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Identification via Compressed Data

Rudolf Ahlswede, En-hui Yang, and Zhen Zhang, Senior Member, IEEE

Abstract—A new coding problem is introduced for a correlated
source (X", Y")72,. The observer of X" can transmit data
depending on X" at a prescribed rate R. Based on these data
the observer of Y tries to identify whether for some distortion
measure p (like the Hamming distance) n~'p(X",Y") < d, a
prescribed fidelity criterion. We investigate as functions of R
and d the exponents of two error probabilities, the probabilities
for misacceptance, and the probabilities for misrejection. In
the case where X" and Y™ are independent, we completely
characterize the achievable region for the rate R and the ex-
ponents of two error probabilities; in the case where X™ and
Y™ are correlated, we get some interesting partial results for the
achievable region. During the process, we develop a new method
for proving converses, which is called “The Inherently Typical
Subset Lemma.” This new method goes considerably beyond the
“Entropy Characterization,” the “Image Size Characterization,”
and its extensions. It is conceivable that this new method has a
strong impact on Multiuser Information Theory.

Index Terms— Identification with fidelity, misacceptance and
misrejection error probabilities, multiuser information theory,
rate distortion function.

1. INTRODUCTION AND FORMULATION OF PROBLEM

A. Introduction

N THIS paper, we consider a new model: identification via

compressed data. To put it in perspective, let us first review
the traditional problems in source coding theory. Consider the
diagram shown in Fig. 1, where {X,,}52, is an independent
and identically distributed (i.i.d.) source taking values in a
finite alphabet A’. The encoder output is a binary sequence
which appears at a rate of R bits per symbol. The decoder
output is a sequence {)A(n}%‘;l which takes values in a finite
reproduction alphabet ). In traditional source coding theory,
the decoder is required to recover {X,,}32; either completely
or with some allowable distortion. That is, the output sequence
{X,.}°2, of the decoder must satisfy

%ZEP(XiaXi) <d (L.1)
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Fig. 2. Model for joint source coding and identification.

for sufficiently large n, where E denotes the expected value,
p: X XY —[0,+00)

is a distortion measure, and d is the allowable distortion
between the source sequence and the reproduction sequence.
The problem is then to determine the infimum of the rate R
such that the system shown in Fig. 1 can operate in such a way
that (1.1) is satisfied. It is known from rate distortion theory
[1] that the infimum is given by the rate distortion function
of the source {X,}{°.

Let us now consider the system shown in Fig. 2. The se-
quence {Y;,}7° is a sequence of i.i.d. random variables taking
values from ). Knowing Y, the decoder is now required to be
able to identify whether or not the source sequence X" and the
sequence Y™ have some prescribed relation /' in such a way
that two kinds of error probabilities satisfy some prescribed
conditions. In parallel with rate distortion theory, we consider
in this paper the following relation /' defined by:

n
n™t> p(XiYi) < d.
i=1
That is, the values X™ and Y " are said to have relation F'
if (1.2) is satisfied. The problem we are interested in is to
determine the infimum of the rate R such that the system
shown in Fig. 2 can operate so that the error probability of
misrejection, that is the decoder votes for 0 even though F
holds, and the error probability of misacceptance, that is the
decoder votes for 1 even though F' does not hold, satisfy
certain constraints. So the goal of the decoder is to identify
whether X" is close to Y™ (in the sense of relation F) or not.
The encoder is cooperative.

1.2)

B. Formal Statement of Problem

First, we present some notation used throughout the paper.
Script capitals X', ), - -, denote finite sets. The cardinality of
a set A is denoted by |A|. The letters P, (), always stand
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for probability distributions on finite sets. X, Y,---, denote
random variables. The distributions of random variables X
and Y are denoted by Px and Py, respectively. The notation
P(X) stands for the set of all probability distributions on X
The functions “log” and “exp” are understood to be to the base
2. If A is a finite set, then 4" denotes the set of all n-tuples
a® = (a1, - +,a,) from A. If a = (g;) is a finite or infinite
sequence of letters from A, let ¢, = (am, -+, a,) and, for
simplicity, write al as a”. A similar convention also applies
to random variables.

Let {(X,,Y,)}22, be a sequence of independent drawings
of a pair (X,Y) of random variables with joint distribution
Pxy taking values in X x Y. Let p: X x ) — [0,00) be a
distortion measure. Let {p, : n = 1,2,---} be a single-letter
fidelity criterion generated by p, where

pn s X" XY — [0,+00)

is a mapping defined by

S|

P(ﬂﬁia yz)
1

pn(z™,y") =

n
=

for any z™ € A™ and any y™ € Y". Without loss of generality,
we shall assume that the distortion measure p satisfies

i =0. 1.3
max Iyrg;p(w,y) (1.3)

Let d > 0 satisfy
d < Ep(X,Y). (1.4)

An nth-order identification source (IDS) code C,, is defined as
a triple C,, = (fyn, By, gn) where B,, C {0,1}* is a prefix-free
set, f,, (called an encoder) is a mapping from A" to B, and
gn (called a decoder) is a mapping from )" x B, to {0,1}.
Note that, in this definition, the encoder f,, can be of variable
length. The correspondence between an identification source
code as defined here and the system shown in Fig. 2 should be
clear. When an identification source code C,, = (f,,, By, gn)
is used in the system shown in Fig. 2, the performance can
be measured by three quantities: the resulting average rate per
symbol 7,,(C,,), the first kind of error probability P.;(C,,), and
the second kind of error probability P.o(C,,), where

rn(Cr) = %E(the length of fu(X™)  (LS)

Per(Cr) = Priga(Y", fu(X™)) = 0| pu(X",Y™) < d}

(1.6)
and
Poo(Cp) =Pr{g(Y", fa(X™) = 1] pp(X™,Y™) > d}.
(1.7)

Clearly, P.;(C,,) and P.2(C,,) can be interpreted as the proba-
bility of misrejection and the probability of misacceptance (or
false identification), respectively.

Let R € [0,400),& € (0,400], and § € (0, +0o0]. A triple
(R, o, 3) is said to be achievable with respect to a given d, if
for any € > 0 there exists a sequence {C, }52, of IDS codes,
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where C,, is an nth-order IDS code, such that for sufficiently
large n

(Cn) < R+ ¢ (1.8)
Py (Cn) < 277079 (1.9)

and
P.o(C,) < 27n(F=9) (1.10)

where as a convention, & = +o0o ( = 400, resp.) means
that the probability of misrejection (false identification, resp.)
is zero. Let R(d) be the set of all achievable triples. Let R(d)
denote the closure of R(d) with respect to the usual topology
under which a,, — 400 means that a,, is equal to oo for all
but finitely many integers n. In this paper, we are interested in
determining the region R(d). Specifically, we define for each
pair (o, ) € [0, +o0]?,

Riy(o,8,d) = inf{R: (R,a,8) € R(d)}. (L1

Our main problem is the determination of this function.
Note that since R(d) is closed, the infimum in (1.11) is
actually a minimum. It is easy to see that Ryy.(«a,3,d) >

R% (,0,d) for any 3 > 0. On the other hand, since R(d)
is closed, it follows from (1.11) that

Ryy(e,0,d) = éli% Ryy (e, B, d).

Therefore, R% («,(3,d) is continuous at 3 = 0. A similar
result holds for o = 0.

C. Discussion

In the last subsection we formulated the problem we are
interested in as investigating the tradeoff between the rate R
and the error exponents o and 3. A natural question to ask at
this point is why the problem should be set up in this way. To
answer this question, we first note that since d < Ep(X,Y),
it follows immediately that Pr(p,(X",Y") < d) — 0 as n
goes to infinity. Therefore, if instead of the two kinds of error
probabilities, we use the error probability

P.(Cp) = Pr(pn(X™,Y™) < d)P1(Cy)
+Pr(p, (X", Y") > d)P.2(C,)

as a criterion, as studied by Ahlswede and Csiszar in their 1-Bit
Theorem [4], then the present problem becomes trivial and no
information needs to be sent. This leads us to consider the two
kinds of error probabilities. Second, let us see what happens if
the two kinds of error probabilities are only required to vanish
as n goes to infinity. The following theorem (which will be
proved in Appendix I) tells us that in this case the minimum
achievable rate is always equal to zero.
Theorem 1: For any distribution Pxy on & x Y

where R, is the infimum of all positive real numbers R such
that there exists for any ¢ > 0 a sequence {C,,} of IDS codes,

where C,, is an nth-order IDS code, such that for sufficiently
large n, r,(C,) < R+ ¢, and

lim P.;(C,) =0and lim P.»(C,)=0.
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Therefore, the only interesting problem left is to investigate
the tradeoff of the rate 1% and the two error exponents. Indeed,
the results we obtained in this paper show that the problem
proposed in the last subsection is really very interesting and
even led us to develop a new powerful method for proving
converses in information theory.

II. STATEMENT AND DISCUSSION OF MAIN RESULTS

As before, let (X,Y") be a pair of random variables with
probability distribution Pxy taking values in A x ). Let
d < Ep(X,Y) and define

B(d) = ueigfd) D(pll Pxy) (2.1)

where

P(d)=pePAXxY): Z plz,y)p(z,y) <d

reX,ycy

and D(.||-) stands for the relative entropy function. It is not
hard to see that

lim — 2 log Pr{pn (X", ¥™) < d} = 8(d).
n

n—oo

(2.2)

We distinguish between two cases: i) X and Y are indepen-
dent; ii) X and Y are correlated. To build up ideas we begin
with the easier case i), in which we have conclusive results.

A. Independent Case

In this subsection, we assume that X and Y are independent,
that is, Pxy = Px X Py . Without loss of generality we further
assume that Px(z) > 0 and Py (y) > 0 for every z € X" and
every y € ).

Let U be a random variable taking values in some finite set
U. Let Pxy be the joint distribution of X and U on &’ x U.
Define

&(Pxy,d) = inf[D(Py | Py) + I(U AY)] (2.3)

where the infimum is taken over all random variables Y taking
values in ) and being jointly distributed with X, U such that
Ep(X,Y) < d. By using the same argument as in the proof of
[5, Lemma 2.2, p. 124], it is not hard to prove that £(Px, d)
has the following property.

Lemma 1: £(Pxy,d) is nonincreasing and convex as a
function of d and continuous as a function of the pair (Pxy, d)
where Pxy ranges over the set P(X x U).

For any 3 > 0, we next define

R(Px,Py,p,d) = inf{I(X AU) : U is a finite
valued r.v. with £(Pxy,d) > f}. (2.4)
Let

R(PX,Py,O,d) = Gli%l‘*' R(PX,Py,ﬂ,d). (2.5)

Clearly

R(Px,Py,0,d) =inf{I(X AU) : U is a finite
valued r.v. with £(Pxy,d) > 0}. (2.6)

Define

R(PX, Py, ﬁ, d) = lim R(PX, Py, /3’, d) (2.7)
p—p-
This is well-defined since R(Px, Py, (3,d) as a function of 3
is nondecreasing.
The following theorem gives a formula for R%-+- (400, 3, d).

Theorem 2: Assume X and Y are independent. Then for
any 0 < d < Ep(X,Y) and 0 < 3 < 3(d)

R;(Y<+Oovﬂ7 d) = R(PXa-PY;ﬁ:d)'

Remark 1: At this point, let us pause to give a few
comments on the issue concerning the computation of
R(Px,Py,3,d). In the following subsection, we shall
compute R(Px,Py,f,d) in the binary-symmetric case. It
turns out that in this special case, R(Px,Py,[3,d) can be
expressed in terms of the rate-distortion function of the source
X. In general, however, the computation of this function may
be very difficult. It seems to the authors that there is no easy
way to apply the support lemma ([2], [5, ch. 3]) to upper-
bound the cardinality of the set I{. Instead, we shall take
an alternative approach to the problem. We define for each
integer £ > 1, and any 8 > 0

Ry(Px,Py,B3,d) =inf{I(X AU) : U is ar.v. taking
< k values with £(Pxy,d) > S}. (2.8)

For # = 0, Ry(Px,Py,0,d) is defined similarly. Clearly,
Ry (Px, Py,[3,d) as a function of k is nonincreasing and
converges to R(Px,Py,(3,d) as k goes to infinity. Later
on, we shall estimate the rate at which Ry(Px,Py,f,d)
converges to R(Px, Py, (3,d) to provide a partial solution to
the problem of the computation of R(Px, Py, [3,d).

To give a general formula for the function R%-(c,,d),
we next modify the definition of the quantities £(Pxy, d) and
R(Px, Py, 3,d) as follows. For any v > 0 and any o > 0,
define

E(Pxy,a,v,d) =inf[D(Py || Py) + I(U A ?)] 2.9
where the infimum is taken over all random variables Y taking
values in ) and being jointly distributed with X, U such that
Ep(X,Y) < d and

D(Py | Py) + (XU AY) < v+« (2.10)
Here we make use of the convention that the infimum taken
over an empty set is 4oo. Let

B(Px,d)= inf [D(Py|Py)+I(XAY)] (211)

Ep(X,Y)<d
where the infimum is taken over all random variables Y taking

values in ) such that Ep(X,Y) < d. Then it is easy to see

that in case v+ o < 3(Px,d) the following holds:
E(Pxy,a,7,d) = +00 (2.12)

for any random variable U. In analogy to Lemma 1, it is not
hard to see that £(Pxy, cv, 7, d) has the following property.
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Lemma 2: &(Pxy,a,,d) is nonincreasing and convex
as a function of o (y or d, resp.) and continuous as a
function of the quadruple (Pxy, «, v, d), where the quadruple
(Pxu,a,~,d) ranges over all quadruples satisfying v + o >
B(Px,d), « > 0, and d > 0.

Similarly to (2.4) and (2.5), we define for any 3 > 0

R(Px,Py,a,v,3,d) = inf{I(X AU) : U is a finite valued
r.v. with £(Pxy, o, y,d) > 8}
(2.13)

and let

R(Px, Py, o, 7y, 0, d) = ﬁh%lJr R(PX, Py, , 7y, /3, d) (2.14)

Define
R(PX7PY7Q77a[37d) = ﬁ,lin%_ R(Px,Py,Oé,’y,ﬂl, d)

(2.15)

The following theorem gives a general formula for Ry («,
3, d).

Theorem 3: Assume that X and Y are independent, then
for any 0 < d < Ep(X,Y), 0 < a # fi(Px,d) — (d), and
0 < B < B(d), the following holds:

R(Px,Py,a,B(d), 3,d). (2.16)

R;(Y (Oé, ﬂa d) =
Remark 2: Obviously, A(d) < pB(Px,d). If p(d) <
B(Px,d), then it follows from (2.12) and (2.13) that for
any o < (Px,d)— p(d) and 8 > 0
R(Px,Py,a,B(d),5,d) =0. 2.17
On the other hand, it is easy to see that in this special
case, R%y(a,3,d) = 0 for any # € [0,+o0]. (This will
become clear when we prove the direct part of Theorem 3.)
Furthermore, it follows from the definition of R%y (c,f3,d)
that as a function of « it is left continuous. Thus it will suffice
for us to prove Theorem 3 for o > B(Px,d) — 3(d).
Note that Theorem 2 is actually a special case of Theorem
3, because for @ = +oo
R(Px,Pyv,a,((d),3,d) = R(Px, Py, 3,d). (2.18)
The reasons why we state Theorems 2 and 3 separately can
be seen in the following sections. Similarly to (2.8), we
can also define Ry(Px,Py,«,v,3,d) for each k > 1. We
conclude this subsection with pointing out the following facts
on Ry(Px,Py,B3,d) and Ry(Px, Py,a,v,8,d):
Fact 1. Ry(Px,Py,(3,d) as a function of the triple
(Px,3,d) is lower semi-continuous.
Ry (Px, Py, 3,d) as a function of 3 is left contin-
uous.
Ry (Px,Py,a,,[,d) as a function of the quintu-
ple (Px,a,, 3,d) is lower semi-continuous in the
range v+« > #(Px,d), « > 0 and d > 0.
Ry (Px,Py,a,v,08,d) as a function of 3 is left
continuous if v + « > B(Px,d).

Fact 2.

Fact 3.

Fact 4.
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B. Example: The Binary Symmetric Case

In this subsection, we consider the binary-symmetric case
where X = Y = {0,1}, X and Y are independent and
uniformly distributed over {0, 1}, and the distortion measure
p is the Hamming distance.

We first evaluate R%y (400, 3,d) from Theorem 2 in this
special case. Note that in this case, 3(d) = 1—h(d) where h(-)
is the binary entropy function. The following theorem, which
will be proved in Appendix II, gives a simple closed-form
expression for R (400, 3,d).

Theorem 4: For any 0 < d < % and 0 < 8 < B(d)

Ry (+00,8,d) = 1 — h(dg — d) (2.19)

where dg <  satisfies h(dg) = 1 — 8.

It is interesting to note that 1—h(dg—d) is the rate distortion
function of the source X evaluated at the point dg — d. In
some sense, therefore, Theorem 4 shows that there exists a
close relationship between the rate R% (+00,/3,d) and the
rate distortion function of X.

Next we outline the proof of Theorem 2 in the binary-
symmetric case. The direct part is easy. For any d' < dg —
d, roughly speaking, on(1=h(d)) balls of radius nd’ can
almost cover the whole space. For each z™ € {0,1}", we
send simply the center of the ball in which z" lies. Upon
receiving this center, the decoder first calculates the Hamming
distance between y™ and the center, and then outputs 1 if
the distance is < n(d’' + d) and O otherwise. It is not hard
to see that the misrejection probability is guaranteed to be
zero, and the misacceptance probability is upper-bounded by
2-n(1=h(d'+d)) " which is less than or equal to 277, This
implies R% (4+00,03,d) < 1— h(dg — d).

To prove the converse part, let (R, +0c0, ) be achievable,
where 3 > 0. By definition, there exists for any ¢ > 0 and
sufficiently large n an nth-order IDS code C,, = (fn, Bn,gn)
such that

m(Cr) < R+¢€, P.i(Cy) =0and Puo(C,) < 27879,
(2.20)
For any b" € B,, let

S = {z" € X" fo(z™) ="}
and
S4By = {y™ € Y™: pu(a™,y") < d for some z™ € S(b")}.

(Throughout the paper, the notation ™ stands for an element in
B,, and should not be confused with notation for an sequence
of length n.) From (2.20) and the Markov inequality, it follows
that with very high probability " € B, satisfies

Pr{Y™ eS¢} < 27(F-29),

To continue our derivation, we use at this point an isoperimet-
ric theorem in combinatorial extremal theory [7] which says
roughly that for any subset A C {0,1}" with

=)

=0
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for some k, the cardinality of the Hamming [-neighborhood
I A of A is minimized when A is a sphere, where for any
[ >0

A = {v" € {0,1}": np,(2™,y™) < for some z™ € A}.

Using this result, one can prove that with very high probability
b* € B, satisfies |S(b")| < 27(ds.c—d) where dg. < 1/2
satisfies h(dg¢) = 1 — 3 + 2e. This implies the converse part
of Theorem 2.

The above argument is typical. It will be generalized to the
general case in the subsequent sections. What makes the proof
of the converse part easy is the solution of the isoperimet-
ric problem. Unfortunately, the solution of the isoperimetric
problem is very difficult in general. For the simplest distortion
measure—Hamming distance—the solution is known only in
the binary case; in the nonbinary case, even an asymptotically
optimal solution cannot be derived using the image-size char-
acterization of [3] (see also [5]). In Section III, we develop
a new method which yields in particular the asymptotic
solution of the general isoperimetric problem for arbitrary
finite alphabets and arbitrary distortion measures. Although
the exact solution of the problem is extremely difficult, the
asymptotic solution is good enough for our identification
problem at hand.

C. Correlated Case

In this subsection, X and Y may be correlated. Unlike the
independent case, only partial results on R% (+00,0,d) are
obtained in this general case. First note that when X and Y are
independent, R(Px, Py,0,d) given by (2.6) can be rewritten
as

R(Px,Py,0,d) = irﬁf I(XAU) (2.21)
where the infimum is taken over all random variables U taking
values in some finite set such that

Ep(Pxy(-|U), Py) > d (2.22)
where 5(Px|y(- | U), Py) denotes the p-distance between the
conditional distribution Px (- | U) and the distribution Py
of Y. (For the definition of g distance, we refer to [8]). The
expression (2.21) of R(Px, Py,0,d) will be extended to the
general case.

Let W(- | -) : X x Y — [0,1] be a stochastic matrix
such that for any z € A and any y € )V, W(y | z) is the
conditional probability of Y = ¥ given X = z. A stochastic
matrix W(- | -) : X x ¥ — [0,1] is said to be absolutely
continuous with respect to W if for any x € A and y € ),
W(y | ) = 0 implies W(y | z) = 0. Let Xo(Yo, resp.)
denote the projection of X x Y onto & (), resp.). For any
P € P(X), define

De (P) = HCl)f EQp(Xo,YE)) (2.23)

where the infimum is taken over all () € P(&X" x )) such that
i) The marginal of (Q on X is P;

ii) The marginal of Q on Y is PW, where PW € P(})
is given by

PW(y)=>_ P@)W(y|z), ye.

zeEX

(2.24)

iii) the transition probability matrix from X to Yy under
the distribution () is absolutely continuous with respect
to W.

Clearly, if W(y | ) > 0 for any 2 € X and any y € ),
then p.(P) is just the p-distance between P and PW. For
any 0 < d < Ep(X,Y), we next define

Ri(Pxvy,0,d) = i%f[I(X ANU)—=I(Y AU) (2.25)
where the infimum is taken over all random variables U taking
values in some finite set {f such that i) U — X — Y forms a
Markov chain, and ii) Ep.(Px v (- | U)) > d. In Appendix III,
we will prove that R;(Pxvy,0, d) has the following property.

Lemma 3: Ri(Pxy,0,d) as a function of d is convex over
the interval 0 < d < Ep(X,Y). Moreover, in evaluating
Ri(Pxy,0,d) from (2.25), it suffices to consider only sets
U with |U| < |X| + 2.

Similarly to (2.25), we define for any 0 < d < E(p(X,Y))

R(Pxvy,0,d) = ir&f I(XAU) (2.26)
where the infimum is taken over all random variables U taking
values in some finite set { such that i) U — X — Y forms
a Markov chain, ii) Ep(Pxy(- | U),Pyu(- | U)) > d.
Obviously, (2.26) is the extension of (2.21) to the general
case. It is easy to see that a similar result to Lemma 3 holds
also for R(Pxvy, 0, d). The following theorem gives an upper
and a lower bound for R%y (+00,0,d) in the general case
that X and Y may be correlated.
Theorem 5: For any 0 < d < Ep(X,Y)

RZ(PXYaOa d) < R;(Y(—}_ooa 0, d) < R(PXY)Oa d) (2.27)

Note that when X and Y are independent, the lower and
the upper bounds are the same in Theorem 5 and equal to
R(Px, Py,0,d). Considering the expression given by (2.25),
a natural question to ask at this point is whether the lower
bound is always tight. Unfortunately, the following example
shows that this is not true in general.

Example 1: Let X,Y, Z be three random variables taking
values in finite sets X', Y, Z, respectively, such that

1) Y is independent of X, Z,

ii) Pxz(z,z) > 0 for any pair (z,z) € X x 2.
Assume the decoder in the system shown in Fig. 2 now
knows (Y™, Z™) and wants to identify whether p,,(X™,Y™) <
d. In other words, in addition to Y™, the decoder knows
side information Z" which is correlated with X™. Since
Px z(z,z) > 0 for all pairs (z,2) and the distortion measure
is irrelevant to Z, it is not hard to see that the side information
is of no use and the minimum rate in bits per source symbol
required to guarantee the zero probability of misrejection is
still equal to R% (+00,0,d) = R(Pxy,0,d). On the other
hand, if we think of (Y, Z) as one random variable defined on
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Y x Z and extend p from X x J to X x (Y x Z) by letting
oz, (y, 2)) = p(z,y) for all triples (z,y, z), then we have

Ri(Px(y7),0,d) = inf[[(X AU) = I(YZ AU)]
= f[[(X AU) = I(ZAU)] (2.28)

where the infimum is taken over all random variables U taking
values in some finite set Zf such thati) U — X — (Y Z) forms
a Markov chain, or equivalently U — X — Z forms a Markov
chain, ii) Ep(Px v (- | U), Py zjp(- | U)) > d, or equivalently
Ep(Pxy(- | U),Py) > d. From (2.21), (2.26), and (2.28), it
follows that if X and Z are highly correlated, then in general

Ri(Px(yz),0,d) < R(Pxy,0,d)

= R(Px(y z,0,d). (2.29)

This shows that, in this case, the upper bound R(Px (y z),0, d)
is tight, but the lower bound R;(Px(y z),0,d) is not.

Example 1 shows a case where side information is of no
use to reduce the transmission rate R in the system shown in
Fig. 2. Let us now look at a case where side information does
help in reducing the transmission rate R.

Let X,Y, Z be three random variables taking values on finite
sets X', ), Z, respectively, such that X — Z — Y forms a
Markov chain. Let {X", Z",Y "} be n independent drawings
of the triple X, Z,Y. Assume that both the encoder and the
decoder now know the side information Z™. The decoder is
still required to identify whether p,,(X™,Y") < d with zero
probability of misrejection. Clearly, this is a special case of
the situation we considered in Theorem 5, if we think of
(X, Z) and (Y, Z) as two random variables, and extend p(z, y)
to p((z, 2), (y, 2')) accordingly. Interestingly enough, in this
special case the side information does help in reducing the
transmission rate.

Theorem 6: If X — Z — Y forms a Markov chain, then
for any 0 < d < Ep(X,Y)

Rixz) (v 2)(+20,0,d) = Ri(Pxz)(v 2),0,d).  (2.30)

In contrast to Example 1, Theorem 6 gives us another
example for which the lower bound of (2.27) is tight, but
the corresponding upper bound is not.

We conclude this subsection with pointing out that if X —
Z — 'Y forms a Markov chain, then R;(F(x z)(y z),0,d) can
be rewritten as

R[(P(Xz)(yz),o,d) =1%f1(X/\U| Z) (231)
where the infimum is taken over all random variables U taking
values in some finite set If such that ) U — (X,Z) - Y
forms a Markov chain; and ii) Ep(Pxyz(- | UZ), Py|z(- |
2)) > d.

III. INHERENTLY TYPICAL SUBSET LEMMA

This section is devoted to developing a new method for
proving converses, which can be used to prove the converse
parts of Theorems 2 and 3 and to solve the general isoperimet-
ric problem (a subject to which we intend to return in another
paper). The main idea of this method is embodied in what we
call inherently typical subset lemma.
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For each integer m > 0, let (&) denote the set of all
m-types on A, that is

Prn(X) = {P € P(X) : P(z)

€ {o,i,z,...,m—_l,l} Vr € X}.
m m m
(.1)

Let Un, = {ui,---,up, (x)} be an arbitrary set. Since
[Um| = |Pm(X)|, we can associate with each P € P,,(X)
an element v € U, so that elements of {4, associated with
distinct m-types are distinct. If » € U, is associated with
P € Pp,(X), for convenience, we shall write P as P(- | w).
In terms of this notation, we have

Pm(X) = {P( | U) U € Um}.
Let A be any subset of A'™. For any 0 < ¢ < n — 1, define

(3.2)

A; = {z' € X" : 2" is a prefix of some element of A}.
(3.3)
Here, we make use of the convention that Ay = {A}, where
A is the empty string. Assume that the integer m is greater
than or equal to 2161V,
Definition 1: A set A C X™ is called m-inherently typical
if there exists a mapping

n—1
¢: | Ai - Un (3.4)
=0

such that the following hold:
i) There exists an n-type Q € P,(X x U,,) such that for

any 2" € A
Ppryn (:L', ”U,) = Q(J}, 'U,), x € X, u € U (3.5)
where u” = (uy,u9,--+,u,) € UY is a sequence

defined by u; = ¢(z*7) forall i : 1 < i < n,
(Such a sequence is called a sequence associated with
z™ through ¢) and for any z € X and any u € U,
1.
Panun(@,0) = —|{is (@i,0) = @)}l (G6)

i) If (X , U ) is a pair of random variables taking values in
X x U,, with joint distribution @, then

log2 m
ol

" log|A| < H(X | 0) <~ log|A] + (3.7)
Let A C A™ be m-inherently typical. Let ¢ be the cor-
responding mapping such that (3.5) and (3.7) are satisfied.
For any random vector X" = (X1, ..., X,,) taking values in
A, we define another random vector U™ = (f]l, cee, f]n) by
letting U; = ¢(X*~!) for all 4 : 1 < i < n. Clearly (3.5)
implies that with probability one, the following holds

1 — - .
Pgogn(@,u) = =3 Pr{X; =, Ui = u},
=1
z€X, uelUpy,. (3.8)

Note that the left-hand side of (3.8) is the frequency, i.e.,
the average over time, and the right-hand side is the average
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probability over ensemble. Intuitively, therefore, (3.8) just says
that with probability one, the average over time is equal to the
average over the ensemble. This is where the word “inherently
typical” comes from. In typical applications (see the following
sections), the random vector X" is often assumed to be
uniformly distributed on A. In this case

1

10 14] = ~H(X™)
n n

I o o
==Y H(X,| X', (3.9)
n
i=1
Let I be a random variable taking values uniformly in
{1,---,n} and independent of X". Let X = X and
U = (X741, 1), then

%log|A| =H(X |U). (3.10)

If we extend the mapping ¢ in the obvious way so that
d(U) = ¢(XT~1) whenever U = (XT~1 1), then it is not
hard to see that X and U have the joint distribution Pir=Q
where U = $(U). Therefore, (3.7) just says that

log? m

HX|U)<HX|U)<HX|U)+ (3.11)

Example 2: For any P € P, (X), let us consider the type
class A corresponding to the n-type P, i.e.,

A={2" € X" : Pyn = P}
where P,» € Pn(X) is the type of ™ defined by
1
P(z) =~
() ==
If n is sufficiently large so that (|X|log(n + 1))/n <
(log® m)/m, then A is m-inherently typical. To see this is
true, let the corresponding mapping ¢ in (3.4) be a constant

mapping. Then in terms of the notation in Definition 1, it is
not hard to see that (3.5) holds and

{¢:z; =x}|, forany z € X.

1 PSRN 1 X|log 1
Liogla) < H(X | 0) < 21og 44 L8 2 1)

2

< 1 log | Al + log_m.
n m
This implies that A is m-inherently typical. On the other hand,
it follows from Definition 1 that every m-inherently typical
subset is a subset of some type class. Thus the concept of m-
inherently typical subset is related to, but more general than
the concept of type class. In fact, as the following lemma
shows, an m-inherently typical subset exists in every subset
of A". Thus the number of m-inherently typical subsets in A"
is double exponential in n; while the number of type classes
in X" is only polynomial in n.

Lemma 4 (Inherently Typical Subset Lemma): For any
m > 211X satisfying ((m + 1)+ 1n(n + 1))/n < 1,
and any A C A", there exists an m-inherently typical subset

A C A such that

A o 1 1

g1l < |+ 1yvilB L
4| n
Before proving Lemma 4, we remind the reader of the

following two basic inequalities.

1 lo (3.12)
n

Lemma 5 (Pinsker Inequality [9], [5]): For any two distri-
butions Py, P, € P(X)

1
> - — 2,
D(PL|| Py) > 21112||Pl Pyl

Lemma 6 (Folklore [5, Lemma 1.2.7]): 1If P, and P, are
two distributions on A such that

|Pr- Pl <6<

N =

then
(S}
|H(PL) — H(P;)| < —Olog 5k

Proof of Lemma 4: Let A be any subset of A". Let
X" = (Xl,---,Xn) be a random vector taking values
uniformly in A. Let p denote the distribution of X™ on A.
Define a mapping ¢ from U;:Ol A; to Uy, so that for any
e 4,0<:<n-1

Iot- 129~ PC ol < 28 @)
where p(- | z') is the conditional distribution of X ;
given Xt = 2%, P(- | ¢(z%)) is the distribution in P,,(X)
corresponding to u = @(z*) (see (3.2)), and || - || denotes
the variational distance between distributions. It is easy to
see that such a mapping exists. (Essentially, this says that
we use m-types to quantize distributions p(- | z%), z° € A,
and 0 < ¢ < n — 1.) For each n-type Q € Pp(X X Uy,), let
Agp C A consist of all sequences z™ € A such that

Py (2,u) = Q(z,w), € X and u € U,

where «" € U, is the sequence associated with z™ through
the mapping ¢ and

Pavn(2,0) = i (@1,0) = (&, w)}.

Clearly, {Ag : Q € Pn(X X Uy,)} is a partition of A. Let
Q € Pu(X X Uy,) satisfy

|[Ag| = max{|Ag| : Q € Pn(X X Upn)}. (3.14)

We claim that A = Ag is the desired subset in Lemma 4. That
is, that A satisfies (3.12) and is an m-inherently typical subset
under the mapping ¢. To see this, first note that

2

QeP, (X xUy,)
< (n+p*Iu-l4),

Al = [Aql < [Pa(X x Un) | Agl

(3.15)

This, together with [U,| < (m + 1)"‘)', implies immediately
(3.12). On the other hand, by the definition of A, it follows
that for any z™ € A

Pl.nun (;E, u) = Q(a;,u), x € X, u € urn (316)
where u™ is the sequence associated with z™ through ¢.

Therefore, all remaining to be proved is that if (X,U) is a
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random vector taking values on X’ x U, with joint distribution
P, X0 — Q, then

log

1 ~ PPN
—log|A|<H(X|U) <L —10 |A] + 3.17)
n
To prove (3.17), let X" :~(X1, .-+, X,,) be arandom vector

taking values uniformly in A. Let p denote the distribution of
X™ on A. As in the analysis following Definition 1, let 1
be a random variable taking values uniformly on {1,-..,n}.
Let X = X;, U = (X'71,1), and U = ¢(U) where
H(U) = ¢(XT~1) whenever U = (XI~1 I). Then

1 . _ _

Elog|A|:H(X|U)§H(X|U) (3.18)
where the inequality in (3.18) is due to the fact that X —
U—-U fOI‘l’I_lS a Melrkov chain. In view of (3.16), it is easy
to see that X and U have the joint distribution Py = Q.
Consequently, in the following it suffices to prove that

log? m

H(X |U)<H(X |U)+ (3.19)

To this end, note that for any z € A and u € U,,
Q(aj,u) = P)_(U(x"“')

L B (X, = 20X = 0
i=1

6(3}1" x)é(qs(mz_l)v U’)

Il
]
3.
N
\5
S|
NE

“H8(e"h), )

(3.20)

Pz | 2*

Il
]
=1}
N
J
S
R

where 6(-,-) is the Kronecker Delta function, that is,

8(z,7') = {(1)’

and p(x | z°~1) is the conditional probability of X; = x given
X1 = 2~1 Since for any 2" € A

N

it follows from (3.20) that

ifz=2
otherwise

u € Uy,

Pgp(z,u) — Py(uw)P(z | u)
= Z_ﬁ(x")% Zn: (B | ") = P(z | w))8(b(z" 1), ).
me - (3.21)
This implies
; |Pzo(z,u) — Po(uw) Pz | u)|
< i Z (F€ — P(- | u) | 8(6(z" 1), u).
e (3.22)
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On the other hand, from (3.12) it follows that

1 - n p(z™
LS sy og B2
zmeA
O G2l )
= Z (m”)—Zlog )
2 P B i [ )
ot n 1 " ‘3 (3
= D #a™)- > D¢ ) [lp(- | 27h)
€A i=1
< |X|(m+ 1)""'@. (3.23)
Using Pinsker’s inequality, we get
R I -
> Bz )gZIIp(-Iw D =p(- |2 HI?
€A i=1
< oa|(m+ 1)MBOED gy
n
Applying Schwartz inequality to (3.24) yields
~ nl < ~ -1 i—1
Zp(w );lep(-lw )—p( | =)
T €A =1
1
2
< {2|A’|<m+1)""'M (3.25)
n

Going back to (3.22), we get

— Py(u)P(z | u)

1 & _
x =3 e |a
=1

1
|X|1n(n+1) 2 + 2|X|
n m

< [2|X|<m+1> Potw) (326)

where the last inequality is due to (3.25) and (3.13). Therefore,
if

Py(u) > {2|X|(m + 1)|X|@} E

then
|1Pgio (- | u) = P(- | w)|
< [2|X|(m+ D 1)} LAY
n m
g i (3.27)
m

where Py (- | u) is the conditional probability distribution of
X given U = u and the last inequality is due to the assumption
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that [(m+1)°1*1+*In(n+1)]/n < 1. From (3.27) and Lemma
6, we have

H(X|0) = Zﬁ(w”)% S H(Pgip(] 4)
€A i=1
< D ZH (| ¢(=""1)
zreA
+4|X|10g’m

log(n +1)77
210+ Lo

DY i gi

w”EA i=1

H(P(-| g(z*71)))

Y i %i

zn EA i=1

o}
+(6|X|+1)

(3.28)
where the inequality 1) is due to the assumption that

[(m+ 1>+ +1)]/n < 1
and m > 2161x

6. To continue (3.28), we next compare H(p(- | z*~
H(p(- | 7). Let

, and inequality 2) is due to (3.13) and Lemma
1)) with

F= {('é,mi_l):lgifn, z" € A,
I5(- | ") = p(- [ " D)]|

> [2|X|(m + 1)""'@} %}.

Think of {f(z™)1} in (3.25) as a probability distribution on

Ax {1,2,---,n}. Applying the Markov inequality to (3.25)
yields
3
> bl le i,z [2|X|(m+ 1)""'%}
zneA

(3.29)
where 17 denotes the indicator function of F'. From (3.29)
and Lemma 6, it is not hard to verify that

> b= ZH(p( Ea)

" EA
< Y # ZH )+ |X|2+2|X|1°g’m
zmEA
—HX|U)+ 2|X| +2|X|10gm
<H(X |U)+ (2|X| + 1)1°gm- (3:30)

Combining (3.30) with (3.28) yields

H(X | D) < H(X | U) + (8] +2)257
2
<H(X|U)+ 1°%nm (3.31)

where the last inequality is due to the assumption that m >
21611 This completes the proof of (3.19) and hence the proof
of Lemma 4.

Note that Lemma 4 is proved by estimating the variational
distance between the distribution Pg (- | ¢(z*~')) and
p(- | «*!) where 2'~! € A;_;. Roughly speaking, the
attempt we have made in the proof of Lemma 4 is to show
that the variational distance between these two distributions
is roughly upper-bounded by lﬂTTm In fact, this is just what
the second condition of the definition of m-inherently typical
subset implies. To see this, let us go back to (3.11), where
A C X" is assumed to be m-inherently typical. It is not hard
to see that (3.11) can be rewritten as

H(X|0)~ (X | U)
= > ZD "D P (- ¢="H)
zm €A
2
< log'm (3.32)
m
Using Pinsker’s inequality once again, we get
n 1 S i— i—
> = )EZ Ip(-1 27" = Pgg (- | @™ )|
z"EA i=1
2
<™ 333
m
which, together with Schwartz inequality, implies
n 1 = i i—1
> 0= llp( 127 = Py (- | ¢ )]
zreA i=1
2
<22 334
m

This means that the average variational distance between
P (- | ¢(z*~*)) and p(- | ') is upper bounded by

Therefore, the second condition in the definition of m-
inherently typical subsets is also stringent.

IV. PROOFS OF THEOREMS 2 AND 3

In this section, we assume X and Y are independent. First
of all, let us review some basic facts about types and typical
sequences. Let U be a random variable taking values on some
finite set I. Let {~,,} be a sequence of positive numbers such
that -, — 0 and \/n~y, — oo as n — +oc. Recall that P, (1)
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denotes the set of all n-types on If. For each v € U™, the
type P~ of u™ is defined by
1 ..
P (u) = EHL cu; =ul, wel.
For each P € P,(U), let
T5U) = {u" elU" : P,» = P}

and denote by V,,(P,U x X) the set of all stochastic matrices
V = (V(z | w))zex,ucu such that

V(z|u)€{0, ! 2 1}

nP(u)’ nP(u)’ "’
forallx € A and v € U.

Given v"* € U™ and V € V,,(Py»,U x X), a sequence z" is
said to be V' -generated by v" if for all z € A and all v € U

Punl-n (u, .’.l:) = Pun ('U/)V(.’L' | 'U,)

Denote by T7*(u", X) the set of all sequences =™ V-generated
by ™.
An n-type P € P,(U) is said to be (U, v,)-essential if

|P(u) = Py(u)| < vm

and P(u) = 0 whenever Py(u) = 0. A sequence uv" € U"
is called (U, 7y,,)-typical if P, is (U, ", )-essential. Denote by
17 ., the set of all (U, v»)-typical sequences. Similarly, for
u € U, we call V € V(P , U x X) (w™, X | U,vn)-
essential if

|Pun (w)V (2 | u) = Pun(w)Pxjp(2 | w)] < 7a

and V(z | ) = 0 whenever Pxjy(z | w) = 0, where
Pxy(x | u) is the conditional probability of X = x given
U = u. A sequence z" € X" is called (u", X | U,~,)-typical
if there exists a (u™, X | U,~,)-essential stochastic matrix
V € Vo (P, U x X) such that z™ is V-generated by u".
Denote by T% ;. (u") the set of all (u", X | U,v,)-typical
sequences z".

Although the above notation is introduced for random
variables X and U and for finite sets A and U/, in the
following we shall use freely these notation and terminology
for other random variables and finite sets. Note that if "
is (U,~vn)-typical, and z™ is (u", X | U,~yn)-typical, then
unz™ is (UX, 2v,)-typical and 2™ is (X, 2|U|v,, )-typical. The
following facts will be used.

Vn(PU x X)| < (n+ DMIXL for any P € P(U).
“.1)
(n+ 1)~MlonH () <R < 2nHP) P e P (U).
“.2)

(n+ 1)~ MI¥gnHVIP) < T (yn, &)| < 2 A VID),

ur € TR, PeP,(U), andV €V, (PUx X) (43)
where
H(V | P)=Y PwHV(-|u)
ucl
=Y Y -PV(z|wlogV(z|u). (“44)
uclU re X
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Furthermore
Pr (U™ € T}; >1 ] 4.5)
crem,)z1- M .
and if rmPr (U™ = u™) > 0, then
Pr(X" € TRju,, (") | U =u?) 21 o0 @46)

where (X", U™) are n independent drawings of (X, U).

A. Proof of Theorem 2

In view of the fact that R% (¢, 3, d) is continuous at 5 = 0,
it suffices to prove Theorems 2 and 3 for 0 < 3 < (3(d).
Proof of Theorem 2: We first prove the direct part, that
is,
R;(Y(—l_ooaﬁa d) < R(PX7 PYyﬁa d)

By the definition of R% (40c,/3,d), it suffices to prove that
for any R > R(Px, Py, (3,d), (R, 400, ) is achievable. To
this end, let us fix R > R(Px,Py,[3,d) below and prove
(R, +0o0, 3) is achievable.

In view of the definitions of R(Px, Py, (,d) and
R(Px, Py, 3,d), it is not hard to see that for any § > O,
there exists a random variable U taking values on some finite
set U such that

I(XAU)<R and &(Pxy,d)>p—6.

Based on the pair (X, U), the standard technique of [2] (see
also [5, pp. 306-310]) can be used to show that there exists
for sufficiently large n a system {(u"(:),S;) : 1 <¢ < M}
which has the following properties:
Property i) logM < n(I(X AU) + 6).
Property ii) For 1 < i < M, w"(i) € T
%y -, (W' (i), and

4.7

yar Si C
, 6
Pr(X" e S | U™ =u"(i)) > 3

where (X", U™) are n-independent drawings
of (X,U).
S; 11 <i < M are disjoint and

M
Pr(X"GUSi) >1-6.

=1

Property iii)

Based on this system, we construct an nth-order ID source
code C,, = (fn,Bn,gn) as follows. For each z™ ¢ Ufil S;,
the encoder simply sends the sequence z™ itself to the decoder.
After receiving 2", the decoder outputs 1 if p, (2", y") < d
and 0 otherwise. The number of bits needed for the lossless
transmission of z" is [nlog|X[] plus one bit flag indicating
" ¢ Ui\il S;. For each z" € Uf‘il S;, the encoder first
finds the integer ¢ such that 2™ € &; and then transmits ¢
to the decoder. Upon receiving ¢, the decoder outputs 1 if
pn(Si,y™) < d, and 0 otherwise, where

pn(Si,y") = min{p, (8", 4y") : 2" € §;}.

The number of bits needed for the transmission of the integer
i is [log M| plus one bit flag indicating z™ € Uf\il S;.
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Therefore, the average rate of the IDS code described above
is upper-bounded by

M

n(Cn) = —Pr (X" € Us) Mog M| + 1)

1 Z_1M
ZPr (X” ¢ &) ([nlog|X[] +1)
=1

2
I(X AU)+ 6+ 6log || + =

2
< R+(1+log|/\’|)6+g (4.8)
where the last inequality is due to (4.7). From the construction
of C,, it is clear that the probability of misrejection is zero and
the probability of false identification is upper-bounded by

1
P (C,) <
S N S OEY)
M

x Y Pr(X"eS,)Pr(Y" €SP
=1
M
<2) Pr(X"eS)Pr(Y" e Sf)
=1

4.9

for sufficiently large n, where

St ={y* € V" : pu(Si,y") < d}

and the last inequality is due to the fact that d < Ep(X,Y).
To continue (4.9), note that for 1 < ¢ < M and 2™ € §;,
(u™(4),z™) is (UX, 2, )-typical. Since £(Pxy,d) > 8 - 6,
it follows from Lemma 1 that for sufficiently large n and any
" e S;

S(Pmnun(i>, d) > B —26. (4.10)
Clearly, for each 1 < ¢ < M,
St = U SEN TR (4),Y). (4.11)

VEV, (Pun iy UXY)

It is easy to see that if S¢ N 77(u"(4),Y) is not empty, then
there exist z" € S; and Q € P, (U x X x V) such that

i) the marginal of () on U x X is Pyn(iyen;
ii) the marginal of Q on I/ x Y is given by
Pp@@)V(y|u), wel and y € Y;

iii) under the distribution @}, Ep(Xo,Ys) < d.
In view of (2.3) and (4.10), this implies

S Puy @DV | || )
ue
Z Pu’ (z

ueU,yey

Yl o 5 o

V(y | u)log ———=* Pe (o)

(4.12)

Therefore, if S¢ N T"{}( ( ) Y) is not empty, then

Pr(Y" e SInTy V)
sPr{Y”GW( (),y)}
= [T (" (i), )

x 27" [H(V|PU”(i))+Eu€u Pyn iy (u)D(V (- [u) || py)]
<Y 2_n2uez4 Pyn iy (w)D(V(-|u) || Py)

< 9—U(F-28) (4.13)

where the inequality 1) is due to (4.3) and the last inequality
is due to (4.12). Going back to (4.11), we get for sufficiently
large n

Pr (Y™ € 8¢) < Va(Pungiy, U x Y)[277(F=20)

< 27n(6-39) (4.14)

where the last inequality is due to (4.1). Substituting (4.14)
into (4.9) yields

Pep(Cp) < 27MF30), (4.15)

Since 6 > 0 is arbitrary, by definition, (4.8) and (4.15) imply
that (R,+o0,3) is achievable. This completes the proof of
the direct part of Theorem 2.

We next turn to the converse part, that is,

R}((Y(-FOO,/}, d) Z R(PXaPYaﬂud)-

Clearly, it is enough to prove that for any achievable triple
(R, +00, )

R > R(Px,Py,B,d).

To this end, let us below fix an achievable triple (R, +00, 3).
By definition, there exists for any ¢ > 0 a sequence of ID
source codes C,, = (f,,, By, gn) such that for sufficiently large
n

(C) £ R+ €, Pe1(Cr) = 0 and P.p(C,) < 2779,
(4.16)
As in the binary-symmetric case, we define for each b" € B,

SO") ={z" € X" : fu(z") = V"}
and
S = {y" € V" : pul
Since P.;(C,) = 0, we must have
SHB™) C{y" € V" 1 galy™,b") = 1.
Therefore, the inequality P.»(C,) < 27"(°~<) implies

> Pr(X™eS@E)Pr(Y™ e 84))
b*€B,,

", y") < d for some z" € S(b™)}.

<279 L Pr(p (X", Y™) < d).

In view of (2.2) and the fact that 8 < f3(d), it follows that
for sufficiently large n

> Pr(X™esS@™)Pr(Y™ e s4b")) < 2 x 27079
beB,
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which, coupled with the Markov inequality, implies

> Pr(X"esS(H)>1-¢
b eB),

(4.17)

where
B!, ={b"€B, : Pr{Y" € §4(p")} <2~ n(F=e=n" loa(2/)}

Let m be a sufficiently large positive integer to be specified
later. Fix a 4" € B!. Applying the inherently typical subset
lemma (i.e., Lemma 4) to S (b”)ﬂT}} , where 17 | is the set
of all (X, r,)-typical sequences z", we get an m- 1nherently
typical subset A C S(b") N 7% ,. such that

1 [SeM)nTx,, |

—log ———= < |&

. |A| [X|m +1)
By the definition of m-inherently typical subsets, there exists
a mapping ¢ from U?z_ol A; to Uy, where A; = {2 € A" :
2% is a prefix of some element in A}, such that the following
hold:

i) There exists an n-type Q € P,,(X x U,,) such that for

s 1) - g
n

any z" € A

Pprnyn(z,u) = Q(z,u), z€X anduel, (4.19)
where v € U] is the sequence associated with z™
through ¢.

i) If (X , U ) is a random vector taking values on X' X U,
with joint distribution @, then

log? m

1 PN 1
—log|A| < H(X |U) < —log|A| + (4.20)
n n
As what we did in the analysis following Definition 1, let
X" = (Xq,- X ) be a random vector taking values uni-
formly on A. Define a random vector U™ = (U, ---,U,) by
letting U; = qb(X1 1), 1 < i < n. Let I be a random variable
taking values uniformly on {1,2,---,n} and independent of
X™, Let

X =X, 4.21)

U=Uy, and U = (X1, 1.

Clearly, if we extend the mapping ¢ in the obvious way so that
$(U) = $(XT~1) whenever U = (X7~1, 1), then U = ¢(U).
As pointed out in the analysis following Definition 1, X
and U have the joint distribution Pg; = (. Furthermore,
n"tlog|A| = H(X' | U) and (4.20) can be rewritten as

log? m

HX|U)<HX|U)<HX|U)+ (4.22)

Having defined the random pair (X U ) taking values on
X x Uy,, we next lower-bound Pr (Y € Ad) by a function
of 5( Xud — ¢€), where

={y" € Y": pp(z™,y") < d for some z" € A}.

In view of the definition of £( Py, d—e¢), let Y be a random
variable taking values on ) such that Ep(X,Y) < d —e. Let

= (V(y | 2w))zex ucthn,ycy

be a stochastic matrix so that V(y | zu) is the conditional
probability of ¥ = y given X = z and U = u. Let Y™ =
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()7:1,--; ,f/n) be the random vector resulting from passing
(X™,U™) through the channel V. From (4.6), it follows that
for any z™ € A

Pr (V" € T g, (2" | X* = 0", U" = )
X || V|| U
>1—|——£Z¥——| (4.23)
dnyy,

where u™ € U]}, is the sequence associated with z™ through
¢. From (4.19), it is not hard to see that for any 2™ € A

T2

Y|Xﬁ,"/n (.Tn, Un) C T@

YIX | Ol (4.24)

Furthermore, since Ep(X,Y) < d — ¢, it follows that for
sufficiently large n and any y™ € T)’,L| R0y (z"™u™)

Pn(:Unu y") <d.

Therefore, if we let

n
r= U YIX0,, @)
w‘ILEA

where u™ € U}, is the sequence associated with z™
¢, then F' C A% and for any 2z € A

through

- - - X »
Pr(YﬂeF|Xﬂ:xn,m:un)>1_%_
4dnyz
This implies
% X m
dnvy2
For convenience, let
o XY

From (4.25), we have
H(Y™) < h(8n) +log |F| + néy log| )|

where A(-) represents the binary entropy function. From this,
it is not hard to verify that

h(6,) — ndy log|V|
=Y H(¥ Y
i=1

log || > H(Y™) -

— h(6,) — né, log ||

> ZH:H()?; | ViITLX=101) — h(6,) — b log |V
i=1
0N H; | X0 < hB,) — néalog [V
i=1
=) S H(: | XY — h6,) - néaloglV] (326)
i=1
where equahty 1) is due to the fact that given (X i—1 U = l)
Y ! and Y; are conditionally independent, and the equahty

2) follows from the fact that U*~! = ¢(X?~2). Recall that
I is the random variable which takes values uniformly on
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{1,---,n} and is independent of X"andY". LetY =Y. In
view of (4.21), (4.26) continues as follows:

log |F| > nH(Y | U) = h(6,) — né, log|Y]

=nHY |U)+n(HY |U)- HY | U))
— h(6,) — né, log |V
=nH(Y |U)+n(HY |U)-HY | 1))
— h(6,) — né, log|Y| 4.27)

where the last equality follows from the observation that
(X,U,Y) has the same joint distribution as that of (X, U,Y).
To continue (4.27) further, we next estimate the difference
H(Y | U)—- H(Y | U). Since U = ¢(U), it is not hard to
verify that

H(Y |U)-H({Y |U) Z > [Pr (XL =27
z—lw’ leA, 1
x Z [Pr =y | Xt =2
yey

x log

Pr(¥i = y| X1 = oiL)
Poip(y | ¢(z*=1))

(4.28)

)) is the conditional probability of

1). By construction, it is not hard

where Py (y | Pzt
Y =y given U = oz~
to see that

Pr( y|X'1—x 1)
—ZPr i=a | X =2t

TEX

DV (y | 2¢(z"))

and
Py i(y | ¢(*1))
=Y Pgplz | o@ )V (y | wp(@*h)).

reX

Using the log-sum inequality, one gets that
Pr(fi=y| X t=ai

Pr(Yi=y | X""'=z"")log —
2 Pro(u] #@)
< Z Z [Pr =z | Xi—l = 1)
yeyzelk

x V(y | zd(z'""))log

<)

Pr(X;=z | X~1=z'"1)
Piip(@ | ¢(z*~1))

Pr(X;=z | Xi~t=gi1)

zeX
Pr(X;=z| Xi~1=g'"1)
x log . 4.29)
PX|L (2 | p(z*1))
Substituting (4.29) into (4.28) yields
HY|0)-HY |U)<HEX|U)-HX|U)
2
< logTm (4.30)

m

where the last inequality is due to (4.22). Combining (4.27)
and (4.30) yields

2
log |[F| > nH(Y | U) - nlog;nm — B(62) — nn log V).
From (4.24)
FCTE x tha”
Thus
Pr(Y" € F)

> |F|2~"(HE)+D(Py || Pr)+o(1))

> exp{—n(f((}/\y)‘i‘D(P{fHPY)"'

log? m
m

4.31)
where €, — 0 as n goes to infinity. Since F' C A<, (4.31)
implies
Pr(Y™ € A%)

2
> exp{—n<1(ﬁ/\ Y)+ D(Py || Py) + 1°<‘inm + en) }

(4.32)

Note that (4.32) holds for any random variable Y taking values
on Y such that Ep(X,Y) < d — e. This, together with the

definition of £(Pg,d — €), implies
+ en) } (4.33)

Pr(Y" € A%)
> exp {_n<g(PX'l7’d - 6) +

Let us go back to (4.17) and (4.18). We next want to estimate

the probability Pr{X™ € S(b")N1T% . }, where b" € B,,.

Since A C S(b") N T, , it is easy to see from (4.19) and
(4.21) that P is (X, -y, )-essential, that is,

|Px(2) = Px(z)] < 7n,

and Py (z) whenever Px(z) = 0. For convenience, let

v log(n +1)
s

log? m

reEX (4.34)

an = |X|(m +1)
It is not hard to see that
Pr(X" € S NTE,. ) < |SE)NTE,, [27HE)—ew)
Sl) 2—71.(H()2')—n_1 log |A|—a,—o(1))
SQ) Q—H(H(X)—H(XIE')—%—O(l))

2—n([()~(/\[:')—6:l) (4.35)

where the inequality 1) is due to (4.18), the inequality 2) is
due to the fact that n~!log |A| < H(X | U), and €/, goes to
zero as n goes to infinity. Since ™ € B!, it follows that
Pr(Y™ € A% <Pr (Y™ € S4"))
<oA= logd) (4.36)
Comparing (4.36) with (4.33) yields

log’ m —€ —llog2
"on CeE

E(Pgprd—€)2f e~
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Note that U/ takes values on U,n. From the definition of
Ry (Px, Py, 3,d), it follows that
I(X AU)

log? m

1 2
ZR|MM|(PX,PY,[3_5_ —en—ﬁlogg,d—e)
which, combined with (4.35), implies
1 log Pr (X" e S(b")NT%.,.)
n n

log? m

ZR|I/{m|<Pf(;PY;/3_€_ —en—%log%,d—e>
—€. 4.37)

n

In view of Fact 1 in Subsection II-A and (4.34), (4.37)
continues as follows:

1 n n mn
- log Pr (X" e S("™)NT%., )

log2 m

ZRWM<R%Phﬂ—6— ,d—e)—4;(4m)

where €/ goes to zero as n goes to infinity.
Note that (4.38) holds for any " € B/,. Now it is not hard
to verify that

R+e>r,(Cp)
> LH(f,(X")

>

breB,

v

1 n 7
[—EPr (X" eSHYNTE,,)

x log Pr (Xn €S®")N T)Til',%) :

|X|
(1 T a2

2
X (R|Mm|<PX’PYa/3_€_ 1og;nm,d—€> —6::>
1
n

v

(4.39)

where the last inequality is due to (4.17) and the following
inequality:
_ 1

dny2’

Pr(X"eTyg, )>1

In view of Fact 1, letting n — +o00 and then letting ¢ — 0
in (4.39) yield

1 2
R 2> Ry, (PX;PY,ﬂ— Ogmm,d)-

Since (R, 400, (3) is an arbitrary achievable triple, this implies

log? m

R;(Y(—I—Ooaﬁad) > R|btm| (PXapYaﬁ - 7d> (4.40)

Thus for sufficiently large m

2
Ry (+00, B, d) > R(PX,Py,B— k’g;nm,d).
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Letting m go to infinity yields
Ry (+00,8,d) > R(Px, Py, 3, d).

This completes the proof of the converse part and hence the
proof of Theorem 2.

Remark 3: In response to Remark 1, let us note that in
view of Lemma 4, the inequality (4.40) actually holds for any
m > 2161%° From the proof of Theorem 2, therefore, we
obtain that for any m > 21611

log? m

Rl(/lm|(PXaPYa/8_ ad) SR;(Y(—i_OOa[j)d)

= R(PXaPYaﬂad)

< R(PXaPYaﬁﬂd)

< Ry, (Px, Py, 3,d).
441

This gives us in a sense how accurate the value ob-
tained could be if we approximate R(Px,Py,f,d) by
Ry, |(Px, Py, (3,d). If some regular conditions are satisfied,
hopefully this approximation could be as accurate as
O(log? m/m).

B. Proof of Theorem 3

We next turn to the proof of Theorem 3. Although the proof
of Theorem 3 is more complicated than that of Theorem 2, the
basic idea is the same and in fact, most parts of the proof are
just the translation of the corresponding parts in the proof
of Theorem 2 to the present case. This is why we stated
separately Theorems 2 and 3. We hope this will help the reader
understand the proofs more easily.

Proof of Theorem 3: In view of Remark 2, it suffices to
prove Theorem 3 for o > 3(Px,d)—3(d) and 0 < 8 < (d).
We first prove the direct part, that is,

R;(Y(Ol,ﬁ; d) S R(PX,PY,OZ,ﬂ(d);ﬁ, d)

By the definition of R% («, 3, d), it is enough to prove that
for any R satisfying

R> R(PX,Py,Oz, [3(d),ﬁ, d)

(R,a, ) is achievable. To this end, let us fix below R >
R(Px,Py,a,8(d),3,d). As in the proof of Theorem 2, it
is not hard to see that for any § > 0, there exists a random

variable U taking values on some finite set I/ such that
I(XAU)<R and E(Pxy,o,p(d),d) >pB—06. (442)

Corresponding to the random pair (X,U), there exists for
sufficiently large n a system {(v"(:),S;) | 1 < i < M}
which satisfies Properties i)— iii). Based on this system, we
construct an nth-order ID source code C,, = (f,, Bn,gn) as
follows. For each z" ¢ Uf‘il S;, the encoder simply sends
the sequence z" itself to the decoder. After receiving x™, the
decoder outputs 1 if p,,(z",4™) < d and 0 otherwise. For each
" € Ui\il S;, the encoder first finds the integer ¢ such that
z™ € §; and then transmits ¢ to the decoder. Upon receiving
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i, the decoder outputs 1 if y™ € Y™ satisfies that there exists
some z™ € S; such that p,(z",y™) < d and

Z Pmn un(i)(.’L‘

reX,ucld

W) D(Pynznun i (- | 2u) || Pr)
<Bd)+a (443)
where
Py g iy (| 21) € Vi (P iy, (X X U) X V)
is defined by

Pxn u (4) (l’, ’U,)Pyn|1.n u™ (3) (y | xu) = Pwn un (d)y™ (33, u, y)

for all y € V; and otherwise outputs 0. Clearly, the encoder f,
defined here is the same as in the proof of Theorem 2. From
(4.8), therefore, the average rate r,,(C,,) is also upper-bounded
by

2
(Cn) S R+ (1+1og|X))6 + o (4.44)

For each 1 < ¢ < M, let

={y" € V" : pp(2",y") < d for some z" € S;}
St =1{y" €V 1 ga(y",i) =1}
and

=y -8

Obviously, gzd C Sid for 1 < ¢ < M. For each 2" € §,, let
B(z™) denote the set of all y™ € Y™ such that p,, (z",y") < d
and

> Pouniy(@,w)D(Py o (- | 20) || Pr) > B(d)+a.
rxeX,ucld
(4.45)

From (4.45), it is not hard to see that

Pr(Y™ € Bi(z")) < (n+ 1)I¥ 1#1Ig7n(Bd)+e),

(4.46)

By the construction of the ID source code C,,, we can now
verify that

M
Pr{(X",Y")e U S x §¢,&pa(X", V") < d}
Pel(cn) = =1

Pr{p, (X", Y") <d}
< 1
S B (XY < )

x Yy Pr(x

=1 z"ES;
<1 (n+1)|.1’||l/{||y|
Pr (p, (X", Y™) < d)
52) 2—n(oz—6)

=z™)Pr (Y™ € B'(2"))

9—n(8(d)+a)

(4.47)

for sufficiently large n, where the inequality 1) follows from
(4.46) and the inequality 2) follows from (2.2). As in the proof
of the direct part of Theorem 2, it is clear that the probability

P.5(Cy) of false identification of the ID source code C, is
upper-bounded by

1
P.y(Cp) <
2C0) < B, Y 5 d)
M
x Y Pr(X"eS)Pr(Y"e8f)
=1
M .
<2) Pr(X"eS&)Pr(Y"edf) (448)
=1

for sufficiently large n. To continue (4.48), we do the same
thing as we did before. First note that for any 1 < ¢ < M and
" € S, (wn(i),z™) is (UX, 2, )-typical. In view of Lemma
2 and (4.42), therefore, it follows that for sufficiently large n
and any z" € §;

g(Pwn un (1,)7 O[, /j(d), d) Z [3 - 26. (4.49)
Let us now look at
SENTP(w™(i),Y), whete V € Vo(Pungiy,U x V).

Clearly, if $¢ N Ty (u™(2),Y) is not empty, then from the
definition of Sd there exist an 2™ € S; and a Q € P, (U X
X x Y) such that

i) the marginal of Q on U X X is Pyn(iypn;
ii) the marginal of @ on U/ X } is given by

Py (w)V (y | u),

iii) 1f (ﬁ X f/) is a random vector taking values on
U x X x Y with joint distribution Pg;¢ = @, then
Ep(X,Y) < d and

D(Py || Py) + (XU AY) < B(d) +

uelfandy € );

This, along with the definition of £( Py, (s), a, B(d), d) and
the inequality (4.49), implies

> Pury(w)D(V (- | w) || Py) > B — 26.

uci

Therefore, if S¢ N T7(u™(3), ) is not empty, then

Pr{Y™ € S nT3u"(i),V)}
<Pr{Y™ e Tpu™(3),Y)}
< 97" D wews Par DV () [ Py))
< 9-n(8-29)

which, in turn, implies

Pr (Y™ € 87) < ValPun(iy,U x Y)[27700=20)

< 2~n(F-35) (4.50)

for sufficiently large n. Substituting (4.50) into (4.48) yields

—n(8—36)

P.y(C,) <2 x 2 (4.51)

Since § > 0 is arbitrary, (4.44), (4.47), and (4.51) imply that
(R, a, 3) is achievable. This completes the proof of the direct
part of Theorem 3.
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We next turn to the converse part, Clearly, it is enough to
prove that for any achievable triple (R, 3)

R 2 R(PXa-PYaa:ﬁ(d)ﬁa d)
To this end, let us below fix an achievable triple (R, «, (3). By

definition, there exists for any € > 0 a sequence of ID source

codes C,, = (fn, By, gn) such that for sufficiently large n
Th(Cn) € R+ €, Py (Cy) < 27779

and

P.y(Cp) < 277079, (4.52)

For each b" € B, let
SHY) ={z" € X" : fo.(z™) =b"}
and
G") ={y" € V" : guly",0") = 1}.
For each 2 € X™, denote by B(

y™ € Y" such that p,(z",y") < d and y" & G(fn(
is not hard to see that

Pel(cn) =

z™) the set of sequences

z")). It

1
Pr(p, (X", Y") < d)
X Z Pr(X™ =z™)Pr (Y™ € B(z")).
zneXn
By virtue of (2.2) and (4.52), we have for sufficiently large n

> Pr(X"=g")Pr(Y" € B(z")) < 277 2H0@),
TnEX™

(4.53)
Let

Fn — {xn c X" - Pr (Yn c B(.’L’n)) S 6—12—71(04—26-1—,6((1))}_

From (4.53) and the Markov inequality,

Pr(X"eF,)>1-c¢ (4.54)

As in the proof of the converse part of Theorem 2, it is not
hard to prove that the inequality Pe»(C,) < 27(°~€) implies
that for sufficiently large n

> Pr(X™eSH)Pr(Y™ € G(b™)) <2 x 2779,
bm€EB,,
Using the Markov inequality once again, one gets that
Y Pr(X"esS)>1-c
breB;,
where

Bl ={0" € B, | Pr(Y" € G(b")) < 27"(F-e-wloe DY,

We are now in a position to apply the inherently typical
subset lemma (Lemma 4). Fix a b € B,. Applying the lemma
to S(b")NT% ., NFy,, we get an m-inherently typical subset

ACS@O")NTy., NF,
such that
1. |S@)NE.NTE ., o1 log(n +1)
= log <X ¥l =7,
~log I < 1¥|(m+ 1) 2B

(4.55)
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The remaining proof is much the same as that shown in the
proof of the converse part of Theorem 2. In what follows,
therefore, we only point out places where changes are needed.
(Unless otherwise specified, all notation below is the same as
in the proof of the converse part of Theorem 2).

Having defined the random pair (X,U/) taking values on
X x U, we, instead of lower-bounding Pr (Y € Ad) by
a function of £(Pg,d — ¢), lower-bound Pr (Y™ € G(b™))
by a function of £(P XD’ —4¢, 8(d), d — ¢). In view of the
definition of £(Pg 7, — 4e, 3(d),d — ¢), let Y be a random
variable taking values on ) such that

Ep(X,Y)<d—e¢
and

D(P; | Py)+ I(XUAY) < B(d) + a — de. (4.56)

Let

V=WV(y] xu))wE‘Y,uE(/lm,yEy

be a stochastic matrix so that V(y | zu) is the condi-
tlonal probability of Y = y given X = z,U = u. Let

(Yl, LY, )bea random vector resulting from passing
(X " [7 ) through the channel V. From each z™ € A, consider
7 (™, u™), where u™ € U]}, is the sequence associated

Y|XU,r,
with z™ through ¢. In view of (4.56), it is not hard to see that
for sufficiently large n and for any 4" € TY| R0 (m”, u™)
pul(z",y") < d (4.57)
and
> Powr(@,u)D(Pyrjrun (- | au) || Py)
zEX , uEU,,
<PB(d)+a—3e. (458)
Let V € Vo(Panun, (X X Up) x V) be ("™, Y | XU, v,)-

essential, then (4.58) implies

>

reX , u€EUym

Py (,)D(V (- | 20) | Py) < A(d) + a = 3e.

(4.59)
Since A C S(b")NF,NT% ., ,z" € Aimplies 2™ € F,. By
definition of F,,, therefore, it follows that

Pr(Y" € B(z")) < ¢~ t2nla+B(@)=20) (4.60)

By comparing (4.60) with (4.59), we can obtain that
| T3 (2", ) N B(z")]
gt 127 (-4 I 1l (13 0 )
<27 FTR (", V)| 4.61)
for sufficiently large n, where in derivation of 1), the following

inequality was used:

|T€;($nun,y)| > (n+ 1)—|‘1’I|Jf||bim|

>

z€X ,u€Um,

XEXpAn Px”u”(xau)H(f/(' | 1‘,11,))
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From (4.61), it is now easy to check that

Pr (Y" € T;le . (z"u™) N B(z™) | X = 2", U" = u™)
= ZPr (Y™ € T2(z™u™, )N B(a™) | X = 2™,

U"zu")
n’y) |Xn ::Un’ﬁn :un)

nc

<2~% ZPr Y" e Ti(z

= 2_7Pr (Y™ ers

y|XU,Y (mnun) | Xn — :L,n’f]n — un)
<27¥

(4.62)

where tl~1e sgn}mation is taken over all V such that V is
(z™u™,Y | XU,~,)-essential. In view of (4.23), (4.57), and
(4.62), it follows that

Pr(V" € T3 gp, (") NGOY) | X* = o, 0" = u?)
- dny;
>1-6, (4.63)
where 8, — 0 as n — oo. Let
G= U PIR D, (E"U) N GOT).
w’rIEA
The inequality (4.63) implies that for any z" € A
Pr(YreG|X"=a"U"=u")>1-6,
which in turn implies
Pr(Y"e@)>1-6,. (4.64)

Note that (4.64) is in parallel with (4.25). A similar argument
to the derivation of (4.31) can be used to show that

Pr(Y" e @)
2
> exp{—n (I(f] AY)+D(P; || Py) + lofnm + en) }
(4.65)

where ¢, — 0 as n goes to infinity. Since G C G(b"), (4.65)

implies
)

Pr(Y™ € G(b™))
(4.66)

2
> exp{—n (I(U AY)+ D(Py || Py) + 1°g;nm

Note that (4.66) holds for any random variable Y taking values
on Y such that (4.56) is satisfied. This, together with the
definition of £(Pg s, o — 4e, 3(d), d — €), implies that

Pr(Y™ € G(b"))

2
> exp{—n (S(PXEY, a—4e,6(d),d—¢€) + logmm + En) }

(4.67)

On the other hand, since b™ € B,

Pr(Y" € Q")) < 27" (F-c— %108 ?)

which, combined with (4.67), yields

E(Pgp,a—4e6(d),d—¢€) > B —e—

log?m
- 4.68
= ¢, (4.68)

where €/, goes to zero as n goes to infinity. A similar argument
to the derivation of (4.35) can be used to show that

Pr(X"eS®)NF,NT%, )< o—n(I(XAD)=€]))
that is,

1 " -
——logPr(X" e SY")NF, NT%, ) > I(X AU)—el,
n
(4.69)
where ¢/’ goes to zero as n goes to infinity. In view of

(4.68) and the definition of Ry, |(Pg,Pr,a,,0,d), (4.69)

continues as follows:

Y

1
- logPr (X" e SG")NF,NT% ., )

> R|Mm| (P)'QPY: o — 4e, /B(d)a

—e;,d—e) — €.

(4.70)

B log?m

Using Fact 3 in Subsection II-A, we get

—% log Pr (X" e S()")NF,,NT% ., )

log?m
zR|um|(PX,Py,a—4e,ﬂ(d),/3—e— = ,d—e>
— €, “4.71)

where g, goes to zero as n goes to infinity. Note that (4.71)
holds for any b™ € B.,. In parallel with (4.39), we now have

1 n Y23
> bze;g —~Pr (X" € S(") NFaNTX,,)

x logPr(X" e SG")NF,NT% ., ) — =

> 1-2e— |X|
- 4nv2
X (R|um| (PX, Py, o — 4e, f(d),

2
ﬂ—e—log;nm,d—e) —€n> —z.

n
4.72)

In view of Fact 3 in Subsection II-A once again, letting n — oo
and then letting ¢ — 0 in (4.72) yields

1 2
R 2 Ry, (PX,PY,a,ﬁ(d>,ﬂ - Ogmm,d>

which implies

Ry (0, 8,d) > Ry, (Px,Py,a,ﬂ( ), 8 — log” m,d).
(4.73)



AHLSWEDE et al.: IDENTIFICATION VIA COMPRESSED DATA

Letting m — oo in (4.73) yields
R;(Y(o‘a/ja d) 2 R(P)(, PYa aaﬁ(d)aﬁa d)

which completes the proof of the converse part and hence the
proof of Theorem 3.

V. PROOFS OF THEOREMS 5 AND 6

In this section, X and Y may be correlated. As in Subsection
I-C, let W = (W(y | z))zex,yey denote the transition
probability matrix from X to Y.

Proof of Theorem 5: We begin with proving

Ry (+00,0,d) < R(Pxy,0,d). (5.1)

To prove (5.1), it suffices to prove that for any R >
R(Pxv,0,d), there exists a dp > 0 such that (R, 400, &) is
achievable. To this end, we fix below R > R(Pxy,0,d). By
the definition of R(Pxy,0, d), there exists a random variable
U taking values on some finite set I/ such that

i) U - X — Y form a Markov chain;

ii) (X AU)< Rand Ep(Pxy(-|U),Py(-|U)) >d.
Without loss of generality, in what follows, we shall assume
Py(u) > 0 for any u € U. Let § be a positive real to be
specified later. As in the proof of the direct part of Theorem
2, corresponding to the random pair (X, U), there exists for
sufficiently large n a system {(u"(¢),S;) | 1 < i < M} which
has the Properties i)-iii). Let C,, = (f,,, By, g») be the nth-
order IDS code which is based on the system we just defined
and constructed as in the proof of the direct part of Theorem 2.
From the proof of the direct part of Theorem 2, the probability
of misrejection of C,, is zero and the average rate in bits per
symbol of C,, is upper-bounded by

ra(Cn) SI(X AU) + (14 log|X])6 + % (5.2

Furthermore, the probability of false identification of C,, is
now upper-bounded by
M

L )ZPr (X", Y™ eS; xSY)

(pn(X™ Y ™) >d

<2y )0 Y Pr{Xx"=z"}

=1 yn ESEL znES;

<
Pe2(cn) > PI‘
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which, together with (5.3) and the fact that U — X — Y
forms a Markov chain, implies (see (5.4) at the bottom of
this page) where (U", X™,Y™) is n independent drawings of
(U, X,Y). Let

do = Ep(Pxy(- | U), Py (- | U)).

For convenience, we think of Ep(Pxu(-|U), Pyiy(:|U))
as a function of (Py,Px|y,Pyjy) which is denoted by
F(Py, Pxu, Py|u). 1t is not hard to prove that this function
is continuous. Since dy > d, there exists a o > 0 such that for
any P € P(U) and any stochastic matrix

V= V(J: | U))ueu,xex
the following holds:

|IP = Puf| <o, ||V —Pxpyl| <o
do+d
2

= F(P,V,Pyiy) > (5.5)

where
IV = Pxull = > IV( [ w) = Pxpp(- [ ).
ucU
Particularly, for sufficiently large n and for any z™ € §;

do+d
F(Pyn(iys Peojun iy, Pyiv) >

(5.6)

where
Px“|u”(i) € Vn(Pu"(i)au X X)

is the stochastic matrix so that ™ is Pyn|,»(;)-generated by
u™(3), since (u"(),z") is (UX,2vy)-typical. To continue
(54), let us note that if S N 7%(u"(s),)) is not empty,
where V' € Vp(Pyn(iy,U X }), then there exists 2™ € S;
and Q € P, (U x X x V) such that

i) the marginal of Q on U X X' is Pyn(j)en;

ii) the marginal of @ on U x ) is given by

Pun@pyw)V(y|w), veldandy € V;

iii) under the distribution @, Ep(Xo,Ys) < d.

xPr{Y"=4"| X"=2"} (5.3) This implies
for sufﬁcient'ly large n. Since u”(L) € .T&% and S; C F(Pyniy, Panfuniy, V) < d. (5.7)
T% 1y, (u"(é)) for each 1 < 4 < M, it follows that for
sufficiently large n and for any z" € S; In view of (5.5) and (5.6), (5.7) implies
Pr(X® = z") = 2—n(I(X/\U)+o(1))
i . , > Pungy(w)DV (- |u) | Prjp(- [u) > 36 (58)
x Pr(X" = o™ | U™ = u'(i)) 7T
M
Puy(Cn) < 2 x 27 nIEADFII R N Pr(y™ =y | U™ = u"(i))
i=1 ynesd
M
= 2 XA+ N "pr (Y™ € 87 | U™ = u™ (i) (54)

=1
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where 8, > 0 is a constant independent of 1,
Therefore, if S¢ N 77 (u(i),Y) is not empty, then

Pr{y™ e SENTHu"(3),Y) | U" = u" (i)}

<Pr{Y" € Tp(u"(i),Y) | U™ = u"(i)}
Sz—Snég

u" (1), and V.

which in turn implies
Pr{Y"™ € SHU™ = u™(i)} < [Va(Pun (oo U x V)27
< 272 (5.9)
for sufficiently large n. Substituting (5.9) into (5.4) yields
Po(Cp) < 9—n(260—6+0(1))

Selecting 6 < dp so small that the right-hand side of (5.2) is
less than R. Accordingly

P.y(Cy) < 27m%0

(5.10)

for sufficiently large n. This shows that (R, 400, &) is achiev-
able and hence completes the proof of (5.1).
We next turn to proving

Ry (+00,0,d) > Ri(Pxy,0,d).

By the definition of R%; (+00, 0, d), it suffices to prove that
for any achievable triple (R, 400, 3)

R > Ri(Pxy,0,d).

(5.11)

(5.12)

To this end, let us fix below an achievable triple (R, +00, 3).
By definition, there exists for any ¢ > 0 a sequence {C,} of
IDS codes, where C,, = (fpn, Br, gn) is an nth-order IDS code,
such that for sufficiently large n

a(Ch) < R+¢€ P.1(Cn) = 0 and P.y(C,,) < 2779,
(5.13)
As what we did before, for each " € B,,, let

SH™) ={z" € A" : fo(z™) =b"}.
Let S%(b™) denote the set of all sequences y™ € Y™ such that
Pr(X"eSO®")NBy(y™) | Y =4") >0 (5.14)
where
Ba(y") = {a" € X" : pn(z”
Clearly, P.1(C,) = O implies
Sy C{y" € V™ : ga(y™,b") = 1}
From (5.13), therefore, it is not hard to see that
> Pr{(Xx",Y") e SO") x S*(b")}

bm€B,,

y") < dj.

< 27079 4 Pr{pn (X", Y") < d}
which in turn implies

> Pr{XmespM}) >

b €B,, I”ES(()")

Pr{X" = gn}
Pr{x" € S(b")}

xPr{y" e 8" | X" =2"}| -0 (5.15)

as n goes to infinity. Let B), consist of all 4™ € B,, such that

Pr(anwn) n cdiin n__.n €
2 Pr(X”ES(b”))Pr(Y eS| X" =z )<d.
(5.16)

From (5.15) and the Markov inequality, for sufficiently large
> Pr(X"esS()>1-e
b €B!,

Fix 0" € Bj, and consider S(b™) N T% , . It is easy to see
that there exists A C S(b") N 7%, such that A C TR(&X)
for some (X,~,)-essential P and

SE) N TR
L og ISUD N TR, <|X|1°’5"’”Jrl (5.17)
A
From (5.16)
Loy e At xm =2y < £ 5.18
Z A (Y™ e A4 | ") < y (5.18)

" EA

where A? is defined in the same way as S d(b") was. Focusing
on A, we define a random vector X" = (Xl, -+, X,,) taking
values uniformly on A, Let Y™ = (Y7, ---,Y},) be the output
of the memoryless channel W resulting from passing Xn
through W. It is easy to verify that

10glAI H(X™)

_ —H(X” V™) 4 21 v
n

—ZHX | X1 vy + I(X” Y™)
i=1

| /\

~ o ~ o~ 1 ~
- . i—1l vy, yn = n
- ZH(Xz | XY V) + S H(Y™)
- 2SO HT | ). (5.19)
=1

Let I be a random variable taking values uniformly on
{1,---,n} and independent of X™ and Y™. Let

X=X,Y=Yr and U= (X""1Y7,,I). (520
Then (5.19) continues as follows:
1 ~ o~ ~ ~
Elog|A| <HX|Y,U)+ I(X AY)
=H(X |U)+I(UAY) (5.21)

where the last step follows from the fact that U — XY
forms a Markov chain. From (5.17) and (5.21), we now have

Pr(X"e S )NT%., )
<|S@™)y N TR, |27 HE)+ew)

<exp{-n[[(X AU)—I(Y AU) —o(1)]}. (522
Next we show that U, X, Y satisfy
Eﬁe(PXw(' |U)) >d—e. (5.23)
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To this end, Let I/ be the finite set on which U takes values,
that is,

U={(z"" Y2 1,0) 2 e Xyt eV 1<i<n}.

For each u € U, let W,, = (W, (y | z)) be a stochastic matrix
such that
D Py [wWa = Pxip(- [ ))W;
ii) W, is absolutely continuous with respect to W;
iii)
pe(Pgip(- [w) = D Pgplz | w)Wauly | 2)p(z,y).
zeX, ycy

Therefore
Epe(Pg (- | U))

= Y Pu(wPiple | wWaly| 2)p(z,y).
u€l,x€X ,ycy

We now write W, (y | z) as W;(y | a;i_l,yf_l_l,x) whenever
w = (z*~1, Y% ,%). Think of W;(- | -) as a channel
X’i—l X yn—i XX — y
and construct a random vector Y™ = ()A/l, e ,f/n) as follows:
Step 1. For i = n, W, is from X"~ x X to . Pass X"

(viewed as (X", X,,)) through W,, and denote
the output by Y,,;

Step 2. Pass (X"~2,Y,, X,,_;) through W,,_,, and denote
the output by Yn_1;
Step i. So far, Y,_; for j = 0,---,% — 2 have been

constructed. Pass (X, ;, Y ; o, X;,_i11) through
channel Wn—H—l and denote the output by Yn_i_i_l.
Continue this procedure until
Step n. Pass (Y3, X}) through the channel ¥, and denote
the output by V1.
Since

P)”(|U(' | U)Wu = )”(|U(' | W)W

from the above construction, we can see that for any ¢ : 1 <
t<mn, (X" Y*, +1) has the same distribution as that of
(X"=%, Y™ .. ,). From this, we obtain

Epe(Pxy(- | U)) = Epp (X", Y™)
= E[E(p, (X", Y™) | Y")] (5.24)
where E(- | Y™) denotes the conditional expectation with
respect to Y. Since W, is absolutely continuous with respect

to W for any u € U, it follows from the construction of
Y™ that mefm is also absolutely continuous with respect to
Ps..v... Therefore, for any y" ¢ Al if Pr (Y” =y") >0,
or equivalently, Pr (f/” = y") > 0, then from the definition
of fld, we have

Pr(pa(X", ") <d|Y" =y") =0
which implies

E(p (X7, Y™) | Y =y") > d. (5.25)
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Note that (5.18) can be rewritten as
Pr(Y" € A%) < (—;
This, combined with (5.24) and (5.25), yields
Ep.(Pxy(-| U)) = E[E(pa(X",Y") [ Y™)]
> dPr(Y" ¢ A%
=dPr(Y" ¢ Al >d—e.

Finally, let us go back to (5.22). In view of the definition
of Ri(Pg+,0,d), we have
Pr(X" e S(")NTx,,)
< exp{—nR(Pgy,0,d —€)+o(n)}

S eXp{—an(ny, 0, d— 6) + 0(71)} (526)

where the last inequality is due to the fact that Py is (X, v, )-
essential, Note that (5.26) holds for any ™ € B},. In view of
(5.13), we have

R+4+e>r,(C)

2 >

breBl,

1 n n i

x log Pr (X" € S(") N T% )

| X
>(1-e—
_( T a2
1

X (Ri(Pxy,0,d —¢€) — o(1)) — o

In view of Lemma 3, letting » — oo and then letting ¢ — 0
yield

R> R[(PXy,O,d).

This completes the proof of (5.12) and hence the proof of
Theorem 5.

Remark 4: At this point, we point out the reason why the
method used in Section IV to prove Theorems 2 and 3 cannot
be generalized to the general case in which X and Y may
be correlated. The main difficulty lies in the fact that even
in the simplest case of « = +o0o and 8 = 0, the auxiliary
random variable U introduced in the proof of the lower bound
of Theorem 5 involves both sets A’ and ).

Proof of Theorem 6: Clearly, we need to prove only

Rix zy(v 2)(+00,0,d) < Ri(Px z)(v z), 0,d).  (5.27)

By using (2.31) for Ri(Px z)(v z), 0, d), an argument similar
to the derivation of (5.1) can be used to show (5.27).

VI. OPEN PROBLEMS

The following problems remain open:

Problem 1. When X and Y are independent, Theorem 3
gives R% (o, ,d) for 0 < 3 < (d). What
happens if 3 > 3(d)?
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Problem 2. What is the counterpart of Theorem 3 in the
general case in which X and Y may be corre-
lated?

Problem 2 may be too difficult to solve. An
easier problem is this: what is R% (400, 0, d)
in the general case?

In this paper, we considered the case when d <
Ep(X,Y). What happens if d > Ep(X,Y)? In
the binary-symmetric case, of course, the prob-
lem associated with d > Ep(X,Y) is equiva-
lent to that associated with d < Ep(X,Y"). In
general, however, this is not true.

Problem 3.

Problem 4.

APPENDIX I

In this appendix, we prove Theorem 1. To prove Ry = 0,
we construct, for sufficiently large n, an nth-order ID source
code C,, = (fn,Bn,gn) as follows, For each z" € A™,
the encoder sends z* completely to the decoder. This needs
n~[klog|X]] bits per source symbol. Observing y" € "
and receiving ¥, the decoder outputs 1 if pz(z*,y*) < d+§
and 0 otherwise, where 6 > 0 is selected so that d + 6 <
Ep(X,Y). The probability of false identification is given by

Pe3(Ca) = Pr (pi(X*,Y*) S d + 6] pu(X™,Y™) > d).

Since d < Ep(X,Y), it is easy to see that for sufficiently
large n

P.y(Cy) < 2Pr (pr (X%, Y%) < d+6).
Let P¢ denote the set of all Q € P(X x V) such that
EQp(XOaYO) < d.

Clearly, P? is a convex and closed set. Let Q* be the unique
element of P¢ such that

D(Q* || Pxy) = geling(Q | Pxy)-

For any € > 0, select k so large that
Po(C,) < ¢
and
Pr(pp(X*,Y*) > d+6) < ¢

where (X k IA/") is the sequence of k-times independent draw-
ings of a pair of random variables (X ,Y) taking values on
A x Y with joint distribution of Pgy = Q*. Fix such a k.
All that remains is to prove that for sufficiently large n, the
probability of misrejection Fe1(C,,) will be less than . To see
this is true, note that

P (Cn) = Pr (o (X5, Y*) > d+ 6 | pu(X™,Y™) < d).

By virtue of the conditional limit theorem [6, ch. 12, pp.
297-304], [10], it is not hard to prove that

lim P.1(Cp) = Pr(pp(X*, Y% > d+6) <e.

This completes the proof of Theorem 1.

APPENDIX II

In this appendix, we prove Theorem 4. Recall that dg < 1/2
satisfies h(dg) = 1 — 3, where h(-) is the binary entropy
function. It is easy to see that 1 — h(dg — d) is a continuous
function of 3. In view of Theorem 2, it suffices to prove that
for any 0 < 3 < fB(d)

R(Px,Py,3,d) =1—h(dg — d). (AD
Let U be a random variable taking values uniformly in {0, 1}
and such that

I(XAU)=1-h(ds—d) and Ep(X,U) < dg—d. (A2)

Since X takes values uniformly in {0,1}, such a random
variable exists [6, ch. 13, pp. 336-346]. It is easy to verify
that

E(Pxy,d) = [D(P; || Py) + I(U AY)]

inf
Ep(X,Y)<d
= inf [1-HYWU)
Ep(X,Y)<d
>  inf
Ep(X,Y)<d
> inf
Ep(U,Y)<dg
=1—h(dg)

where the last inequality is due to (A2). Thus it follows from
(2.4) that

I(UAY)

I({UAY)

(A3)

R(Px,Py,B,d) SI(XANU)=1-h(dg—d). (Ad)

To prove the reverse inequality of (A4), let U be any ran-
dom variable taking values in some finite set ¢/ such that
E(Pxy,d) > (. Since X takes values uniformly in {0,1},
it suffices to prove that

H(X |U) < h(ds — d). (AS)

To this end, we solve the following optimization problem:

[1-HT | V)]

inf

£ (A6)
Ep(X,Y)<d

For each u € U, let z, be an element of {0,1} such
that Pxy(zy | w) < §, where Pyy(zy | u) denotes the
conditional probability of X = z, given U = u. Since

E(Pxu,d) > >0

it is not hard to see that

3" Pu(w) (% - PX|U(:1:u|u)> > d.

ucU

(A7)

From (A7), it follows that the optimization problem (A6) is
equivalent to the following optimization problem:

inf [1—H(Y|U). (A8)

Ep(X,Y)=d



AHLSWEDE et al.: IDENTIFICATION VIA COMPRESSED DATA

Since the objective function 1 — H(Y | U) depends only on
Py (zu|w), it is not hard to see that the optimization problem
(A8) can be reformulated as maximizing

ZPL WPy (za | w)) (A9)
subject to
ZPL w)|Pxju(zu | w) = Py (@u W) =d  (A10)
and
0< Pyl |w) < 1. (Al1)

Since Py |y(z. | ) < 3, conditions (A10) and (A11) can be

replaced by

¥t

_29

Pyp(@a [ u) = Pxpy(zu |uw)=d  (Al2)

and

Pxy(zu | u) < Pyy(zu [u)) < 1 (A13)

The standard Lagrange Multiplier Method can be used to to
show that the maximum of the optimization problem given by
(A9), (A12), and (A13) is achieved at the point {Pf’|U (zu |
u))} for which there exists a A > 0 such that
D) Py (zu|u)=A for any uelf satisfying Py (z, [u) <
i) Py y(zu|u) = Pxju(zu | u) for any u € U satistying
Pxip(zu | u) > X

iii)
Y Py - Pxple | w)]=d. (A19)
ui Py (2w [u) <A
Clearly, this is something like water-filling. Since
E(Pxu,d) 2 B
it follows that
> Pu(whO)
wPx |y (e |u) <A
+ Z Py(u)h(Pxjp(zy |uw) <1-4.
wiPx |y (@u [u)>A
(A15)

We now claim that (AS) holds. Otherwise, say
H(X|U)= ZPL V(P v (zu | ) > h(dg — d).

(A16)
Then, in view of (A7) and (A14), we have 0 < A < 1/2. Since
the derivative of the function h(s) is strictly decreasing over
the interval s € (0, %], we can then deduce from (A16) that

>

u:Px o (2 [ u) <A

LD

w Py (Tu|u)>A

Py(u)h(A)

Py(u)h(Pxu(zy | u)) > h(dg)

=1-4. (Al7)
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To see this is the case, let w1, us,- -, un be all elements u
in U such that Px|y(z, | w) < A. Since d > 0, it follows
from (A14) that m > 1. Without loss of generality in proving
(A17), we assume that

Pxjy(zu, | u1) < Pxjp(zu, | u2)
<. < PX|U($u.m |U'm) <A
since otherwise we can combine elements u; with the same

value Px |y (2, | u;) as a super-element. For each 1 < i < m,
let

Ai = Pxju(zu,

and
di = [Pxv(Tu;41 | wiz1) — Pxjp(zu; | w)]
X ZPX|U(:EU_7' | uJ)
j=1

For ¢« = m, let
m

Am = X and dnl = [/\ — PXlU($Um|um)]ZPX|U($U]‘ | U/j)
j=1

It is easy to see that

Let us now compare the sum

> Py (u)h(Ay)

w: Py (2 Ju) <Ar

Y

ui Py (zu [u)>A1

= Py(u1)h(A1) +

Py (uw)h(Pxy(zy | u))

Z Py(u)h(Pxy(zy | u))

u: Py (2o |u)>A1

with h(dg —d+ d1). To this end, we distinguish between two
cases: i) A\; > dﬁ —d+d; and ii) A1 < d@ —d+ d;. In Case
i), we obviously have

2

w:Px (2w |u) <Ay
+ >
u: Pxjy (@u|u)2A1
> h(dg — d+dy).

Py (u)h(A1)

Py (w)h(Pxp (24 | w))

In Case ii), we have

Z PU(u)h(/\l)

u:PX‘U(zu|u)<)\1
+
w:Px |y (zu|u)>A1
= H(X | U) + PU(ul)[h()\l)

3 h(ds — d) + Po(un)[h(\) -
= h(dg — d+ di) + Py(uy)
x [h(A1) = h(Pxju(zu, |u1))]

Py (u)h(Px v (zu | w))

— h(Pxu(@u, | u1))]
M Px v (@, | u1))]
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— [h(ds — d + d1) — h(ds — d)]
2 hdp — d+ dy). (AL8)

In the derivation of (A18), the strict inequality 1) follows
from (A16). The inequality 2) is attributable to the following
observation: the derivation of the function h(s) is strictly
decreasing over the interval s € (0,1/2]; this, along with the
fact that

di = A — Pxju (2w, | w)]Py(us)
and A\; < dg — d + di, implies that
Pxjy(@u, |w1) <dg —d
and
h(A1) = h(Pxy(zu, | w1))

> m[h(dg —d+di) — h(dg — d)]

where Pp(uq) is assumed to be > 0 since otherwise (A18) is
just (A16). Thus whenever (A16) holds, we have

> Po(u)h()

u: PX|U(mu|U)<)\1

)

w: Px |y (zulu)>A1

Po (h(Pxju(zu | w))

> h(dg — d+dy). (A19)
Repeating the above argument for ¢ = 2,.--,m, we get
> Py(u)h(Ai)
u: Pxjy (zu |u) <N
+ Z Py (u)h(Px v (T | w))
u: PX\U(:Eulu')Z)\i
>h|lds—d+Y d;|. (A20)

j=1

Particularly, when 7 = m, (A20) reduces to (A17), which
contradicts (A1S5).

Finally, (A1) follows immediately from (A4) and (AS). This
completes the proof of Theorem 4.

APPENDIX IIT

In this appendix, we prove Lemma 3. For z = 1,2, let
(Ui, X;,Y;) be a random vector such that
) Pxv, = Pxvy;
i) U; — X, — Y; forms a Markov chain;
i) Ep. (Pxu, (- | U2) > de

Let I be a random variable taking values in {1,2} with
Pr(I = 1) = A. The random variable I is assumed to be
independent of (U;, X;,Y;) for ¢ = 1, 2. Define

X=X,Y =Y, and U = (U, ).

Clearly, Py = Pxy and U — X — Y forms a Markov
chain. Furthermore, it is not hard to see that

Ep—E(P}ﬂU(' | U)) = /\Eﬁe(PX1|U1 ( | Ul))
+ (1 = NEpe(Px, v, (- | U2))
> Ay + (1 - /\)dQ

and

IXAU)=I(Y ANU) = MI(X, AU = I(YL AUL))
+ (1= NI (X2 AUs)
— 1(Y2 AU2)).

From this and the definition of R;(Pxy,0,d), it follows that
R;(Pxv,0,d) as a function of d is convex.

To prove the second part of Lemma 3, first note that
pe(P) is convex as a function of P over P(&X). Since P(X)
is a convex polytope, it follows from [11] that p.(P) is
upper-semicontinuous on P(X’). On the other hand, from the
definition of p.(P), it is easy to prove that p.(P) is lower-
semicontinuous on P(X’). Therefore, p.(P) is continuous
on P(X). Applying the support lemma to the definition of
Ri(Pxy,0,d) yields immediately the second result of Lemma
3.
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