
 Europ . J . Combinatorics  (1997)  18 ,  125 – 136

 The Complete Intersection Theorem for Systems of Finite Sets

 R UDOLF  A HLSWEDE   AND  L EVON  H .  K HACHATRIAN

 1 .  H ISTORIAL  B ACKGROUND   AND   THE  N EW  T HEOREM

 We are concerned here with one of the oldest problems in combinatorial extremal
 theory .

 It is readily described after we have made a few conventions .   N   denotes the set of
 positive integers and ,  for  i ,  j  P  N , i  ,  j ,  the set  h i ,  i  1  1 ,  .  .  .  ,  j j   is abbreviated as [ i ,  j ] .
 For  k ,  n  P  N , k  <  n ,  we set

 2 [ n ]  5  h F  :  F  ’  [1 ,  n ] j ,  S [ n ]
 k
 D  5  h F  P  2 [ n ]  :  u F  u  5  k j .  (1 . 1)

 A system of sets  !  ’  ( [ n ]
 k  ) is called  t - intersecting  if

 u A 1  >  A 2 u  >  t  for  all  A 1  ,  A 2  P  ! ,  (1 . 2)

 and  I ( n ,  k ,  t ) denotes the set of all such systems .
 The investigation of the function

 M ( n ,  k ,  t )  5  max
 ! P I ( n ,k ,t )

 u ! u ,  1  <  t  <  k  <  n ,  (1 . 3)

 and the structure of maximal systems was initiated by Erdo ̈  s ,  Ko and Rado .  According
 to reference [7] ,  they had already proved the following theorem by the year 1938 ,
 although it was only published in 1961 in their famous paper [9] .

 T HEOREM  EKR .  For  1  <  t  <  k and n  >  n o ( k ,  t ) ( suitable )

 M ( n ,  k ,  t )  5 S n  2  t

 k  2  t
 D .  (1 . 4)

 Clearly ,  the system

 ! ( n ,  k ,  t )  5 H A  P S [ n ]
 k
 D  :  [1 ,  t ]  ’  A J  (1 . 5)

 has cardinality ( n  2  t
 k  2  t ) and is therefore optimal for  n  >  n o ( k ,  t ) .

 The smallest  n o ( k ,  t ) for which this is the case has been determined by Frankl [10]
 for  t  >  15 and subsequently by Wilson [13] for all  t :

 n o ( k ,  t )  5  ( k  2  t  1  1)( t  1  1) .  (1 . 6)

 Moreover ,  for  n  .  ( k  2  t  1  1)( t  1  1) ,  there is—up to obvious permutations on the
 ground set [1 ,  n ]—only one optimal system .

 In the present paper we settle all of the remaining cases

 n  ,  ( k  2  t  1  1)( t  1  1) .
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 In particular ,  we prove the so-called 4 m - Conjecture  (Erdo ̈  s ,  Ko and Rado ,  1938 ;  see
 [7 ,  page 56] and the survey [6])

 M (4 m ,  2 m ,  2)  5 U H F  P S [4 m ]
 2 m

 D  :  F  >  [1 ,  2 m ]  >  m  1  1 J U  .  (1 . 7)

 Thus ,  obviously ,

 M (4 m ,  2 m ,  2)  5
 1
 2
 S S 4 m

 2 m
 D  2 S 2 m

 m
 D 2 D .  (1 . 8)

 The previously best upper bound on  M (4 m ,  2 m ,  2) is due to Calderbank and Frankl
 [5] .

 There is a natural extension of the 4 m -Conjecture in terms of the systems

 ̂  i  5 H F  P S [ n ]
 k
 D  :  u F  >  [1 ,  t  1  2 i ] u  >  t  1  i J  for  0  <  i  <

 n  2  t
 2

 (1 . 9)

 to all possible parameters .

 G ENERAL  C ONJECTURE  [10] .  For 1  <  t  <  k  <  n ,

 M ( n ,  k ,  t )  5  max
 0 < i < n 2 t – 2

 u ̂  i u  .  (1 . 10)

 Notice that for  n  5  4 m ,  k  5  2 m , t  5  2 the maximum is assumed for  i  5  m  2  1 and so
 the 4 m -Conjecture is covered .  For  n  >  ( k  2  t  1  1)( t  1  1) the maximum is assumed for
 i  5  0 .  A further step towards proving the General Conjecture was taken in [10] for
 t  >  15 ,  where the cases 0 ? 8( k  2  t  1  1)( t  1  1)  ,  n  ,  ( k  2  t  1  1)( t  1  1) are settled .  Here  ̂  1

 is (up to permutations) the only optimal system .  Some other cases have been settled in
 [12] .

 Our main result establishes the validity of the General Conjecture and provides an
 even more specific answer concerning uniqueness .

 T HEOREM .  For  1  <  t  <  k  <  n :
 (i)  With  ( k  2  t  1  1)(2  1  t  2  1 – r  1  1 )  ,  n  ,  ( k  2  t  1  1)(2  1  t  2  1 – r  )  for some r  P  N  <  h 0 j , we ha y  e

 M ( n ,  k ,  t )  5  u ̂  r u

 and  ̂  r  is — up to permutations — the unique optimum .  ( By con y  ention ,  t  2  1 – r  5  ̀    for
 r  5  0 . )
 (ii)  With  ( k  2  t  1  1)(2  1  t  2  1 – r  1  1 )  5  n for r  P  N  <  h 0 j
 we ha y  e

 M ( n ,  k ,  t )  5  u ̂  r u  5  u ̂  r 1 1 u

 and an optimal system equals — up to permutations — either  ̂  r  or  ̂  r 1 1  .

 C ONVENTION .  In the sequel ,  we write  !  1  ;  !  2  if the systems  !  1  and  !  2  are equal
 up to permutations .

 R EMARKS .  (1)  It suf fices to treat the cases

 n  .  2 k  2  t ,  (1 . 11)

 because for  n  <  2 k  2  t  the whole system ( [ n ]
 k  ) is  t -intersecting .
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 (2)  Our method of proof follows ideas in our work in Number Theory (see [2] ,  [3] ,
 [4]) .  They led to the concept of generating sets in Section 2 and related pushing
 techniques in later sections ,  which go considerably beyond known techniques in
 Combinatorial Extremal Theory (see [11]) .

 (3)  The  t -intersecting systems in  I ( n ,  k ,  t ) can be understood as systems with a
 diameter  less than 2 k  2  2 t  in the Hamming distance .  Instead of Intersection Theorems
 one can then speak of Diametric Theorems—a concept of geometrical meaning .  This
 and relations to Isoperimetric Theorems have been discussed in [1] .

 (4)  In [8] ,  Erdo ̈  s mentions the 4 m -Conjecture as the last open problem from [9] .

 2 .  G ENERATING  S ETS   AND  T HEIR  P ROPERTIES

 We begin with well-known notions .

 D EFINITION  2 . 1 .  For  A 1  5  h i 1  ,  i 2  ,  .  .  .  ,  i s j  P  ( [ n ]
 s  ) , i 1  ,  i 2  ,  ?  ?  ?  ,  i s  ,  and  A 2  5

 h  j 1  ,  j 2  ,  .  .  .  ,  j s j  P  ( [ n ]
 s  ) , j 1  ,  j 2  ,  ?  ?  ?  ,  j s  ,  we write

 A 1  a  A 2  if f  i l  <  j l  for  all  1  <  l  <  s ;

 that is ,   A 1  can be obtained from  A 2  by  left - pushing .  Furthermore ,  let  + ( A 2 ) be the set
 of all sets obtained this way from  A 2  .  Also ,  set  +  ( !  )  5  ! A P !  + ( A ) .

 D EFINITION  2 . 2 .  !  ’  2 [ n ]  is said to be  left compressed  if f  !  5  +  ( ! ) .

 D EFINITION  2 . 3 .  We denote by  LI ( n ,  k ,  t )  ’  I ( n ,  k ,  t ) the set of all left compressed
 systems from  I ( n ,  k ,  t ) .

 It is well-known and easily follows with the shifting technique of [9] that

 M ( n ,  k ,  t )  5  max
 ! P I ( n ,  k ,  t )

 u ! u  5  max
 ! P LI ( n ,  k ,  t )

 u ! u  .  (2 . 1)

 D EFINITION  2 . 4 .  For any  B  P  2 [ n ]  we define the upset  8 ( B )  5  h B 9  P  2 [ n ]  :  B  ’  B 9 j .
 More generally ,  for  @  ’  2 [ n ]  we define the upset

 8 ( @ )  5  !

 B P @
 8 ( B ) .

 Now we introduce new concepts .

 D EFINITION  2 . 5 .  For any  @  ’  ( [ n ]
 k  ) a set  g ( @ )  ’  ! i < k  ( [ n ]

 i  ) is called a  generating set of
 @ ,  if  8 ( g ( @ ))  >  ( [ n ]

 k  )  5  @ .  Furthermore ,   G ( @ ) is the set of all generating sets of  @ .
 ( G ( @ )  ?  [ ,  because  @  P  G ( @ )) .

 A first auxiliary result is readily established .

 L EMMA  1 .  For  !  P  I ( n ,  k ,  t ) ,  n  .  2 k  2  t ,

 u E 1  >  E 2 u  >  t  for  E 1  ,  E 2  P  g ( ! )  P  G ( ! ) .
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 P ROOF .  Since 2 k  2  t  ,  n ,  u E 1  >  E 2 u  ,  t  would allow  k -element extensions of  E 1  and
 E 2   which are not  t -intersecting .

 Next ,  we introduce further basic concepts .

 D EFINITION  2 . 6 .  For  B  5  h b 1  ,  b 2  ,  .  .  .  ,  b u B u j  ’  [1 ,  n ] ,  b 1  >  b 2  ,  ?  ?  ?  ,  b u B u  ,  write the
 largest element  b u B u   as  s 1 ( B ) .  Also ,  for  @  ’  2 [ n ]  set

 s 1 ( @ )  5  max
 B P @

 s 1 ( B ) .

 D EFINITION  2 . 7 .  Let  !  ’  ( [ n ]
 k  ) be left compressed ,  i . e .   !  5  +  ( ! ) .  For any generating

 set  g ( ! )  P  G ( ! ) ,  consider  + ( g ( ! )) and introduce its set of minimal (in the sense of
 set-theoretical inclusion) elements  +

 *
 ( g ( ! )) .

 Furthermore ,  define  G
 *
 ( ! )  5  h g ( ! )  P  G ( ! )  :  +

 *
 ( g ( ! ))  5  g ( ! ) j .  (Notice that  !  P

 G
 *
 ( ! )) .

 We continue with simple properties .

 L EMMA  2 .  For a left compressed  !  ’  ( [ n ]
 k  )  and any g ( ! )  P  G ( ! ) :

 (i)  +
 *
 ( g ( ! ))  P  G ( ! ) ;

 (ii)  s 1 ( +
 *
 ( g ( ! ))  <  s 1 ( g ( ! ))) ;

 (iii)  for A  P  +
 *
 ( g ( ! ))  and B  a  A , we ha y  e either B  P  +

 *
 ( g ( ! ))  or there exists a

 B 9  P  +
 *
 ( g ( ! ))  with B 9  ’  B .

 The next important properties immediately follow from the definition of  G
 *
 ( ! ) and

 the left-compressedness of  !  .

 L EMMA  3 .  For a left compressed  !  ’  ( [ n ]
 k  )  and g ( ! )  P  G

 *
 ( ! ) ,  !   is a disjoint union

 !  5  !

 E P g ( ! )
 $ ( E ) ,

 where

 $ ( E )  5 H B  P S [ n ]
 k
 D  :  B  5  E  <  B 1  ,  B 1  ’  [ s 1 ( E )  1  1 ,  n ] ,  u B 1 u  5  k  2  u E u J .

 L EMMA  4 .  For a left compressed  !  ’  ( [ n ]
 k  )  and g ( ! )  P  G

 *
 ( ! ) , choose E  P  g ( ! )  such

 that s 1 ( E )  5  s 1 ( g ( ! ))  and consider the set of elements of  !   which are only generated by
 E ;   that is ,

 ! E  5  ( 8 ( E )  \  8 ( g ( ! )  \  h E j ))  > S [ n ]
 k
 D .

 Then

 ! e  5  $ ( E )  and  u ! E u  5 S n  2  s 1 ( E )
 k  2  u E u  D .

 L EMMA  5 .  Let  !  P  LI ( n ,  k ,  t ) , g ( ! )  P  G
 *
 ( ! ) , and let E 1  ,  E 2  P  g ( ! )  ha y  e the

 properties

 i  ̧  E 1  <  E 2  ,  j  P  E 1  >  E 2
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 for some i ,  j  P  [1 ,  n ]  with j  ,  j . Then

 u E 1  >  E 2 u  >  t  1  1 .

 Finally ,  we use the following convention .

 D EFINITION  2 . 8 .  For  !  P  LI ( n ,  k ,  t ) ,  we set

 s m i n ( G ( ! ))  5  min
 g ( A ) P G ( ! )

 s 1 ( g ( ! )) .

 3 .  T HE  M AIN  T WO  A UXILIARY  R ESULTS

 L EMMA  6 .  Let n  .  2 k  2  t ,  !  P  LI ( n ,  k ,  t ) , with  u A u  5  M ( n ,  k ,  t ) , and let

 n  .
 ( k  2  t  1  1)( t  1  2 r  1  1)

 r  1  1
 5  ( k  2  t  1  1) S 2  1

 t  2  1
 r  1  1

 D  (3 . 1)

 for some r  P  N  <  h 0 j . Then

 s m i n ( G ( ! ))  <  t  1  2 r .  (3 . 2)

 P ROOF .  We can assume that  n  >  2 k  2  t  1  2 ,  because in the case  n  5  2 k  2  t  1  1 we
 have ,  from (3 . 1) ,   r  >  k  2  t  1  1 ,  and hence (3 . 2) trivially holds .

 By Lemma 2 we have ,  for some  g ( ! )  P  G
 *
 ( ! ) ,

 s 1 ( g ( ! ))  5  s min ( G ( ! )) .

 Now assume that ,  in the opposite to (3 . 2) ,
 s 1 ( g ( ! ))  5  t  1  2 r  1  d  for  some  d  .  0 .  (3 . 3)

 We shall show that under the assumptions (3 . 1) and (3 . 3) there exists an  A 9  P  I ( n ,  k ,  t )
 with  u !  9 u  .  u ! u  5  M ( n ,  k ,  t ) ,  which is a contradiction .

 For this ,  we start with the partition  g ( ! )  5  g 0 ( ! )  < ~  g 1 ( ! ) ,  where  g 0 ( ! )  5  h B  P
 g ( ! )  :  s 1 ( B )  5  t  1  2 r  1  d  j   and  g 1 ( ! )  5  g ( ! )  \  g 0 ( ! ) .

 Obviously ,  for every  B 1  P  g 0 ( ! ) and  B 2  P  g 1 ( ! ) we have

 u ( B 1  \  h t  1  2 r  1  d  j )  >  B 2 u  >  t .  (3 . 4)

 The elements in  g 0 ( ! ) have an important property ,  which follows immediately from
 Lemma 5 :

 (P)  For  any  E 1  ,  E 2  P  g 0 ( ! )  with  u E 1  >  E 2 u  5  t ,  necessarily  u E 1 u  1  u E 2 u  5  2 t  1  2 r  1  d  .

 Now ,  we partition  g 0 ( ! ) according to the cardinalities of its members :

 g 0 ( ! )  5  ! ~
 t , i , t 1 2 r 1 d

 5 i  ,  5 i  5  g 0 ( ! )  > S [ n ]
 i
 D .

 (Here we have used that in case  5 t  ?  [ ,  by Lemma 1 and left-compressedness ,
 necessarily  5 t  5  h [1 ,  t ] j  5  g ( ! ) and (3 . 2) holds .  Furthermore ,  if  5  t 1 2 r 1 d  ?  [ ,  then
 5 t 1 2 r 1 d  5  h [1 ,  t  1  2 r  1  d  ] j  5  g ( ! ) ,  and by optimality of  !   necessarily  r  5  d  5  0 and
 again (3 . 2) holds . )

 Of course ,  some of the  5 i ’s can be empty .
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 Next ,  we omit the element  t  1  2 r  1  d  ;  that is ,  we consider

 5 i 9  5  h E  ’  [1 ,  t  1  2 r  1  d  2  1]  :  E  <  h t  1  2 r  1  d  j  P  5 i j .

 So  u 5 i u  5  u 5 i 9 u   and ,  for  E 9  P  5 9 i  ,  u E 9 u  5  i  2  1 ( i  P  N ) .  From property (P) we know that ,
 for any  E 9 1  P  5 i 9 , E 9 2  P  5 9 j   with  i  1  j  ?  2 t  1  2 r  1  d  ,

 u E 9 1  >  E 9 2 u  >  t .  (3 . 5)

 We shall prove that (under conditions (3 . 1) and (3 . 3)) all  5 i ’s are empty .
 First we notice that the equation  u E 1 u  1  u E 2 u  5  2 t  1  2 r  1  d  ,  for  E 1  ,  E 2  P  g 0 ( ! ) ,  implies

 that
 u E j u  .  k  2  ( n  2  t  2  2 r  2  d  )  for  j  5  1 ,  2 ,

 because otherwise ,  for instance ,   u E 1 u  <  k  2  ( n  2  t  2  2 r  2  d  ) implies that  u E 2 u  5  2 t  1  2 r  1
 d  2  u E 1 u  >  n  2  k  1  t ,  which ,  together with  u E 2 u  <  k ,  contradicts  n  .  2 k  2  t .

 Hence ,  if for all  i ,  i  .  k  2  ( n  2  t  2  2 r  2  d  ) ,  we have  5 i  5  [ ,  then  *  5  ( g ( ! )  \
 g 0 ( ! ))  <  (  <  t , i , t 1 2 r 1 d  5 i 9 )  P  I ( n ,  t ) ,  the set of all (unrestricted)  t -intersecting systems
 in 2 [ n ] ,  u 8 ( * )  >  ( [ n ]

 k  ) u  >  u ! u ,  and  s 1 ( * )  ,  s 1 ( g ( ! )) ,  which is a contradiction .
 Suppose ,  then ,  that for some  i ,  k  2  ( n  2  t  2  2 r  2  d  )  ,  i  ,  t  1  2 r  1  d  ,  5 i  ?  [   or ,

 equivalently ,   5 i 9  ?  [ .  We distinguish two cases :  (a)  i  ?  (2 t  1  2 r  1  d  ) / 2 and (b)  i  5
 (2 t  1  2 r  1  d  ) / 2 .

 Case  ( a ) .  We consider the sets

 f 1  5  g 1 ( ! )  <  ( g 0 ( ! )  \  ( 5 i  <  5 2 t 1 2 r 1 d 2 i ))  <  5 i 9 ,

 f 2  5  g 1 ( ! )  <  ( g 0 ( ! )  \  ( 5 i  <  5 2 t 1 2 r 1 d 2 i ))  <  5 9 2 t 1 2 r 1 d 2 i  .

 We know already (see property (P) and (3 . 5)) that

 f 1  ,  f 2  P  I ( n ,  t )
 and hence

 @ i  5  8 (  f i )  > S [ n ]
 k
 D  P  I ( n ,  k ,  t )  for  i  5  1 ,  2 .

 The desired contradiction will take the form

 max
 i 5 1 ,  2

 u @ i u  .  u ! u  .  (3 . 6)

 We consider the set  !  \  @ 1 .
 From the construction of  f 1  and  5 i 9 ,  it follows that  !  \  @ 1  consists of those elements

 of ( [ n ]
 k  ) which are extensions only of the elements from  5  2 t 1 2 r 1 d 2 i .  We determine their

 number :

 u !  \  @ 1 u  5 U ( 8 ( 5 2 t 1 2 r 1 d 2 i )  \  8 ( g ( ! )  \  5 2 t 1 2 r 1 d 2 i )))  > S [ n ]
 k
 D U

 and ,  by Lemma 4 ,

 u !  \  @ 1 u  5  u 5 2 t 1 2 r 1 d 2 i u  ?  S  n  2  t  2  2 r  2  d

 k  2  2 t  2  2 r  2  d  1  i
 D .  (3 . 7)

 Symmetrically ,  we consider the set  @ 1  \  ! .
 Let  B 1  be any element of  5 i 9 ,  so  u B 1 u  5  i  2  1 .  Clearly ,   B 1  ̧  g ( ! ) ,  because

 B 1  <  h t  1  2 r  1  d  j  P  g ( ! )  and  g ( ! )  P  G
 *
 ( ! ) .

 Therefore ,  for every  A  P  ( [ n ]
 k  ) in the form  A  5  B 1  <  B 2  ,  where  u B 2 u  5  k  2  i  1  1 and
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 B 2  ’  [ t  1  2 r  1  d  1  1 ,  n ] ,  we have  A  P  @ 1  and  A  ̧  ! ,  because  s 1 ( g ( ! ))  5  t  1  2 r  1  d .  We
 also notice that ,  for  B 1  , B 9 1  P  5 i 9 , B 1  ?  B 9 1  ,  we have

 B 1  <  B 2  ?  B 9 1  <  B 9 2  for  all  B 2  ,  B 9 2  ’  [ t  1  2 r  1  d  1  1 ,  n ] .
 Therefore

 u @ 1  \  ! u  >  u 5 i 9 u  S n  2  t  2  2 r  2  d

 k  2  i  1  1
 D  5  u 5 i u  S n  2  t  2  2 r  2  d

 k  2  i  1  1
 D .  (3 . 8)

 Analogously ,  we have

 u !  \  @ 2 u  5  u 5 i u S n  2  t  2  2 r  2  d

 k  2  i
 D ,  (3 . 9)

 u @ 2  \  ! u  >  u 5 2 t 1 2 r 1 d 2 i u  S  n  2  t  2  2 r  2  d

 k  2  2 t  2  2 r  2  d  1  i  1  1
 D .  (3 . 10)

 Actually ,  it is easy to show that there are equalities in (3 . 8) and in (3 . 10) .  However ,
 that is not needed here .

 Now (3 . 7) – (3 . 10) enable us to state the  negation  of (3 . 6) in the form

 and
 u 5 i u  S n  2  t  2  2 r  2  d

 k  2  i  1  1
 D  <  u 5 2 t 1 2 r 1 d 2 i u  S  n  2  t  2  2 r  2  d

 k  2  2 t  2  2 r  2  d  1  i
 D

 u 5 2 t 1 2 r 1 d 2 i u  S  n  2  t  2  2 r  2  d

 k  2  2 t  2  2 r  2  d  1  i  1  1
 D  <  u 5 i u  S n  2  t  2  2 r  2  d

 k  2  i
 D 6 .  (3 . 11)

 Since ,  by assumption ,   5 i  ?  [ ,  we can also assume that  5 2 t 1 2 r 1 d  2 i  ?  [ ,  because
 otherwise the first inequality in (3 . 11) is false .

 Furthermore ,  (3 . 11) implies that

 ( n  1  t  2  k  2  i )( n  2  t  2  2 r  2  d  2  k  1  i )  <  ( k  2  i  1  1)( k  2  2 t  2  2 r  2  d  1  i  1  1) .

 However ,  this is false ,  because  n  >  2 k  2  t  1  2 and ,  consequently ,   n  1  t  2  k  2  i  .  k  2  i  1
 1   as well as  n  2  t  2  2 r  2  d  2  k  1  i  .  k  2  2 t  2  2 r  2  d  1  i  1  1 .  Hence ,  (3 . 6) holds ,  in
 contradiction to the optimality of  !  .  Therefore ,  necessarily ,   5 i  5  [   for all  i  ?
 (2 t  1  2 r  1  d  ) / 2 .  (In this case (a) we did not use the condition (3 . 1) ,  and not even the
 condition  d  .  0) .

 Case  ( b ) .  i  5  (2 t  1  2 r  1  d  ) / 2 .  Here ,  necessarily ,  2  3  d .  We consider the set  5 9 t 1 r 1 d  / 2
 and recall that for  B  P  5 9 t 1 r 1 d  / 2   u B u  5  t  1  r  1  d  / 2  2  1 and  B  ’  [1 ,  t  1  2 r  1  d  2  1] .

 By the pigeon-hole principle ,  there exists an  i  P  [1 ,  t  1  2 r  1  d  2  1] and a  7  ’  5 9 t 1 r 1 d  / 2
 such that  i  ̧  B  for all  B  P  7   and

 u 7 u  >
 r  1  d  / 2

 t  1  2 r  1  d  2  1
 u 5 9 t 1 r 1 d  / 2 u  5

 r  1  d  / 2
 t  1  2 r  1  d  2  1

 u 5 t 1 r 1 d  /2 u  .  (3 . 12)

 By Lemma 5 ,  we have  u B 1  >  B 2 u  >  t  for all  B 1  ,  B 2  P  7 ,  and since by case (a)  5 i  5  f   for
 i  ?  t  1  r  1  d  / 2 ,  we obtain

 f  9  5  ( g ( ! )  \  5 t 1 r 1 d  /2 )  <  7  P  I ( n ,  t ) .

 We show now that under condition (3 . 1) we have

 U 8 (  f  9 )  > S [ n ]
 k
 D U  .  u ! u  .  (3 . 13)

 Indeed ,  let us write  !  5  8 ( g ( ! ))  >  ( [ n ]
 k  )  5  $ 1  < ~  $ 2  ,  where  $ 1  5  8 ( g ( ! )  \  5 t 1 r 1 d  /2 )  >

 ( [ n ]
 k  ) ,  $ 2  5  ( 8 ( 5 t 1 r 1 d  /2 )  \  8 ( g ( ! )  \  5 t 1 r 1 d  /2 ))  >  ( [ n ]

 k  ) and  8 (  f  9 )  >  ( [ n ]
 k  )  5  $ 1  < ~  $ 3  ,
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 where  $ 3  5  ( 8 ( 7 )  \  8 ( g ( ! )  \  5 t 1 r 1 d  / 2 ))  >  ( [ n ]
 k  ) .  In this terminology ,  the following is

 equivalent to (3 . 13) :
 u $ 3 u  .  u $ 2 u  .  (3 . 14)

 We know (see Lemma 4) that

 u $ 2 u  5  u 5 t 1 r 1 d  /2 u S  n  2  t  2  2 r  2  d

 k  2  t  2  r  2  d  / 2
 D  (3 . 15)

 and estimate now  u $ 3 u   from below .
 Consider any  B  P  7 ,  u B u  5  t  1  r  1  d  / 2  2  1 .  Clearly ,   B  ̧  g ( ! ) ,  because

 B  <  h t  1  2 r  1  d  j  P  g ( ! )  and  g ( ! )  P  G
 *
 ( ! ) .

 Hence ,  for every  A  P  ( [ n ]
 k  ) in the form  A  5  B  <  C 1  ,  where  u C 1 u  5  k  2  u B u   and  C 1  ’

 [ t  1  2 r  1  d  , n ] ,  we have  A  P  $ 3 .
 We also notice that ,  for all  B 1  ,  B 2  P  7 , B 1  ?  B 2  ,  one has  B 1  <  C 1  ?  B 2  <  C 2  for all

 C 1  ,  C 2  ’  [ t  1  2 r  1  d  ,  n ] .
 Therefore

 u $ 3 u  >  u 7 u S  n  2  t  2  2 r  2  d  1  1
 k  2  t  2  r  2  d  / 2  1  1

 D .  (3 . 16)

 In the light of (3 . 12) and (3 . 14) – (3 . 16) ,  it is suf ficient for (3 . 13) that

 r  1  d  / 2
 t  1  2 r  1  d  2  1  1  n  2  t  2  2 r  2  d  1  1

 k  2  t  2  r  2
 d

 2
 1  1  2  .  1  n  2  t  2  2 r  2  d

 k  2  t  2  r  2
 d

 2
 2  (3 . 17)

 or ,  equivalently ,  that

 S r  1
 d

 2
 D ( n  2  t  2  2 r  2  d  1  1)  . S k  2  t  2  r  2

 d

 2
 1  1 D ( t  1  2 r  1  d  2  1) ,  (3 . 18)

 which in turn is equivalent to

 n  .
 ( k  2  t  1  1)( t  1  2 r  1  d  2  1)

 r  1  d  / 2
 .

 This is true by (3 . 1) ,  because  d   is even and

 t  1  2 r  1  1
 r  1  1

 >
 t  1  2 r  1  d  2  1

 r  1  d  / 2
 for  d  >  2 .

 Hence  d  5  0 and the lemma is proved .  h

 C OROLLARY  (for the 4 m  2  Conjecture) .  Let  !  P  LI (4 m ,  2 m ,  2)  and  u ! u  5
 M (4 m ,  2 m ,  2) . Then

 s m i n ( G ( ! ))  <  2 m .

 P ROOF .  Just choose  r  5  m  2  1 and notice that (3 . 1) in Lemma 6 holds :

 4 m  .
 (2 m  2  1)(2 m  1  1)

 m
 .  h

 Finally ,  we present the second auxiliary result .
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 L EMMA  7 .  For any  ( not necessarily maximal )  !  P  I ( n ,  k ,  t ) , consider any generating
 set g ( ! )  P  G ( ! ) . Furthermore , for the complemented system  !  P  I ( n ,  n  2  k ,  n  2  2 k  1
 t ) , let f  ( ! # ) be any generating set from G( ! # ) .  Then ,  for all  A  P  g ( ! )  and B  P  f  ( ! # ) ,  we
 have

 u A  <  B u  >  n  2  k  1  t .  (3 . 19)

 P ROOF .  Assume that (3 . 19) does not hold :

 u A  <  B u  <  n  2  k  1  t  2  1 .

 Choose any  F  ”  A  <  B  with  u F  u  5  n  2  k  1  t  2  1 .  We know that

 8 ( A )  > S [ n ]
 k
 D  ’  !  and  8 ( B )  > S  [ n ]

 n  2  k
 D  ’  ! # .

 Since  n  .  2 k  2  t , t  .  0 ,  and  n  2  k  1  t  2  1  >  max( k ,  n  2  k ) ,  we can choose  A *  P  8 ( A )  >
 ( [ n ]

 k  )   and  B *  P  8 ( B )  >  (  [ n ]
 n  2  k ) in such a way that  A *  ’  F  and  B *  ’  F .

 Consider  B *  P  !   and observe that  u A *  >  B * u  <  ( n  2  k  1  t  2  1)  2  ( n  2  k )  5  t  2  1 ,
 contradicting  !  P  I ( n ,  k ,  t ) .  h

 4 .  P ROOF   OF   THE  4 m -C ONJECTURE

 We treat this famous case here separately ,  even though it is covered by the proof of
 the Theorem .

 Let  !  P  LI (4 m ,  2 m ,  2) ,  let  u !  u  5  M (4 m ,  2 m ,  2) and let  g ( ! )  P  G ( ! ) such that
 s 1 ( g ( ! ))  5  s m i n ( G ( ! )) .

 From the corollary we know that  s 1 ( g ( ! ))  <  2 m ,  that is ,  for  B  P  g ( ! ) necessarily
 B  ’  [1 ,  2 m ] .  We consider the complemented  !  :

 ! #  5  h A  ’  [1 ,  4 m ]  :  [1 ,  4 m ]  \  A  P  ! j .

 Clearly ,   ! #  P  I (4 m ,  2 m ,  2) ,  u ! #  u  5  M (4 m ,  2 m ,  2) ,  !  >  ! #  5  [   and  ! #   is right-compressed .
 From the left – right symmetry and the corollary we conclude that there exists a

 generating set  f  ( ! # ) such that for every  B  P  f  ( ! # ) necessarily  B  ’  [2 m  1  1 ,  4 m ] .
 Now ,  if for all  B 1  P  g ( ! ) we have  u B 1 u  >  m  1  1 then ,  necessarily ,   !  5  ̂  m 2 1  and

 u ! #  u  5  u ! u  5  u ̂  m 2 1 u  .
 The same conclusion holds if ,  for all  B 2  P  f  ( ! # ) ,  we have  u B 2 u  >  m  1  1 .  However ,  if

 neither of these two cases occurs then ,  for some  B 1  P  g ( ! ) and  B 2  P  f  ( ! # ) ,  we have
 u B 1 u ,  u B 2 u  <  m .

 Finally ,  for every  A  P  ( [4 m ]
 2 m  ) of the form  A  ”  B 1  <  B 2  ,  necessarily  A  P  !  >  ! # ,  a

 contradiction to  !  >  ! #  5  [ .

 R EMARK  5 .  Instead of the last step of the proof ,  one can argue that  u B 1  <  B 2 u  <
 2 m  ,  2 m  1  2  5  n  2  k  1  t  is in contradiction with Lemma 7 .

 5 .  P ROOF   OF THE  T HEOREM

 C ASE  (i) :

 ( k  2  t  1  1) S 2  1
 t  2  1
 r  1  1

 D  ,  n  ,  ( k  2  t  1  1) S 2  1
 t  2  1

 r
 D .  (5 . 1)

 Choose  !  P  LI ( n ,  k ,  t ) with  u ! u  5  M ( n ,  k ,  t ) and let  g ( ! )  P  G ( ! ) with  s 1 ( g ( ! ))  5
 s m i n ( G ( ! )) .
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 We know from Lemma 6 that  s 1 ( g ( ! ))  <  t  1  2 r  and we also know that  ! # ,  the
 complemented  !  ,  is right compressed ,  an element of  I ( n ,  n  2  k ,  n  2  2 k  1  t ) and
 satisfies  u ! # u  5  M ( n ,  n  2  k ,  n  2  2 k  1  t ) .  An easy calculation leads from (5 . 1) to

 ( k  2  t  1  1) S 2  1
 n  2  2 k  1  t  2  1
 k  2  t  2  r  1  1

 D
 ,  n  ,  ( k  2  t  1  1) S 2  1

 n  2  2 k  1  t  2  1
 k  2  t  2  r

 D  for  k  .  t  1  r  (5 . 2)

 and to
 ( k  2  t  1  1)( n  2  2 k  1  t  1  1)  ,  n  for  k  5  t  1  r .  (5 . 3)

 Since  n  .  2 k  2  t ,  (5 . 1) implies that always  k  >  t  1  r .
 Therefore ,  for  k 9  5  n  2  k  and  t 9  5  n  2  2 k  1  t  we obtain the  dual relations

 ( k 9  2  t 9  1  1) S 2  1
 t 9  2  1
 r 9  1  1

 D  ,  n  ,  ( k 9  2  t 9  1  1) S 2  1
 t 9  2  1

 r 9
 D  for  r 9  5  k  2  t  2  r

 and
 ( k 9  2  t 9  1  1)( t 9  1  1)  ,  n  for  k  5  t  1  r .

 Using the dual version (with respect to right compressed sets) of Lemma 6 ,  we obtain
 an  f  ( ! # )  P  G( ! # ) with the property :

 every  B  P  f  ( ! # )  satisfies  B  ’  [ n  2  ( t 9  1  2 r 9 )  1  1 ,  n ]

 5  [ t  1  2 r  1  1 ,  n ] ,  because  t 9  5  n  2  2 k  1  t  and  r 9  5  k  2  t  2  r .

 Now ,  if for all  B 1  P  g ( ! ) we have  u B 1 u  >  t  1  r ,  then clearly  !  5  ̂  r  ,  ! #  ;  ̂  r 9  (for
 k 9  5  n  2  k , t 9  5  n  2  2 k  1  t ) and the optimal sets are unique up to permutations .

 The same sets are obtained if ,  for all  B 2  P  f  ( ! # ) ,  the inequality  u B 2 u  >  t 9  1  r 9  holds .
 If none of the cases occurs ,  then for some  B 1 *  P  g ( ! ) , B 2 *  P  f  ( ! # ) ,   u B 1 * u  <  t  1  r  2  1 and

 u B 2 * u  <  t 9  1  r 9  2  1  5  n  2  k  2  r  2  1 and ,  by Lemma 7 ,  we will have a contradiction ,
 because  u B 1 *  <  B 2 * u  <  n  2  k  1  t  2  2 .

 C ASE  (ii) :

 n  5  ( k  2  t  1  1) S 2  1
 t  2  1
 r  1  1

 D .  (5 . 4)

 Let  !  P  LI ( n ,  k ,  t ) and let  u ! u  5  M ( n ,  k ,  t ) .  Since  n  .  ( k  2  t  1  1)(2  1  t  2  1 – r  1  2 ) ,  we conclude
 with Lemma 6 that

 s m i n ( G ( ! ))  <  t  1  2 r  1  2 .

 Now choose  g ( ! )  P  G ( ! ) with  s 1 ( g ( ! ))  5  s m i n ( G ( ! )) .
 We again consider  ! # ,  which is again right compressed and of maximal cardinality

 within  I ( n ,  n  2  k , n  2  2 k  1  t ) .
 From (5 . 4) ,  we derive

 n  5  ( k  2  t  1  1) S 2  1
 t  2  1
 r  1  1

 D  5  ( k  2  t  1  1) S 2  1
 n  2  2 k  1  t  2  1

 k  2  t  2  r
 D

 5  ( k 9  2  t 9  1  1) S 2  1
 t 9  2  1

 r 9
 D ,

 where  k 9  5  n  2  k , t 9  5  n  2  2 k  1  t  and  r 9  5  k  2  t  2  r .
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 Since  n  5  ( k 9  2  t 9  1  1)(2  1  t 9  2  1 – r 9  )  .  ( k 9  2  t 9  1  1)(2  1  t 9  2  1 – r 9  1  1 ) ,  from the dual version (with
 respect to right compressed sets) of Lemma 6 one has an  f  ( ! # )  P  G( ! # ) the elements  B 1

 of which satisfy  B 1  ’  [ n  2  t 9  2  2 r 9  1  1 ,  n ]  5  [ t  1  2 r  1  1 ,  n ] .
 Now ,  if for all  B 2  P  g ( ! ) ,  u B 2 u  >  t  1  r  1  1 ,  then uniquely  !  5  ̂  r 1 1  and  ! #  ;  ̂  r 92 1  (for

 k 9  5  n  2  k , t 9  5  n  2  2 k  1  t , r 9  5  k  2  t  2  r ) .
 Also ,  if for all  B 1  P  f  ( ! # ) ,   u B 1 u  >  t 9  1  r 9 ,  then uniquely  ! #  ;  ̂  r 9  and  !  ;  ̂  r  .

 Otherwise ,  if for some  B 2  P  g ( ! ) and  B 1  P  f  ( ! # ) ,   u B 2 u  <  t  1  r and  u B 1 u  <  t 9  1  r 9  2  1 ,  then
 u B 1  <  B 2 u  <  t  1  r  1  t 9  1  r 9  2  1  5  n  2  k  1  t  2  1 .

 This again contradicts Lemma 7 .

 This finishes the proof ,  if we allow only left compressed systems as competitors .  We
 thank K .  Engel for asking for an argument for not left compressed competitors .  We
 follow an idea of [10] to prove the uniqueness ,  stated in the theorem .

 We use the well-known exchange operation  S i j  ,  i  ,  j ,  defined for any family  !  ’  2 [ n ]

 as follows :  for  A  P  ! ,

 S i j ( A )  5 H h i j  <  ( A  \  h  j j )
 A

 if  i  ̧  A ,  j  P  A ,  h i j  <  ( A  \  h  j j )  ̧  ! ,
 otherwise ,

 S i j ( ! )  5  h S i j ( A )  :  A  P  ! j .

 P ROPOSITION .  Suppose that  !  P  I ( n ,  k ,  t )  and that  !   gets transformed by finitely
 many exchange operations to the set  ̂  r   ( see  (1 . 9))  for some  0  <  r  <  ( n  2  t ) / 2 . Then ,
 necessarily ,  !  ;  ̂  r  , pro y  ided that

 n  >  2 k  2  t  1  2  for  t  >  2 ,

 n  5  2 k  2  t  1  1  for  t  >  2  and  k  5  t  1  r  or  k  5  t  1  r  1  1 ,

 n  >  2 k  1  1  for  t  5  1  and  r  5  0  or  r  5  1 .  ( p )

 P ROOF .  Without loss of generality ,  we can assume that

 S i j ( ! )  5  ̂  r .  (5 . 5)

 It is clear that ,  if  i ,  j  P  [1 ,  t  1  2 r ] (or  i ,  j  ̧  [1 ,  t  1  2 r ]) ,  then  !  5  ̂  r   and the Proposition
 is true .

 Assume ,  then ,  that  i  5  t  1  2 r  and  j  5  n .  Let

 ! 1  5  h A  P  !  :  j  P  A ,  i  ̧  A ,  (( A  \  h  j j )  <  h i j )  ̧  ! j ,

 ! 2  5  h A  P  !  :  j  ̧  A ,  i  P  A ,  (( A  \  h i j )  <  h  j j )  ̧  ! j .

 Clearly ,  if  !  1  5  [ ,  then  !  5  ̂  r  ,  and if  ! 2  5  [ ,  then  !   is obtained from  ̂  r   by
 exchanging the co-ordinates  i  5  t  1  2 r  and  j  5  n ,  so the proposition is true .  Suppose ,
 then ,  that  A 1  ?  [ ,   ! 2  ?  [ ,  and let us show that  !  ̧  I ( n ,  k ,  t ) (under conditions ( p )) .

 We consider

 *  5 H H  P S [ n ]  \  h i ,  j j
 k  2  1

 D  :  u H  >  [1 ,  t  1  2 r  2  1] u  5  t  1  r  2  1 J .

 We observe that ,  for any  B  P  ! 1  < ~  ! 2  ,  u B  >  [1 ,  t  1  2 r  2  1] u  5  t  1  r  2  1 holds .
 This fact follows from (5 . 5) .  Moreover ,  from the same assumption (5 . 5) we have the

 following :  for every  H  P  *   either  H  <  h  j j  P  ! 1  or  H  <  h i j  P  ! 2  .
 Now we form a graph  G ( V ,  E ) as follows :

 V  5  *  and  e ( H 1  ,  H 2 )  P  E  if f  ( H 1  >  H 2 )  5  t  2  1 .
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 It can be verified that the graph  G ( V ,  E ) is connected if f the conditions ( p ) hold .
 Hence ,  under conditions ( p ) ,  if  ! 1  ?  [   and  ! 2  ?  [ ,  then there exist  B 1  P  ! 1  and

 B 2  P  ! 2   with  u B 1  >  B 2 u  5  t  2  1 ,  which contradicts  !  P  I ( n ,  k ,  t ) .  h

 P ROOF   OF   THE  U NIQUENESS .  Let  n  .  2 k  2  t ,  !  P  I ( n ,  k ,  t ) and  u ! u  5  M ( n ,  k ,  t ) ,
 and—after finitely many exchange operations  S i j  ,  i  ,  j —let  !   be transformed to the
 left-compressed set  !  9 ,  !  9  P  LI ( n ,  k ,  t ) ,  u ! 9 u  5  u ! u  5  M ( n ,  k ,  t ) .

 We already know that  !  9  5  ̂  r   for  r  P  N  <  h 0 j ,  where  r  is defined by the conditions in
 the theorem .  It can be easily verified that these  r ’s satisfy the conditions ( p ) stated in
 the proposition ,  and hence that  !  ;  ̂  r  .  h

 R EFERENCES

 1 .  R .  Ahlswede and G .  Katona ,  Contributions to the geometry of Hamming spaces ,   Discr . Math . ,  17 ,
 (1977) ,  1 – 22 .

 2 .  R .  Ahlswede and L .  H .  Khachatrian ,  Maximal sets of numbers not containing  k  1  1 pairwise coprime
 integers ,   Acta Arithmetica LXX ,  1 ,  (1995) ,  77 – 100 .

 3 .  R .  Ahlswede and L .  H .  Khachatrian ,  Sets of integers and quasi-integers with pairwise common divisor ,
 Acta Arithmetica LXXIV ,  2 ,  (1996) ,  141 – 153 .

 4 .  R .  Ahlswede and L .  H .  Khachatrian ,  Sets of integers with pairwise common divisor and a factor from a
 specified set of primes ,   Acta Arithmetica LXXV ,  3 ,  (1996) ,  259 – 276 .

 5 .  A .  R .  Calderbank and P .  Frankl ,  Improved upper bounds concerning the Erdo ̈  s – Ko – Rado Theorem ,
 Combin . Prob . Comput . ,  1 ,  (1992) ,  115 – 122 .

 6 .  M .  Deza and P .  Frankl ,  ‘‘Erdo ̈  s – Ko – Rado Theorem—22 years later ,   SIAM J . Algebra Discr . Math . ,  4
 (4) (1983) ,  419 – 431 .

 7 .  P .  Erdo ̈  s ,  My joint work with Richard Rado ,  in :   Sur y  eys in Combinatorics , Lond . Math . Soc . Lect . Note
 Ser . ,  123  (1987) ,  53 – 80 .

 8 .  P .  Erdo ̈  s ,  Some of my favourite unsolved problems ,  in :   A Tribute to Paul Erdo ̈  s ,  A .  Baker ,  B .  Bolloba ́  s ,
 and A .  Hajnal (eds) ,  Cambridge University Press ,  Cambridge ,  1990 .

 9 .  P .  Erdo ̈  s ,  Chao Ko and R .  Rado ,  Intersection theorems for systems of finite sets ,   Q . J . Math . Oxford ,  12
 (1961) ,  313 – 320 .

 10 .  P .  Frankl ,  The Erdo ̈  s – Ko – Rado Theorem is true for  n  5  ckt , Coll . Soc . Math . J . Bolyai ,  11  (1978) ,
 365 – 375 .

 11 .  P .  Frankl ,  The shifting technique in extremal set theory ,  in :   Sur y  eys in Combinatorics , Lond . Math . Soc .
 Lect . Note Ser . ,  123  (1987) ,  81 – 110 .

 12 .  P .  Frankl and Z .  Fu ̈  redi ,  Beyond the Erdo ̈  s – Ko – Rado Theorem ,   J . Combin . Theory , Ser . A ,  56  (1991) ,
 182 – 194 .

 13 .  R .  M .  Wilson ,  The exact bound on the Erdo ̈  s – Ko – Rado Theorem ,   Combinatorica ,  4  (1984) ,  247 – 257 .

 Recei y  ed  2 0   June  1 9 9 5   and accepted  1 4   February  1 9 9 6

 R UDOLF  A HLSWEDE   AND  L EVON  H .  K HACHATRIAN

 Uni y  ersita ̈  t Bielefeld , Fakulta ̈  t fu ̈  r Mathematik ,
 Postfach  1 0 0 1 3 1 ,  3 3 5 0 1   Bielefeld , Germany


