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The Complete Intersection Theorem for Systems of Finite Sets

RupoLr AHLSWEDE AND LEvON H. KHACHATRIAN

1. HisToRIAL BACKGROUND AND THE NEw THEOREM

We are concerned here with one of the oldest problems in combinatorial extremal
theory.

It is readily described after we have made a few conventions. N denotes the set of
positive integers and, for i,j e N, i <j, the set {i, i +1,...,} is abbreviated as [, j].
For k,n e N, k <n, we set

wi=pre ), (W)=reain=n (L1)

A system of sets o < (1)) is called t-intersecting if
AL N Ay =t for all A;, A, € ¥, (1.2)

and I(n, k, t) denotes the set of all such systems.
The investigation of the function

M(n, k,t)= max |4, lstsk=n, (1.3)

A el(nk,t)

and the structure of maximal systems was initiated by Erdos, Ko and Rado. According
to reference [7], they had already proved the following theorem by the year 1938,
although it was only published in 1961 in their famous paper [9].

TueoreM EKR. For 1<t<k and n=n,(k, t) (suitable)

M(n, k, 1) = (Z B i) (1.4)
Clearly, the system
A(n, k, 1) = {A e <[Z]>:[1, 1 cA} (1.5)

n—t

has cardinality (% —{) and is therefore optimal for n =n,(k, t).
The smallest n,(k, ) for which this is the case has been determined by Frankl [10]
for t =15 and subsequently by Wilson [13] for all ¢:

no(k, 1) = (k —t +1)(t + 1). (1.6)

Moreover, for n>(k —t+1)(t +1), there is—up to obvious permutations on the
ground set [1, n]—only one optimal system.
In the present paper we settle all of the remaining cases

n<(k—t+1)(+1).
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In particular, we prove the so-called 4m-Conjecture (Erdos, Ko and Rado, 1938; see
[7, page 56] and the survey [6])

M(4m, 2m, 2) = HFe<[:Z]>:Fﬂ[1, 2m]>m+1H. (1.7)
Thus, obviously,
o m=3{(2)- ()

The previously best upper bound on M(4m, 2m,2) is due to Calderbank and Frankl
[5].

There is a natural extension of the 4m-Conjecture in terms of the systems

t
%Z{Fe<[Z]>:|Fﬂ[1,t+2i]|21+i} forOsisnT (1.9)
to all possible parameters.

GENERAL CONJECTURE [10]. For 1<t<k=<n,

M(n, k,t) = max |%|. (1.10)
o=i=""

Notice that for n =4m, k =2m, t =2 the maximum is assumed for i =m — 1 and so
the 4m-Conjecture is covered. For n=(k — ¢+ 1)(t + 1) the maximum is assumed for
i=0. A further step towards proving the General Conjecture was taken in [10] for
t =15, where the cases 0-8(k —t +1)(t +1)<n <(k —t +1)(t + 1) are settled. Here %
is (up to permutations) the only optimal system. Some other cases have been settled in
[12].

Our main result establishes the validity of the General Conjecture and provides an
even more specific answer concerning uniqueness.

THEOREM. Forl<t<k<=n:
() With (k—t+1)Q2+ 5 <n<(k—t+1)2+571) for some r e NU{0}, we have

M(n, k, 1) = ||
and %, is—up to permutations—the unique optimum. (By convention, 5= for
r=0.)

(i) With (k—t+1)2+ 1) =n for r e NU{0}

we have

M(I’Z, k: t) = |%| = |%+1|

and an optimal system equals—up to permutations—either . or %, .

ConvenTION. In the sequel, we write &/, = ¢f, if the systems &/, and &/, are equal
up to permutations.

Remarks. (1) It suffices to treat the cases
n>2k—t, (1.11)

because for n <2k —t the whole system ({!) is z-intersecting.
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(2) Our method of proof follows ideas in our work in Number Theory (see [2], [3],
[4]). They led to the concept of generating sets in Section 2 and related pushing
techniques in later sections, which go considerably beyond known techniques in
Combinatorial Extremal Theory (see [11]).

(3) The t-intersecting systems in I(n, k,t) can be understood as systems with a
diameter less than 2k — 2t in the Hamming distance. Instead of Intersection Theorems
one can then speak of Diametric Theorems—a concept of geometrical meaning. This
and relations to Isoperimetric Theorems have been discussed in [1].

(4) In [8], Erdos mentions the 4m-Conjecture as the last open problem from [9].

2. GENERATING SETS AND THEIR PROPERTIES
We begin with well-known notions.
DerNitioNn 2.1, For A, ={ij, b, ..., i ;e ("), ii<i,<---<i;, and A,=
L jas - jst e (M), i <jp<---<js, we write
A <A, iff i) <j, forall 1</<s;
that is, A; can be obtained from A, by left-pushing. Furthermore, let £(A,) be the set
of all sets obtained this way from A,. Also, set L() =Isc0 L(A).

DErFINITION 2.2, o/ < 2"l is said to be left compressed iff o = ().

DEerinNtTION 2.3. We denote by LI(n, k, t) = I(n, k, t) the set of all left compressed
systems from [I(n, k, t).
It is well-known and easily follows with the shifting technique of [9] that

M(n,k,t)= max |o= max [of]. (2.1)

sdel(n, k, ) AelLl(n, k,t)

DerFNiTION 2.4, For any B 2" we define the upset U(B)={B' €2":BcB'}.
More generally, for % < 2" we define the upset

UB) = | UB).

Now we introduce new concepts.

DerINITION 2.5.  For any B < (14) a set g(B) = U= (1) is called a generating set of
B, if U(g(B)) N (%) = B. Furthermore, G(2AB) is the set of all generating sets of %.
(G(B) # D, because B € G(RB)).

A first auxiliary result is readily established.

LemmA 1. For o € I(n, k, t), n >2k — t,

|E1 N E2| =1 fOr El) E2 (S g(&«) (S G(ﬂ)
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Proor. Since 2k —t<n, |E; N E,| <t would allow k-element extensions of E; and
E, which are not ¢-intersecting.

Next, we introduce further basic concepts.

DeriNiTION 2.6, For B ={b, by, ..., bptc[l,n],byNb,<---<by, write the
largest element bz as s*(B). Also, for 8 < 2" set

s (B) = max s (B).
Be®

DeriNiTION 2.7, Let of = (7)) be left compressed, i.e. o/ = £(sf). For any generating
set g(f) e G(«A), consider £(g(£)) and introduce its set of minimal (in the sense of
set-theoretical inclusion) elements %, (g()).

Furthermore, define G () =1{g(#) € G(A):ZL,(g(s4)) =g(s4)}. (Notice that o
G (<h)).

We continue with simple properties.

LemMA 2. For a left compressed sf = (1) and any g(sf) € G(A):
() %,(s(D) € Gl
(i) s™(ZL,(g()) =s5"(g(A));
(iii) for Ae £,(g(A)) and B <A, we have either B € £,(g(s4)) or there exists a
B' € %, (g(sA)) with B' = B.

The next important properties immediately follow from the definition of G (&) and
the left-compressedness of .

LeEmMMA 3. For a left compressed < < () and g(sf) € G (), < is a disjoint union
= U DE),
Eecg(s)
where
(1]

. ):B —EUB,, B, c[s"(E)+1,n],|B.| =k — |E|}.

QD(E)={B € <

LEMMA 4. For a left compressed sf = (%) and g(sf) € G (sf), choose E € g(sd) such
that s*(E) = s (g()) and consider the set of elements of sf which are only generated by
E; that is,

n
st = ey ue (st ey 0 ()
Then
n—s*(E)
A, = D(E d Ag| = ( )
(E) an | Al k —|E|

Lemma 5. Let o/ e LI(n, k,t), g(sd) e G, (o), and let E,, E, € g(sf) have the
properties

i%EluEz, jEElmEz
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for some i,j e [1, n] with j <j. Then

[E\NEy)=t+1.
Finally, we use the following convention.
DeriniTioN 2.8 For of € LI(n, k, t), we set

Smin(G () = min )S+(g(&¢))-

g(A) e G

3. THE MAIN Two AUXILIARY RESULTS

LEmmA 6. Let n>2k —t, ol € LI(n, k, t), with |A|= M(n, k, t), and let

k—t+1)(+2r+1 t—1
n >4 )t +2r )=(k—t+1)(2+—> (3.1)
r+1 r+1
for some r e NU{0}. Then
Smin(G (&))<t +2r. (3.2)

Proor. We can assume that n =2k —t + 2, because in the case n =2k —t+1 we
have, from (3.1), r =k — ¢ + 1, and hence (3.2) trivially holds.
By Lemma 2 we have, for some g(+) € G (),

57(8(A)) = 5min( G ().

Now assume that, in the opposite to (3.2),
st (g(Ad)=t+2r+6 for some & > 0. (3.3)

We shall show that under the assumptions (3.1) and (3.3) there exists an A’ € I(n, k, )
with |'| > || = M(n, k, t), which is a contradiction.

For this, we start with the partition g(&f)=go() U g(), where go(d)={B e
g(l):sT(B)=1t+2r + 6} and g,() = g(A) \ go(A).

Obviously, for every B; € go(&f) and B, € g,(«f) we have

(Bi\{t+2r+8})NB,|=t (3.4)

The elements in gy(s/) have an important property, which follows immediately from
Lemma 5:

(P) Forany E,, E, e go(sf) with |E, N E,| =, necessarily |E;| + |E,| = 2t +2r + 8.

Now, we partition g,(%f) according to the cardinalities of its members:

g()(&«) - t<i<92r+6 %) % - g()(ﬂ) n <[rll]>
(Here we have used that in case % #J, by Lemma 1 and left-compressedness,
necessarily %, ={[1, t]} =g(&f) and (3.2) holds. Furthermore, if R,.,, .57, then
Ryiarvs=1[1,1+2r + 8]} =g(sf), and by optimality of &/ necessarily r =8 =0 and
again (3.2) holds.)
Of course, some of the #;’s can be empty.
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Next, we omit the element ¢ + 2r + §; that is, we consider
R ={Ec[l,t+2r+8 —1:EU{t +2r + 8} € %;}.
So || =|%/| and, for E' € R}, |E'|=i—1 (i € N). From property (P) we know that,
for any E{ e %/, E; € R} with i +j#2t +2r + 6,
|[E{NEj| =t (3.5)
We shall prove that (under conditions (3.1) and (3.3)) all &,’s are empty.

First we notice that the equation |Ey| + |E,| =2t +2r + §, for E,, E, € go(«), implies
that

|Ej|>k —(n—1t—2r—29) forj=1,2,

because otherwise, for instance, |E;|<k — (n —t —2r — 8) implies that |E,| =2t +2r +
0 — |Ei|=n — k + ¢, which, together with |E,| <k, contradicts n >2k — ¢.

Hence, if for all i,i>k—(n—1t—2r—235), we have R,=, then ¥ = (g(f)\
go(N)U (U ciiinrss R) € I(n, t), the set of all (unrestricted) t-intersecting systems
in 2", |(90) N ()| = |o4), and s () <s"(g(sf)), which is a contradiction.

Suppose, then, that for some i, k—(n—t—2r—8)<i<t+2r+6, ##J or,
equivalently, %/ # . We distinguish two cases: (a) i # (2t +2r +6)/2 and (b) i =
(2t +2r + 8)/2.

Case (a). We consider the sets
fi=81(A) U (8o( )\ (T U R s2y45-1)) U K
L=81(A) U (o(A)\ (R U Royia15-1)) U Rogarss—ie
We know already (see property (P) and (3.5)) that
fi, relln,t)

and hence

%:%“”%%UEKmhﬂ fori=1,2.

The desired contradiction will take the form

max | %] > || . (3.6)
i=1,2

We consider the set o/ \ %,.

From the construction of f; and %), it follows that &/ \ %, consists of those elements
of (1) which are extensions only of the elements from %, »,,5 . We determine their
number:

|\ By = | (U Pass2r+5-) \ UG(H)\ Ry v2r+5-1))) N <[IIZ]> ‘

and, by Lemma 4,

n—t—2r—2
ANy = ;~< ) 37
[SNB =1 aszrvad( ~ o o s (3.7)

Symmetrically, we consider the set %, \ .
Let B, be any element of %/, so |By| =i — 1. Clearly, B, ¢ g(«), because
B U{t+2r+ 8} € g(A) and  g(sA) e G ().

Therefore, for every A e () in the form A=B,UB,, where |B,/=k—i+1 and
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B,c[t+2r+8+1,n], we have A € %, and A ¢ o, because s (g(«)) =1+ 2r + 8. We
also notice that, for B,, B € &/, B, # B{, we have

B1UB2¢BI’UB2, fOralle,Bz/C[t+2r+8+1,n].

Therefore
n—t—2r—2=5 n—t—2r—295
?/3\5&2%’< )2%( ) 3.8
sz (U ) = (T (3.8)
Analogously, we have
n—t—2r—29
e =" T0), (39)
n—t—2r—=o
\A| = Rors 2+ ,,( ) 3.10
e VIS S S (3.10)

Actually, it is easy to show that there are equalities in (3.8) and in (3.10). However,
that is not needed here.
Now (3.7)—(3.10) enable us to state the negation of (3.6) in the form

n—t—2r—25 n—t—2r—2=%
W( k—i+1 )g%’*”*‘s""(k—zz—zr—5+i>
and . (3.11)

n—t—2r—=5 n—t—2r—29o
|%2t+2r+5*l| <k—2t_2r_6+l+1> |%|< k_l )

Since, by assumption, R;#J, we can also assume that R, .,.45 ;7 J, because
otherwise the first inequality in (3.11) is false.
Furthermore, (3.11) implies that

m+t—k—-i)n—t-2r—6—k+i)<(k—i+1)(k—2t-2r—86+i+1).
However, this is false, because n =2k —t + 2 and, consequently,n +t —k —i>k —i +
1 as well as n—t—2r—8—k+i>k—2t—2r—8+i+1. Hence, (3.6) holds, in
contradiction to the optimality of /. Therefore, necessarily, % = for all i#

(2t +2r + 8)/2. (In this case (a) we did not use the condition (3.1), and not even the
condition & > 0).

Case (b). i = (2t +2r + 6)/2. Here, necessarily, 2 | 8. We consider the set R, ,.sp
and recall that for B € R/, ,, 5, |B|=t+r+68/2—1and Bc[l,t+2r + 56— 1]

By the pigeon-hole principle, there exists ani e [1,t+2r+8—1]anda T < R/, 4
such that i ¢ B for all B € J and

r+68/2
t+2r+6-—1

r+68/2

I = T ——
171 t+2r+6-—1

| Porsrraial - (3.12)

| Rl rv5] =

By Lemma 5, we have |B, N B,|=1t for all B, B, € 7, and since by case (a) %; = ¢ for
i#t+r+ 8/2, we obtain

= @I\ Ryiri5p) U T € 1(n, 1)
We show now that under condition (3.1) we have
aryn (M) =1 (3.13)

Indeed, let us write o = U(g(sf)) N () =D, U D, where D, = U(A)\ R4y 50) N
(D D= (U P52\ WG\ Ry ri52)) N () and U N (7)) =2, U B,
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where 95 = (U \ U(G(HA)\ Rrsrrsr) N (4. In this terminology, the following is
equivalent to (3.13):

15| > || - (3.14)
We know (see Lemma 4) that

n—t—2r—3> (3.15)

%=1l

and estimate now |%5| from below.
Consider any B € 7, |B|=t+r + 6/2—1. Clearly, B ¢ g(«), because

BU{t+2r+ 6} e g(A) and g() € G (A).

Hence, for every A e ([Z]) in the form A=BUC,, where |C{|=k —|B| and C, c
[t +2r + 8, n], we have A € %;.

We also notice that, for all B;, B, € 9, B; # B,, one has B, U C,# B, U C, for all
Cy, Coc[t+2r+ 34, nl

Therefore
n—t—2r—586+1 )
=9 . 3.16
124 |av](k—t—r—é/2+1 (3.16)
In the light of (3.12) and (3.14)—(3.16), it is sufficient for (3.13) that
+ —t=2r—8+ —t—2r—
r+6/2 nt2r51>nt2r8 (3.17)
t+2r+6-1 L1 6+1 1 )
——r=2 -2
2 2
or, equivalently, that
1) )
<r+§>(n—t—2r— 8+1)><k—t—r—5+1>(t+2r+6 - 1), (3.18)
which in turn is equivalent to
k—=t+1D)@+2r+56-1)
n>
r+6/2
This is true by (3.1), because & is even and
t+2r+1_t+2r+6—1
= for 6 =2.
r+1 r+68/2
Hence 6 =0 and the lemma is proved. O

CororLAaRY (for the 4m — Conjecture). Let o e LI(4m,2m,2) and |s|=
M(4m, 2m, 2). Then
Smin(G (&) <2m.

Proor. Just choose r =m — 1 and notice that (3.1) in Lemma 6 holds:

m>(2m -1D(2m + 1).
m

4

Finally, we present the second auxiliary result.
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LemMma 7. For any (not necessarily maximal) o € I(n, k, t), consider any generating
set g(A) € G(&l). Furthermore, for the complemented system < € I(n, n —k, n — 2k +
t), let f(sf) be any generating set from G(&f). Then, for all A € g() and B € f(4), we
have

JAUB|=n—k +t. (3.19)

Proor. Assume that (3.19) does not hold:
JAUB|<n—k+t—1.
Choose any F o AU B with |F|=n —k +t—1. We know that

U(A) N <[Z]> co and  UB)N (n[ﬁ]k

e
Since n >2k —t, t>0, and n — k +t — 1 =max(k, n — k), we can choose A* € U(A) N
(1) and B* € U(B) N (,") in such a way that A* = F and B* < F.

Consider B* e of and observe that |[A*NB¥<m—-k+t—1)—-(n—-k)=t—-1,
contradicting & e I(n, k, t). d

4. PrRoOOF OF THE 4m-CONJECTURE

We treat this famous case here separately, even though it is covered by the proof of
the Theorem.

Let o e LI(4m,2m,?2), let || =M(4m,2m,2) and let g(of) e G(sf) such that
s7(8(A)) = smin(G (L))

From the corollary we know that s™(g(<f)) <2m, that is, for B € g(f) necessarily
B c[1,2m]. We consider the complemented «/:

A={Ac[l,4m]:[1, 4m)\ A e of}.

Clearly, of € I(4m, 2m, 2), || = M(4m, 2m, 2), & N of= D and o is right-compressed.

From the left-right symmetry and the corollary we conclude that there exists a
generating set f(.sf) such that for every B e f(sf) necessarily B c [2m + 1, 4m].

Now, if for all B, e g(«f) we have |By|=m +1 then, necessarily, &/ = %, _, and
Lot | = 14| =T - _

The same conclusion holds if, for all B, e f(&f), we have |B,|=m + 1. However, if
neither of these two cases occurs then, for some B, € g(«f) and B, € f(</), we have
|Bil, |Bo| < m.

Finally, for every A e (13!) of the form A> B, UB,, necessarily A e AN, a
contradiction to & N o = .

REmARK 5. Instead of the last step of the proof, one can argue that |B; U B,| <
2m <2m +2=n—k +1tis in contradiction with Lemma 7.

5. PROOF OF THE THEOREM

Cask (i):
(k—t+1)<2+%><n<(k—t+1)(2—!—%). (5.1)
Choose o € LI(n, k,t) with || =M(n, k,t) and let g(&f) € G(&f) with s (g(A)) =
Smin(G ().
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We know from Lemma 6 that s*(g(sf))<t+2r and we also know that s/, the
complemented &/, is right compressed, an element of I(n,n—k,n—2k+1) and
satisfies |&f| = M(n, n — k, n — 2k + t). An easy calculation leads from (5.1) to

n—2k+t—1
o pf2sn 2T
( ) k—t—r+1
—2k+t—1
<n<m—r+n@+ﬁ?—7———> fork>t+r (5.2)
—>l—r
and to
(k=t+D)(n—-2k+t+1)<n fork=t+r. (5.3)

Since n >2k —1t, (5.1) implies that always k =t +r.
Therefore, for k' =n — k and t' = n — 2k + t we obtain the dual relations

!

t =1

(k’—t’+1)<2+ ><n<(k’—t’+1)<2+ > forr'=k—t—r
r+1 r'

and

k'=t'+ 1)’ +1)<n fork=t+r.

Using the dual version (with respect to right compressed sets) of Lemma 6, we obtain
an f(o) e G(&f) with the property:

every B e f(sf) satisfies B <[n — (t' +2r") + 1, n]
=[t+2r+1,n], because t' =n -2k +tandr' =k —t—r.

Now, if for all B, € g(sf) we have |B,|=t+r, then clearly /=%, =%, (for
k'=n—k, t' =n —2k +1t) and the optimal sets are unique up to permutations.
The same sets are obtained if, for all B, € f(f), the inequality |B,| =¢' + r’ holds.
If none of the cases occurs, then for some Bf e g(sf), B € f(s), |Bf|<t+r—1 and
|Bf|<t'+r'—1=n—k—r—1 and, by Lemma 7, we will have a contradiction,
because [Bf UB%|<n—k+1t—2.

Cask (ii):

—w—wn@+ii> (5.4)
" r+1/ '
Let o/ € LI(n, k, t) and let |f| = M(n, k, t). Since n > (k —t + 1)(2 + 553), we conclude
with Lemma 6 that

Smin(G () <t +2r+2.
Now choose g(#/) € G(sf) with s (g()) = Smin(G ().
We again consider &, which is again right compressed and of maximal cardinality
within I(n, n — k, n — 2k +1).
From (5.4), we derive

r—1 —2k+t—1
SR PO I P T
r+1

k—t—r

=1
=(k’—t’+1)<2+t )

’

where k'=n—-k, t'=n—-2k+tandr' =k —t—r.
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Since n = (k' —t' + )2+ 52 > (k' —t' +1)(2 + &5%), from the dual version (with
respect to right compressed sets) of Lemma 6 one has an f(sf) € G(&/) the elements B,
of which satisfy Byc[n—t' —2r' +1,n]=[t +2r + 1, n].

Now, if for all B, € g(<f), |B,|=t +r + 1, then uniquely o/ = %, and &/ = %, _, (for
k'=n—k,t'=n—-2k+t,r'=k—t—r).

Also, if for all B, e f(sf), |Bi|=t+r', then uniquely /=% and A=Z.
Otherwise, if for some B, € g(sf) and B, € f(sf), |BoJ<t+r and |B;|<t' +r' — 1, then
IBiUB,|<t+r+t' +r—-1=n—-k+t—1.

This again contradicts Lemma 7.

This finishes the proof, if we allow only left compressed systems as competitors. We
thank K. Engel for asking for an argument for not left compressed competitors. We
follow an idea of [10] to prove the uniqueness, stated in the theorem.

We use the well-known exchange operation S;;, i <j, defined for any family &/ < 2"
as follows: for A € «,

C({u@ANj}) ifigeA jeA{iUAN}) ¢ oA,
Si4) = {A otherwise,
Si(of) =1{S;(A):A e s}

ProprosITION.  Suppose that i € I(n, k, t) and that o gets transformed by finitely
many exchange operations to the set %, (see (1.9)) for some 0<r=<(n—1)/2. Then,
necessarily, i = %,, provided that

n=2k—t+2 fort=2,
n=2k—t+1 fort=2and k=t+rork=t+r+1,
n=2k+1 fort=1andr=0orr=1 (*)

Proor. Without loss of generality, we can assume that
Sy(st) = . (5.5)

It is clear that, if i, j e [1, ¢ +2r] (or i,j ¢ [1, t +2r]), then &/ = &% and the Proposition
is true.
Assume, then, that i =t + 2r and j =n. Let

dr={Aed:jeAicA (A\}HU{j}) ¢ o}
Clearly, if o/, =@, then &/ =%, and if &, =(J, then o is obtained from %, by
exchanging the co-ordinates i =¢ + 2r and j =n, so the proposition is true. Suppose,

then, that A, # J, of, # J, and let us show that o ¢ I(n, k, t) (under conditions (*)).
We consider

%z{H e <[”]1\_{i’1j}>:|Hm [1,t+2r —1]| =t+r—1}.

We observe that, for any B € o, U s, |[BN[1, t+2r —1]|=¢+r —1 holds.

This fact follows from (5.5). Moreover, from the same assumption (5.5) we have the
following: for every H e 9 either H U{j} € o, or H U {i} € .

Now we form a graph G(V, E) as follows:

V=%ande(H1,H2)EE lff(HlﬂHz)=l—1
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It can be verified that the graph G(V, E) is connected iff the conditions (*) hold.
Hence, under conditions (%), if &, #J and o, # J, then there exist B; € &/, and
B, € o4, with |B; N B,| =t — 1, which contradicts & € I(n, k, t). O

Proor ofF THE UNIQUENESs. Let n>2k—t, A el(n k,t) and || =M(n,k,1t),
and—after finitely many exchange operations §;, i <j—let & be transformed to the
left-compressed set &', o' € LI(n, k, t), |A'| = || = M(n, k, t).

We already know that &’ = % for r € N U {0}, where r is defined by the conditions in
the theorem. It can be easily verified that these r’s satisfy the conditions (*) stated in

the proposition, and hence that &/ = %,. O
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