De.
It was shown in [28] that A, = A, = log D¢ and that
Ay < 2log Deg. (8.5)

We mention in the Appendix that for “balanced” hypergraphs
[24]

C3 < log D¢ + 3loglog max(Dg, Dy) + 11. (3.6)
For our product hypergraph H"™ this implies
C3(H"; Pen) < nlog Dg + 3logn
+ 3loglog max (D¢, Dy) 4+ 11
and thus
Az < log Dg. 8.7

Remark 12: In [28] only A4 < log D¢ was proved.

Our main concern is to determine A;. We succeeded to
derive bounds for special classes of hypergraphs.

For H® = (A™,E™) as above let 7, () be the maximal
number of edges in ™ which can be properly colored with a
vertex coloring ¢ : X" — {1,2,---,v}.

When H"™ has a transitive automorphism group, then by
Corollary 2 in Section VII one can use the set of properly
colored edges £’ to cover £ with at most

€] .
n(ln|€|) - —— + 1 “copies.”
(nfep - -~ ) p
Thus similarly to Theorem 10
Co(H™; Pen)
£

< min |logv + logn + loglog |£] + n log %
Y (M ()

x (1+ o(1)). (8.8)

Suppose, on the other hand, that Pg» decomposes £™ into
t parts, informs P, that the part E,» is in, and then P, uses
at most v colors for the vertices.

To guarantee that Pg. knows z™ at the end of the commu-
nication for all E™ € £™ there has to be one of the parts in
which E™ is properly colored. Therefore

t na(v) > |EI" (8.9
or

1 1
- logt >log|&| — - log n, (v). (8.10)

Therefore
1 n
—_ 02 (X 3 P £En )
n

> %min {logt +logv: %logt >log|€| - %lognn(u)}

and this and (8.8) imply the following result.
Lemma 4: If the product hypergraph H" = (X", V") has
a transitive automorphism group, then

As = lim min (% logv + log|€] — %bgnn(l/)). (8.11)

Here the limit exists, since
Thytng (V1 X V2) 2 10y (V1) 1, (V2)-
Example 10 (See Also [36]):
H=(X,&) =({0,1,2},{e1,e2,e3})

where ¢; = {i,7 + 1mod 3} for i = 0,1, 2.
Obviously, choosing ¥ = 3 in (8.11), we see that

As <log3 < 2logDg =2log2 = 2.
Actually, we can do even better and show that
Ay < log V6. (8.12)

Consider the 4-coloring of H?

27 =1{(1,2),(2, 1)}
A7 =1{(0,0),(1,1),(2,2)}. (8.13)

x? ={(0,1),(1,0)},
X32 = {(2’0)’ (0’ 2)}’

It is proper for all edges
2\ {{0,1} x {0,1},{1,2} x {1,2}, {2,0} x {2,0}}.

Therefore, (8.11) implies (8.12).
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Example 11: For graphs H = (X,€), |E| =2 for all E €
£, (8.5) is also not tight. It suffices to consider H = ([¢], ([Q ).
Moreover, as adding vertices does not decrease the complexity,
we assume 3 | /.

Partition [/] into the parts Lo, £, and Lo, and let g(v) =4
iff

veL;={m:1<m<{m=1imod3} (i=0,1,2).

On H? define go(vi,v2) = (g(v1),9(v2)). Replacing
(v1,v2) in (8.13) by go(v1,v2) one obtains a 4-coloring of
H2. Write the edges of 742 in the form

{Ulavll} x {U27Ué}'

As before, we can see that an edge is properly colored if
g(vi) # g(v!) for i = 1,2 and

{9(v1),9(v1)} # {g(v2), 9(v2)}.

Therefore, the number of properly colored edges is at least

A
o (8) = 20

and, consequently, by definition

mt) 2 2.
However
4 (e-1)\*
G5
27

and thus by (8.11)

1 27 1 7
Ar < 210g(4- 8) = 210g,2 =1877---<2. (8.14)
Expression (8.14) can be improved.

Using Hamming codes, we show next that (8.12) is not
tight either for the triangle.

Our bound (8.12) was derived with the 4-coloring of HZ,
say f : X% — {1,2,3,4} described in (8.13) and its n-fold
product

fn:(f:af)(X2)n_){1:21334}n

We call this the first coloring.

Now we introduce a second coloring. For this we extend the
sets X2, X3, X% to the sets V2 = X2U{y}, VI = X7U{y2},
Y2 = X2 U {y3} where y;,y2,y3 are new symbols. We also
set Y = X2. Thus the four new sets have all three elements
and the set

n
Zr=[]2 with 2, € {¥;]:1<j <4}
t=1
has 3" elements.
For this fixed Z™ let g; : Z; — {0,1,2} be bijective.
Next we color the vertices in {0,1,2}" according to the
cosets of an [n, k] (where k = n —r, n = ?’TT_I) ternary
Hamming code H,, x:
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Two elements have the same color iff they are in the same
coset. Let h,, be this coloring. Finally, we color the elements
in Z" through

GZn = hn(gla)gn) (815)

This is a coloring with 3" colors. Combination with the
coloring f,, gives a 4" x 3" coloring F,.

In order to derive a new bound on A, we need an estimate
for the number of good edges under F,,. Denote the edges of
the 2nth product of triangles as U™ = Uy X --- x U,, where
U; is a two-dimensional edge (a “square”).

Notice that under our first coloring, difficulties arise only at
the U;’s equal to E; =¢; X e; (j = 0,1,2).

Considering that any two elements in (the fixed) Z™ with
Hamming distance smaller than 2 have different second color,
because the Hamming code has minimal distance 3, it is not
hard to see that all U™ = U; x --- x U, with

{Uj;lgign}m<UE,»>

=0

<3 (8.16)

are well-colored.
Let now v = 4™ - 3", then

235 (2o

=0

Analogous to the previous derivation for the product of trian-

gles, we get now for n = % r=23,--

1 32n qn .37
Ay < %log 5

> (7)6n-j3ﬁ
5=0 \J

6™ - 3"

= ilog#
U (1)

i=0
2n+1
L+ g

say.

1
=log V6 + —log
og\/_+2nog

= ].Og\/g_'_’}/n,

Choosing a large value for n = LQ_I, ~v» becomes negative,

which results in a bound better than log v/6. Choosing n very
large makes this bound less good, because of the factor %
Remark 13: Tt should be possible to improve the bound
with other linear codes.
An obvious lower bound on Ay for graphs is log Dg = 1.
The simplest open question is to determine A, for the triangle,
for which we know that

1< 4, <10g\/€.

APPENDIX
KNOWN RESULTS FOR C,,,(H, Pg)

We feel that our sketch is helpful for the orientation of
the reader. The shorthand C,,, is used for C,,(H, FP¢). It was
shown in [22] that for every hypergraph

C1 = [log x(H)] (AD)
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and

Coo 2 Mlog C1] + 1 (A2)

if x(H1) > 1, that is, M is nontrivial. Such a bound (without
the extra bit) has appeared for communication complexity
already in [37].

The complete hypergraph H = ([n], ( [21 )) (League Problem
in [22]) is an interesting example. It was shown in [22] that

Cy =+ =Co = [loglogn] +1,Cy = [logn]. (A3)
The idea generalizes to all graphs (Dg = 2)
Coo = [log[logx(H)]] + 1 = [log C1] + 1. (A4)
For every hypergraph an obvious bound is
Coo > log Dg. (AS)

Using a perfect hashing f = (f1,---, fx) with ¢ colors, that
is, the k functions f; : V — {1,---,c} are such that for every
E € £ some f; is bijective on E, one obtains

Cs < [logk] + [logc].

Actually, knowing E P encodes ¢ and Py, encodes f;(v).
By random choice it is shown in [22] that

Cy <loglog|V| + 3log Dg¢.

In the same argument V can be replaced by {1,---,x}
Cs <loglog x + 3log Dsg.

This and the relations (A1), (A2), and (AS) imply

Cy £4C, + 3. (A6)

For communication complexity it was noticed in [37] that
there can be an exponential gap between C;(f) and Cs(f).

In [38] it was shown that for every m there is a function
g with an exponential gap between C,,(g) and C,.11(g).
Expression (A6) shows that this does not happen for interactive
communication.

How large can the gaps between C,, and C,, be?

The main result of [23] is, that for the “generalized league
problem”

Cy>(2-¢)Co (A7)

can happen for every € > 0.

Therefore, two rounds (“messages™) are not optimal.

It was shown in [29] that three rounds are not optimal either!
In the present paper we have shown that already a simply struc-
tured hypergraph such as the k-uniform hypergraph ([n], ( [7,:1 )
has this property. Moreover, in this case Cy = Cs.

For balanced hypergraphs (Dy, = Dg) it is an immediate

consequence of Coloring Lemma 2 that (see [24])
C1 <2logDg +1<2C + 1. (AB)

A clever construction in projective planes gives an example
of a balanced hypergraph ([24] with J. Kahn) with

Cy > 2C., — 6. (A9)

Finally, the hashing idea and Coloring Lemma 1 in conjunction
with Lovész’s Local Lemma give in the balanced case [24]

Cs5 <logDg + 3loglog Dg 4+ 11 (A10)

or by (AS)
C3 < Co +3loglog Cop + 11.

Presently, there is no example in the balanced case (only an
existence proof in [24]) for

Cy > (2-¢€)Cyo > ¢ (any const.) (A1D)
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