IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997 669

Universal Coding of Integers
and Unbounded Search Trees

Rudolf Ahlswede, Te Sun Han, Fellow, IEEE, and Kingo Kobayashi, Senior Member, IEEE

Abstract—In this paper we study universal coding problems for
the integers, in particular, establish rather tight lower and upper
bounds for the Elias omega code and other codes. In these bounds,
the so-called log-star function plays a central role. Furthermore,
we invesigate unbounded search trees induced by these codes,
including the Bentley—Yao search tree. We will reveal beautiful
recursion structures latent in these search trees as well as in
these codes. Finally, we introduce the modified log-star function
to reveal the existance of better prefix codes than Elias omega
code and other known codes.

Index Terms—Universal coding, search trees, log-star function,
Elias code, Stout code, Bentley—Yao tree.

I. ELIAS OMEGA CODE AND RELATED
CODES FOR THE POSITIVE INTEGERS

ET us introduce some notation to express binary se-
Lquences. We denote the unary representation of pos-
itive integer j by (j);. For example, (1); = 0,(2); =
10,---,(5); = 11110, etc. The standard binary expression of
positive integer j € Nt = {1,2,-..} is denoted by (j)s, the
most significant bit (MSB) of which is 1. For example, (13), =
1101. The binary expression of integer j to the base 2F is
denoted by (j)2 5. Thus (7)2 2 = 0111,(43)2 4 = 00101011.
Furthermore, by [j]; we mean the standard binary expression
of j in which the MSB is removed. For example, [13]> = 101.

Next, we express the floor function of log, by

A2(j) = [logy 5. (1.1)

Finally, we introduce the integer-valued function A»(j) on the

set AT of positive integers as the one specifying the length

of the standard binary expression of positive integer j. That is

Az(j) = [logy j] + 1. (1.2)

Let A% and A} denote the k-fold compositions of functions Ao

and Ay, respectively. We will omit the suffix 2 if there is no
fear of confusion from the context.

Manuscript received February 1, 1995; revised May 23, 1996.

R. Ahlswede is with Fakultdt fiir Mathematik, Universitat Bielefeld, POB
100131, 33501 Bielefeld, Germany.

T. S. Han is with the Graduate School of Information Systems, University
of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo, 182, Japan.

K. Kobayashi is with the Department of Computer Science and Informa-
tion Mathematics, University of Electro-Communications, Chofugaoka 1-5-1,
Chofu, Tokyo, 182, Japan.

Publisher Ttem Identifier S 0018-9448(97)00626-3.

Elias [1] has introduced a universal prefix code w : Nt —
{0,1}*, called the w code

N _)0, if j=1
wi) = {(/\k_l(j))z e ()2 AG))2(i)a0, i > 2
(1.3)

where k = k(j) is the positive integer satisfying *(j) = 1
(which uniquely exists for any j > 2). Then the codeword
length of this prefix code w is given by

@)= > NG+1) G=12-).

i>1: X1 (§)>0

(1.4)

The codeword w(j) is recursively decoded from left to right
as follows. If the top bit is 0 then we have 1 as the decoded
integer. Otherwise, we first look at the leftmost two bits. Let it
represent an integer k; in binary expression, then we next look
at k1 + 1 bits to the right. Let it represent an integer k», then
we look at ks + 1 bits to the right, and so on. This process is
repeated until we have bits with O at the top, and then the last
bits (with 1 at the top) represents the integer j to be decoded.

Furthermore, we may slightly modify the w code to get
another prefix «’ code

17N (J_ 1) .2
w)= {1(Ak-12(f>>2 o (AG))2(5)20
(1.5)

where k = k(j) is the positive integer satisfying A¥(j) = 3
(which uniquely exists for any 5 > 4). The codeword length
of this prefix code w’ is given by

>

i>1: AL (§)>3

if 1

<
if j >

J<3
4,

W' ()] =2+ A'(5). (1.6)

The codeword w'(j) is decoded in a similar (but a bit
different) manner to decoding the above w(jj). If the leftmost
two bits are not equal to 11, then «'(j) is decoded as the
integer j = 1,2, or 3 according to the value (j — 1) of
those two bits. Otherwise, delete the top bit 1 and look at the
three bits to the right. If it represents an integer k;, then we
look at k; bits to the right. If it represents an integer ko, then
we look at ko bits to the right, and so on. This process is
stopped when we have bits with 0 at the top. Then the last
bits (with 1 at the top) in this process represent the integer j
to be decoded.

The Elias w’ code thus modified can, of course, be seen as
specifying a corresponding search tree for the set of positive
integers (unbounded search). It will turn out soon in what
follows that it has the same structure as the so-called ultimate
search tree devised by Bentley and Yao [2].

0018-9448/97$10.00 © 1997 IEEE

670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

TABLE I
i w0) =)
1 0 00
2 100 01
3 110 10
4 10100 0 11000
5 10101 0 11010
6 101100 11100
7 101110 11110
8 11 1000 O 1 100 1000 O
9 111001 0 1 100 1001 O
10 111010 0 1100 10100
11 1110110 1100 1011 0
12 111100 0 1100 1100 0
13 111101 0 1100 1101 0
14 1111100 1100 11100
15 1111110 1100 11110
16 10 100 10000 O 1 101 10000 O

1

17 10 100 10001 O 101 10001 O

For small values of integers, Table I gives the codewords
for two Elias codes.

A main difference between the Elias code w(j) and the
modified Elias code w’(j) is that the different functions in
(1.1) and (1.2) are used in the definitions of each codeword,
respectively. The value A(j) is always smaller by one than
A(7), so at each step of the above logarithm-like operations,
the corresponding block of the Elias codeword for w is smaller
than that for «’, but the number %k of the logarithm-like
operations in (1.3) is in general larger than that in (1.5).

Remark 1: Even and Rodeh [3] have given another prefix
code wgg similar to w’. Their code wgg is defined by

on (j):{(j)Q,so, if1<j<7
" (AF=2(i)z - (A(G))2(3)20, if j>8

.7
where k£ = k(j) is the unique positive integer satisfying
Ak(j) = 3. The code tree of this code, however, is not
complete, that is, there are leaves which are not used for
codewords. Moreover, the codewords have a redundant bit.
After removing the redundant bit, we have the code waR
defined by

_ J0(4)2,3, f1<;<7
if j > 8.

whn(7) = {<Ak-1<j>>z (A0,
(1.8)

The codeword length of the code wiy(j) is shorter by two
bits than that of the code w'(j) if j > 8 at the expense of
longer codewords for j < 7.

II. StoUT CODE FOR THE NONNEGATIVE INTEGERS

In order to define the Stout code, for any integer d > 0 we
introduce the following function:
Agj(z) = [logoz| —d (2 >0) 2.1

and let /\f"d1 (z) be the k-fold composition of the function
Ajg)(z). The codeword of the Stout prefix code Sy(d = 0,

TABLE I

J So(d) 51(3) 52(4)
0 0 00 000
1 10 10 010
2 1100 0100 100
3 1110 0110 110
4 110 100 0 11000 00 100 0
5 1101010 11010 00101 0
6 1101100 11100 001100
7 1101110 11110 001110
8 1111000 010 1000 0 01 1000 0
9 11110010 0 10 1001 0 01 1001 0
10 11110100 01010100 01 10100
11 11110110 01010110 01 10110
12 11111000 010 11000 01 11000
13 11111010 01011010 0111010
14 11111100 01011100 0111100
15 11111110 01011110 0111110
16 110 100 10000 0 0 11 10000 0 10 10000 O
17 1 10 100 10001 O 0 11 10001 O 10 10001 O
1,2,...) is given by

(7)2,40, if0<j<2¢

Sa(j) = ()‘ﬁﬂ (J)) 2,d (’\E‘dfl(j)) 27"
(/\%41 (1)) y(A@)(9))2(5)20, if 5 > 2¢
2.2)
forj € N ={0,1,---}, where k is the unique positive integer
satisfying 0 < /\f‘dJ(J) < 24,

Remark 2: Stout [4] has defined the code S only for d > 2.
However, we can consider such a code also for d = 0,1. In
particular, the case d = 0, where (5)2 4 in (2.2) is interpreted
to be void, is intimately related to the Elias omega code w as
will be seen below.

From definition (2.2), the length of the codeword for j is

expressed by

|Sa() =d+1+
i>1;0<N, (5)

(Aig() +d+1). (23)

We should mention here some relation between the length of
Elias w code and that of Sy code

[So() = lw(I +1 (G =1,2,--).

This is because So(j) = lw(j) for j > 1. Table II shows
codewords of codes Sy, 51, and S5 for small numbers j.

In general it is expected that, as d increases, the length of
Sa(j) becomes smaller for larger values of j and larger for
smaller values of j.

2.4

III. UNBOUNDED BINARY SEARCH TREES

In most database systems, each unit of records is stored
with a key for information retrieval. Each unit can be read,
updated, and deleted by using its key. Usually, a specific order,
for example, alphabetic order, is assigned to the set of keys.
Assume that a user wants to have access to a record unit with
a certain key. Comparing his key with the keys of certain units
determines whether his key is smaller than those keys, or not.
According to these binary answers, he continues to compare
his key with other keys. The problem is what locations of keys
and in what order he should refer to in order to achieve an

AHLSWEDE e al.: UNIVERSAL CODING OF INTEGERS AND UNBOUNDED TREES 671

3)

(2)

1/ \2

o1
R G
//\
(215) (263)
/ /
(211) (223) (247) (295)

64 127 A

Fig. 1. Bentley-Yao search tree. (k) means that if j < k then go to the left, otherwise to the right.

efficient access to the desired unit. This is one of the most
classical problems in computer science.

When the number of units is infinite, the problem is called
unbounded search. Bentley and Yao [2] have introduced the
so-called ultimate search tree expressed by the tree code &’

@/(j)z{(j—l)zm if1<y5<3
(k +2)1[A* (]2 - [AG)2lil2, i 5 >4

3.1
where k = Fk(j) is the unique positive integer satisfying
A¥(j) = 3. The unary expression at the head of &'(j) for
7 > 4 describes the number of the subsequent blocks of the
form []o. Fig. 1 depicts the Bentley—Yao unbounded search
tree, where (k) at intermediate nodes specifies the comparison
of the target key with the kth key. If the target key is smaller
than &, then go on the left branch (labeled “0”), otherwise, go
on the right branch (labeld “1”). For example, if your key is
the 23rd key, you can reach the desired unit after comparing
your key with the third, fourth, eighth, 128th, 32th, 16th, 24th,
20th, 22nd, and 23rd keys, which corresponds to travelling on
the path 1110 01 0111 starting with the root (cf. Fig. 1).

It is easy to see that the 1’s and the O in the unary part
(k +2)1 of the definition of &' can be interleaved into the
subsequent blocks [] to obtain the form of definition (1.5) for
w’, that is, 1(A¥71(5))2 -+ - (A(4))2(5)20. Thus Bentley—Yao
search tree is essentially identical to the modified Elias omega
code w'.

A similar idea generates a search tree & induced from the
original Elias omega code w. Fig. 2 shows that tree. It should

be noticed that there exists a more beautiful recursive structure
for & than that for &’. This search tree & is expressed as

apN 0, ifj=1
“)= {(k NGl DRl i) > 2
(3.2

It is also easy to see that the 1’s and the O in the unary part
(k+ 1)1 in the definition of & can be interleaved into the
subsequent blocks [-]» to obtain the original form of definition
(1.3) for w, that is, (A*71(5))2- - (A(5))2(5)20.

We can also derive search trees from Stout codes Sy with
the same kind of prescription

) 0(4)2.4, if 0<j <24
Sa(g) = { (b + D1 (A () g o [N ()],
[(D22, if j > 2¢
(3.3)

Fig. 3 depicts the recursive structure of these unbounded
search trees (d = 1). Each subtree T; is recursively reproduced
as the next subtree 7, = 2Ti+d jn the search tree S’d
corresponding to the code Sj.

Such a recursive structure can be more explicitly described
as follows. Let 7 be the set of binary search trees, that is,
the set of binary trees with nodes (i.e., root and intermediate
nodes) labeled each as (k) and with leaves (terminal nodes)
labeled each by distinct integers j. As was stated, (k) means
the comparison “j < k,” where j is the number to be searched.

672 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

2A16-1

16

Fig. 2. Search tree induced by Elias w code. (k) means that if j < k then go to the left, otherwise to the right.

A binary search tree T = 111715 - - - is said to be the unary
concatenation of binary search trees Ty, 77,75, - - - if the root
of each 7; is connected to the root of the next 7;; by the
right branch (labeled 1) for all ¢ =0, 1,---. It is obvious that
the above search trees &', &, and gd are all of concatenated
forms in this sense. Moreover, it will be seen in these search
trees that the subtree 7}, is recursively constructed from the
previously defined subtree 7;.

In order to make more specific what we mean by the recur-
sive construction, let us focus our discussion, for example, on
the search tree & induced by Elias w code.

First, let Ty be the tree having two nodes, that is, the root
labeled (2) and the left leaf labeled by 1 (connected to the
root with the left branch). In order to construct 7;; from 7;,
let us next define the exponentiation operation expy:7 — T
as follows:

1) Given a search tree Tj, all the labels (k) of the nodes of

T; are replaced by the new labels (2%).

2) The left leaf of T; labeled as j = k — 1, the parent of
which has new label (2%), is replaced by a complete
binary subtree with depth k& — 1 whose 21 leaves have
labels 2k—1 2k—1 4 1 ... 2% _ 1 in this order from left
to right, and the nodes of this subtree are given labels
indicating the due comparisons which is to be specified
below in 4).

3)

4)

5)

The right leaf of 7; labeled as 7 = k, the parent of
which has new label (2%), is replaced by a complete
binary subtree with depth k& whose 2* leaves have labels
2k 2k 4 1,... 2% _ 1 in this order from left to right,
and the nodes of this subtree are given labels indicating
the due comparisons which is to be specified below in 4).
The roots of the complete subtrees appearing in cases 2)
and 3) are given labels (28—1 4 28=2) and (2% 4 2%1),
respectively.

Suppose now that a node ¢ at level lower by m > 0
from the root of the subtree was given label (h).

Then, in case 2), the left child of the node a (at level
lower by m 4 1 from the root of the subtree) is given
label (h — 2¥=™=3), while the right child of the node a
(at level lower by m + 1 from the root of the subtree)
is given label (h + 2k—m—3),

On the other hand, in case 3), the left child of the
node o (at level lower by m + 1 from the root of the
subtree) is given label (h — 2¥~™~2), while the right
child of the node a (at level lower by m + 1 from the
root of the subtree) is given label (h + 2+¥—™~2),

It is evident that, under this recursive labeling, the
parents of all the leaves in these subtrees have labels
(odd) and all the remaining nodes have labels (even).
Denote the resulting tree by 7} 1 = exp, T;.

AHLSWEDE et al.: UNIVERSAL CODING OF INTEGERS AND UNBOUNDED TREES

673

./ZT0+1
2T1+1
| T (512) \ ST+
(32) T, 2513,
(16) (128)
/ \ 233
(64) (256) v
\ A 217y (2129
As
1613
[] [] [] [] []
9 _‘—If
[] [] [] [] []

Fig. 3. Search tree induced by Stout code S1(d = 1). (k) means that if j < k then go to the left, otherwise go to the right.

In this manner we have a sequence 79,77,75, - - - of trees,
and the concatenated search tree 1" = 11175, -+ coincides
with the search tree induced by Elias w code (cf. Fig. 2).

For the Stout codes S;, we can define similar recursions
with the exponentiation operation exp, replaced by a similar
operation exp,(- + d), which means that the labels (k) of all
the nodes in 7} are replaced by the new labels (2%+4), and all
the leaves of 7; with labels j = k are replaced by a complete
binary tree with depth k£+d. From this viewpoint, Bentley—Yao
search tree may be regarded as a special case with d = —1
of the Stout search tree.

Remark 3: As one may notice, if our focus is on the asymp-
totic behavior of the code, we can modify any unbounded
search tree to obtain another improved search tree having
shorter searching time than that of the original tree. For
example, in Fig. 2 we can pull up the comparison “(16)” to the
top and perform the due modification of the tree for integers
from 1 to 15. Then we have the searching time shorter by 2 for
integers greater than 15. This means that it is always possible
to improve any prefix code for integers by any finite length
for larger values of integers.

IV. BOUNDS ON THE CODEWORD LENGTHS

In this section we first study the performance of Elias w
code. Codeword length (1.4) of Elias w code is defined as a

function on the set of positive integers

Yo (NH+

i21: X (5)20

4.1)
As we want to treat the problem analytically, we extend the
domain of the function A\(j) in (1.1) to the set of real numbers
z > 1, that is,

cu(j) = lw()|

Az) = |logy) 4.2)

Then (4.1) is also extended to the function on the set of real
numbers z > 1 given by

2

k>1;Mk(2)>0

(z >1).

ce(z) = Me(z)+1) (z>1). 4.3)

Here, cg(x) is a monotone-increasing right-continuous step
function, because it contains the floor function |- |.

In order to obtain bounds for cg(z), we define the log-star
function logy(x) for x > 1 as

log3(z) = logy(x) + logy logy(x) + -+ - + logéué (w)(a:) 4.9

where logh(z) is the k-fold composition of the function
log,(x), and w3 (x) is the largest positive integer w satisfying
logy (z) > 0. Therefore, w}(z) = 1,logy(z) = 0 for z = 1.
The function logy(x) is a monotone-increasing continuous
function for z > 1. Moreover, it is clear that wj(z) is a

674 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

.. logy(z) + w3 ()

=" — cp(z)
10
.w“‘"‘MM
Pt
o P I log3(x)
6 _’/—_l wwwwwwwwwwwwww
af -
2 L
10 15 20

30

15

10

log;(z) + w;"(gi)n

50000 100000

Fig. 4.

monotone-increasing right-continuous step function. Here, for
expy'(0) < z < expm'"l(()), we have wj(z) = m, where
exp,(x) = 2% and exp5(x) is the k-fold composition of the
function exp,(z).

Then, we have the following result, which can be used to
establish a lower bound for cg(z).

Lemma 1: For any positive integer k£ and any real z >
exp5(0), we have

logh(z) < A§(z) + 1. (4.5)
Proof: Obviously, for k = 1 it holds that
log,(z) < [log, z| + 1. (4.6)

To show the inequality by induction, assume that it is valid
for k = [and = > expht*(0). Then we have

logy™ (z) = log, (bgé(x)) <logy (Ay(2) +1) (4.7
< [log, (Ay(x) +1)]
= |logy Ay(z)| +1 = A5 (z) + 1
where (4.7) is due to the induction assumption. O

From Lemma 1 and the obvious inequality A5 (z) < logh(z)
for z > exp5(0), we have

150000

200000 250000

cg(z) with its lower (dotted curve) and upper (gray curve) bounds. (a) 1 < z < 20.(b) 1 < z < 218,

Theorem 1: For any real z > 1

logy(z) < ce(z) < logs(z) + wh(x). (4.8)

The graph of cg(z) together with these lower and upper
bounds is shown in Fig. 4(a) and (b) for 1 < x < 20 and
1 <z <2

Remark 4: Through a simple consideration we can easily
check that the upper bound log5(z)+w3 () in (4.8) is attained
at the points 7, = exp5*(0) (m = 1,2,---). On the other
hand, the lower bound log3(z) in (4.8) is also attained at the

same points j,, (m = 2,3,--) in the sense that
liTI_n ce(z) = logs (jm)- 4.9
z1gm

Therefore, these two bounds are the best possible as far as
we restrict the bounding functions to a class of such smooth
functions.

We can make a similar argument also to obtain bounds for
the codeword length of the Stout code S; [4]. For that purpose,
we define a function log[cﬂ by removing the floor operation in
/\[d] as
—d (z>0) (4.10)

logy(z) = logy(z)

AHLSWEDE et al.: UNIVERSAL CODING OF INTEGERS AND UNBOUNDED TREES 675

. logjy (z) + wpy(z)

40t

200

100 s
logjy (z) + wiy (%)
~ CSz(I)
MMMMMMMMMMMMMMMMMMM 10gf2](.’1?)
8 9
8. 10 1. 10

Fig.5. cs,(x) with its lower (dotted curve) and upper (gray curve) bounds. (a) 1 < = < 200. (b) 1 < z < 230,

and let logf”(‘” (z) be th.e k-fold composition of log 4 (2). Define
for z > 2¢ the function logfy as

W)
logy(z) = Z (logiy(x) +d) +d+1, (4.11)
=1
where wiy = wf‘cﬂ(x) is the integer k satisfying 0 <

logl[‘;i] (z) < 2¢. In particular, in case d = 0 we have

logjy () = logh(z) +1
and

wiy(z) = wh(z).

Let us define the function expyy)(z), which is the inverse of
logjg)(z), by exppy(z) = 27+ for any real z, and let us put

jm[d] = exp% (0) (m = 2, 3, ..)

Then, logjy(z)(z > 2¢) is a right-continuous function, i.e.,
a continuous function except for discontinuities (of jump d)
at jp,pq (m = 2,3,--+). It is also evident that w[*d] (z) is a
right-continuous step function with discontinouities of jump 1
at jm[q) (m = 2,3,---).

The extended length function cg,(z) = |Sq(x)| satisfies the
following bounds.

Theorem 2: For any real z > 2¢
logy (2) < cs,(z) < logiy(z) + wiy(z). (4.12)

Proof: Let us show by induction that, for z > expﬁﬂ (0)

0 < logfy(x) < Afy(@) +1 (k=1,2,---). (4.13)
For £k = 1, we have
logyy (2) = log,(x) — d < [logy(@)] +1 — d
= /\[d](:l?) +1 4.14)

and (4.13) is satisfied for z > 2¢. Next, we assume that (4.13)

holds for k = I. Then, for z > expfc'El(O)

0 < logl! () = log, (logly () — d

< logy (Mgy(z) +1) —d

< [logy (Afy(z) +1)] —d

= | log, (/\Ed](x))J +1-d

=)\E(‘El(a;) +1 (4.15)

thus establishing (4.13) for £ = [+ 1. On the other hand, it
trivially holds that, for z > expfiﬂ(O)

0 < Ay (@) < logjy (). O

676 IEEE, TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997
s e 10g5 (L) 4wy () + 3
PN
20f e ,
I g(z)
o 20 L b log;(x)
l” g
P
[
X
¢
5
200 200 500 800 1000
(a)
e 1< €) IS SR TN €) I
..,nww-"-“'""‘“‘"'wwa
1 C,E(I)
e lOgE ()
10 [s 4 . e
20000 20000 §0000 80000 100000

(b)

Fig. 6. cp(z) with its lower (dotted curve) and upper (gray curve) bounds. (a) 1 < « < 1000. (b) 1 < = < 100000.

Remark 5: As in the Remark 4, we can show the tightness
of the bounds in Theorem 2 The upper bound in (4.12) is
attained at the points z = j,[q) = expy (0) (m = 2,3,---).
On the other hand, the lower bound in (4.12) is also attained
at the same points in the sense that

lim c¢g,(z) =
ZTjrmld)

lim logy(z) (m=1,2,--). (4.16)
T jmld]

For example, the graph of cg, () together with these bounds
is shown in Fig. 5(a) and (b) for 1 < x < 200 and for
1 < z < 230, respectively.

Next, in order to establish bounds on the length function
of the modified Elias code w’, we extend the length function

|w’(§)] in (1.6) on N'T to
2

u(z)
i>1:Af (2)>3

CE

=|w'(z)|=2+ Al(z) (real z > 1)
“4.17)
by extending the function A(j) = |log, 7| + 1 to the real
domain {z > 1}. Then we have
Theorem 3: For any real z > 4, except for 7 < z < 8, we
have the bounds on the codeword length function (4.17) of

the modified Elias code «’
log}(z) < cp(z) < logy(z) + w3 (z) + 3. (4.18)

We give the proof in the Appendix, because it is based on
rather subtle arguments and lengthy.

Fig. 6(a) and (b) depicts the graphs of the codeword length
function ¢/ (z) of the modified Elias code with its lower bound
Ip(z) = logy(x) and its upper bound [y (z) = logy(z) +
wi(z) + 3. The difference of the upper and lower bound
is within six bits for z < 100000. Thus these bounds may
be considered as rather satisfactory ones to the step function

Remark 6: The function w3 () which appeared in the right-
hand sides in (4.8) and (4.18) is a quite slowly increasing
function in comparison with logj (). For example, w3 (100) =
4 and w3(1000000) = 5.

Remark 7: Due to the inequality

M) +1<A) (2>1,k=1,2,--)

which can be shown by induction with respect to k£, we have a
relation between two codeword length functions of the codes
w and &'

ce(z) <cplz)+1 (z>1). (4.19)
It can also be checked that (4.19) holds with equality for
T = jm (m = 2,3,---). It should be noticed here that the
leftmost block of w’ after removing the top bit 1 consists of
three bits, and the leftmost block of w consists of two bits.
So the lengths cg(x) and ¢5() of two codes will interchange
when z approaches infinity as is shown in Fig. 7.

AHLSWEDE e al.: UNIVERSAL CODING OF INTEGERS AND UNBOUNDED TREES 677

logy(z) +w3(z)

) CE(I)
_______ dE(I)
I —
log; ()
20000 20000 0000 80000 100000

Fig. 7. cg(x) (solid curve) with its lower and upper (gray curve) bounds
and ¢ () (dotted curve) for 1 < z < 100000.

V. PROPERTIES OF THE LOG-STAR FUNCTION

A. Prefix Code on Nt Induced by the Log-Star Function

In the previous sections we have shown an intimate relation
between the codeword length functions cg(z) and c¢;(z) of
Elias omega codes and the log-star function log5(z). In this
section, we will review some properties of the log-star function
itself. First, Leung-Yan-Cheng and Cover [5] have shown that
the sum of exp,(—log3(7)) is finite:

Lemma 2:

S 2 lm0) < foc,

j=1

5.1

Proof: This inequality follows immediately from (6.20)

with 7 = 2, &« = 0 in Corollary 2 below. O

From Lemma 2 we have the normalizing constant d* > 0
such that

oo
3 g~ (4" +log5 (1)) _ 1

j=1

This constant can be evaluated by the method of Rissanen
[6] as d* = 1.5185.... Thus we can define the probability

distribution po on the set AT of positive integers by
(GeNT)

which was called the “uniform distribution” on /T by Ris-
sanen [6]. Based on this distribution, we are able to obtain a
prefix Shannon code Cy with the codeword length function ¢
defined by

co(j) = [d* +log3(5)]

where [z] is the ceiling function of z, that is, the smallest
integer which is greater than or equal to z.

Comparing this length function ¢y with ¢; of the modified
Elias omega code, we see that cz(7) < co(7) for small values
of j, but the inequality ¢z(j) > ¢o(j) holds for any larger j,
as shown in Figs. 8(a) and (b). Therefore, the code Cy shows
a better performance than the modified Elias omega code or
the Bentley—Yao’s so-called “ultimate™ code.

On the other hand, as will be seen by comparing the
length function ¢y with cg of the original Elias w code,

po(y) = 9—(d"+log; (5)) (5.2)

(jeNt) (5.3)

200 800

145

135

130

38 38 38 38 38
1. 10 2. 10 3. 10 4. 10 5. 10

(b)

Fig. 8. c¢p(z) (solid curve) of Shannon code corresponding to the uniform
distribution po(7) and c¢fz(z) (dotted curve). (a) 1 < = < 100000. (b)
1 <z <5 x10%.

Remark 4 implies that there are infinitely many ; satisfying
ce(j) < co(j). Nevertheless, for almost all values of j it holds
ce(j) > co(j). In Section VII we will show the existence of
an asymptotically better code than code Cj.

Remark 8: There is still no simple and elegant algorithm,
such as that for the Elias omega code w, the modified Elias
omega code w’, or the Benty—Yao search tree &', for con-
structing the prefix Shannon code with the length function
co(4) (j € NT) defined in (5.3).

B. Infinitely Often Lower Bound on the Length
Function of Prefix Codes

Another property concerning the log-star function was given
by Bentley and Yao [2]. Now, let f(5)(j € N1) be the
codeword length of an arbitrary prefix code on A't, then it
must satisfy the Kraft inequality

i 2-f0) < 1.
=1

Theorem 4: Assume that an integer-valued function f sat-
isfies Kraft inequality (5.4). Then, for infinitely many j € '

() = logs(5) — {w3(7) +logs (w3 (4)) }- (5.5)

Theorem 8 in the following gives a stronger result. Its proof
is simpler than that of Bentley and Yao.

649

678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

VI. MODIFIED LOG-STAR FUNCTIONS

We have shown that the codeword length function cg of
Elias w code is lower-bounded by the log-star function log3(5)
and is upper-bounded by the log-star function plus w3 (), and
also that there exists a prefix code Cy with the length function
co(j) = [d* +1og3(j)] in view of Lemma 2. So we might
be tempted to think that ¢y gives an asymptotically best prefix
code for integers. Is it true?

On the other hand, in contrast to (5.1), the argument of
Leung-Yan-Cheng and Cover [5] shows that, for any integer
r >3

oo

>

j=1

log. () — 400 6.1)

where the definition of the generalized log-star function
log; () will be given by (6.6). Thus we cannot have any r-ary
prefix code with the length function of the form [d} +log (5)]
for any constant dy. This phenomenon is in contrast to the
binary case. Then, what is the essential difference between
the binary and r-ary cases (rr > 3)?

This section is motivated by such questions. Incidentally,
we will show the existence of an infinite sequence of prefix
codes having better performance for larger integers, that is,
codes which have shorter codeword lengths than the log-star
logs(j) for large integers.

We begin with some definitions. Let w(z) (z > 1) be the
largest positive integer w satisfying log,’(z) > 0 as in the
binary (7 = 2) case. Similarly, define w}(z) (z > 1) as the
largest nonnegative integer w satisfying log,’(z) > 0. By con-
vention, w; (1) = 1. Thus both functions w}(z) and w}(z)
are monotone increasing step functions with discontinuities at
z = expi(0) (i = 1,2,---). These functions take the same
values for z # expi(0) (i = 2,3,---)

/\V_/v

wy (z) = wit (x) (6.2)
and at discontinuities z = expZ(0)(i = 2,3, --)
wi(z) = wi(z)+1 (6.3)

where w? is right-continuous, and w; is left-continuous.
Explicity, we can write these functions as follows:

wh(z) =4, for expl(0) <z <expiFH(0) (i=1,2,--")
6.4

wh(z) =4, for expi(0) <z <expi™(0) (i=1,2,--).
(6.5)

Then, for integer 7 > 2, the log-star function log). to the base
7 is defined as

log*(z) =log,.(x)+log, log,(z)+- - - +log @ (z) (z > 1).
(6.6)

Let us define, for any integer > 2 and any real number
o, 3, the modified log-star functions logf_,a, s and logj’a, g by
= log} (x) - aw}(x) + flog, (wi(x)) (67)
=log}(z) — aw (z) + Blog, (w;(z)). (6.8)

log;. o5(2)
1Og::a,[3 (.’,U)

It should be noted that we have the log-star function log} as
a special case with « = 0, 8 =0, r = 2.
The properties of the modified log-star functions are de-
scribed in the following theorem and its corollaries.
Theorem 5: Set off = log,.(log,. e), then we have

1) For g > 1

logf . ()

>

< +o0. (6.9)
Jj=1
2) For g <1
Z grarn) = 4o, (6.10)
Proof: 1) First, we set
© oot .
Iy =3 s, 6.11)

=1

Then, rewriting log" . 4(z) with a* = =% as

log! - 5(z) = (log, = +log, a*) + (log, log, « + log, a*)
+--+ (log? @) (z) +log, a*) + log, (u;t (z))”
we have
_ i 1

w 8
a*j-a*log, j---a*log® D71(j) - (wi (z))

On the other hand, we have an indefinite integral for any
integer m > 1

/ dx
a*z - a*log,. - - -a* log™ " (z) - m?
1]-Oge T " m _ 1 m
- m(5) log"(¢) = 3 log?" ()

Therefore, by setting

S‘m,ﬁ

/expm+l(0) dz
Jewr©) atz-atlog, e atlogt” 7N (a) - (wi (z))”
(6.12)

we obtain

expl (o) _ 1

[1Og ()]exp;“(O) = W

Noting that 7 ™) on the right-hand side of (6.11)
is left-continuous for real z > 1 and continuous and
monotone-decreasing in each interval (expt(0),expiti(0))
({ =1,2,--+), we can establish the inequality

I+ <TT+ZSWIH—TT+ZW

m=1 m=1

S = (6.13)

— 10g+

rion

(6.14)

where we have used the fact

08" o (@)

—1 .
T =r%, forzx=1.

AHLSWEDE e al.: UNIVERSAL CODING OF INTEGERS AND UNBOUNDED TREES 679

We notice here that the second term on the right-hand side of
(6.14) is nothing but the Zeta function ¢(/3). Consequently, by
(6.14), if 3 > 1 then we have I;"ﬁ < 4o0.

2) Next, let us set 7

(6.15)

> . .
_ § 71_ IOg.,.’n;”/;(])

j=1
—log’ . .(x)
where 7 mer#" on the right-hand side is right-continuous
for real z > 1 and continuous, monotone-decreasing in each
interval (exp’(0),expit1(0)) (i = 1,2,---). Noting that the
value of the integeral is invariant (due to (6.2)) even if we
replace wt(z) by w}(z), we obtain the inequality similar to
(6.14)

. oo oo 1
FEDIEEDY =5 (6.16)
m=1 m=1
Therefore, if 5 < 1 then we have I;f, g = too. O

In view of the inequality
wi(z) < wiz) S wi(z) +1

it is easy to see that the boundedness of I + means that of
I7* o and the infiniteness of I’ ; means that of I "' . Thus we
have the following result as a consequence of the previous
theorem. Notice here that the positions of symbols * and T
are exchanged.

Corollary 1:

1) For g > 1

oo l . .
ZT_ g, .= 5(7) < 4oo.
j=1

(6.17)

2) For 8 <1

o0 o + B
S s — o, (6.18)

=1

As a special case of the modified log-star functions
log}. , g(z), we may consider the following functions (3 = 0):
log;, () = log}, o(x) = log}(z) — aw(z). (6.19)
Then, an immediate consequence of Theorem 5 and Corollary
1 is the following property due to Levenshtein [7].
Corollary 2:

1) For a < af

D rmEna) < oo (6.20)
i=1

2) For o > of
D rm e l) = o, 6.21)

j=1

Proof: It is easy to see that
1Og:,oz; ,8 (J) S log:,a (J)
for o < @}, 8 > 1 and for all sufficiently large j, and also that
(6.23)

(6.22)

logy o 5(J) 2 log}. o (J)
for o > o5, 0 < 8 <1 and for all sufficiently large j. From
(6.22) combined with (6.17) in Corollary 1, (6.20) follows,
whereas from (6.23) combined with (6.10) in Theorem 5,
(6.21) follows. O

The inequalities in Corollary 2 do not yet attain the best
possible bound. To see this, for example, let us define

log}, (J) = log} - () +1og]. o (w}(5)) (6.24)

fory=1,2,---
2 as follows.
Theorem 6:

1) For a < &

. Then, we have a stronger version of Corollary

Z r~ logr o (4) < +00. (6.25)

j=1
2) For o > «f

D rmleEnal) = 4o, (6.26)
j=1
Proof: Taking account of Corollary 2, the claim can be
proven in the same manner as in the proof of Theorem 5. [
It is possible also to put forth Corollary 2 and Theorem 6
into a much more general form; let us denote by w(k)*() the
k-fold composition of w;(x) and define, for real x > 1,

log{7e)* () Tiz log; - (wi* (2) +logr o, (wf™™*(2)
(6.27)
where w(”* (z) = z by convention. It is evident that
log{)" () = log. ()
log)" () = log}, ().

Then, repeated application of the arguments leading to Corol-
lary 2 and Theorem 6 establishes the following general Theo-
rem 7. It should be noted here that, for m = 1,2,---,

log(m)*() — log(m-'_l)*() — +o00 (z — +00)

whenever o < «j.. Therefore, the larger m, inequality (6.28)
in Theorem 7 is the stronger.

Theorem 7: For any integer m = 1,2,---,
holds.

1) For a < o

the following

o0
ZT—mg&T:z"(j) < 400.

j=1

(6.28)

2) For o > o

L O (6.29)

i=1

680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

Let us now consider several properties of prefix codes on
the basis of Theorem 5 and Corollary 1. When 3 > 1, we
may think of two alternatives, log;. .- 5(j) and 10g::a;7ﬁ(j),
as length functions satisfying Kraft inequality. In this case
there exist normalizing constants d; @ d:ﬁ such that

o ptiogr - (D) _ 4

NgE

(6.30)
j=1
(e] _ + o + -
ZT (dnﬁ_H gr,n;,ﬁo)) =1. (6.31)
j=1
Therefore,
P2 a0i) = —(d; ptHlog; v 5()) (6.32)
—(dt +lo j
pE o) = Gt) 633)

specify probability distributions on AT, The corresponding
Shannon codeword length functions are given by

g(J) = [dy 5 +log] .- 5(4)]

™ (6.34)
crs(9) = [d 5 +1ogl o ()]

(6.35)

C

for j € NT.

A. Binary Codes

Consider the binary code alphabet case, that is, 7 = 2. Then,
a = log,(log, €) = 0.5287 .. ., that is, o > 0, and hence we
can choose a positive « in order to achieve a length function
(satisfying Kraft’s inequality) for prefix codes.

1) Let us consider the probability distribution on A/ F
p2 G(J) _(dz [;+log2 a; ﬁ(]))

— 9= (d3 gFlog; (j)—az w; (§)+810gs (w3 (5))) (6.36)
with 8 > 1. The distribution p3 , is not monotone-decreasing,
unlike the Rissanen’s “uniform” distribution po (cf.(5.2),
because the right-hand side of (6.36) contains w3(j) with a
negative sign, although in each interval (exp5(0), expsy*(0))
(¢ = 1,2,---) it is a continuous, monotone-decreasing func-
tion. The term w3 (j) works to make the decreasing speed of
D5 5(j) slower than that of the distribution pg(7), and hence
p;@ is more uniform than the distribution pg.

2) The corresponding Shannon codeword length function

*
C2.8

c2,6(J) = [d3,3 +1083 o: 5(J)]

= [d} 5 +1log3(j) — czws () + Blog, (w3 (4))]
(6.37)

is asymptotically shorter by abw3(7) than co(j) given by (5.3).
In view of Theorems 1 and 3, it is also shorter by ajw3(j)
than those of Elias omega codes. Thus c; 5 specifies a better
code than Elias codes. However, the algorithmic construction
of such an asymptotically better code remains open.

3) We have an infinitely often lower bound on codeword
lengths of prefix codes as follows.

Theorem 8: Let f(j) (j € N7T) be any integer-valued
function satisfying Kraft’s inequality (5.4). Then, for infinitely
many j € N'7T

f() = logs(5) — abws (5) + logy (w3 (4)).

Proof: If the statement is not valid, then there is a
constant d such that for all j € N’

F() < d+logh(5) — egw3(j) + logy (wh(4))
= d+log; o 1(4)-

(6.38)

Therefore, we have

oo o0 . .

Z 9—f() 5 9—d Z 9~ 1°g2,a;,1(1)_

ji=1 j=1
The right-hand side equals +o0o by (6.18) of Corollary 1. This
contradicts Kraft’s inequality (5.4). |

Remark 9: In Theorem 4, the counterpart of the sum of
the second and third terms on the right side of (6.38) is
wi () + logy(w3(4)) (see (5.5)). In light of o < 1, the
followmg simple inequality holds:
log, (w3(5)) < w3(y) +logh (w3(4))

which shows that Theorem 8 gives a tighter lower bound. It is
easy to see that the right-hand side of (6.38) can be replaced
by the following tighter one:

logi 0t (7) = 1083, . (7) + 1085 o (w5(5))

or more generally by

aswy(j) — (6.39)

log§ ™ (j) (m > 2).

A similar remark is valid also for Theorem 9 below.

B. r-ary Codes for r > 3

When r > 3, o} = log,.(log, ¢) is negative, and so we have
to choose a negative « in order to establish a codeword length
function (satisfying Kraft inequality) for prefix codes. In this
case, the probability distribution (6.32) on N'F

Pt a(i) = p(dy ptlog () —arw () +8log, (w.(7) (6.40)
with any 8 > 1 is monotone-decreasing in j € NT. The
Shannon codeword length function ;. 5 corresponding to this
distribution pj 5 is given by
crp(d) = [d7 g+ log; - 5(4)]
= fdr,a+10gi(') — ayw(§) + Blog, (wi(j))]
(6.41)

which is clearly a monotone-increasing function. On the other
hand, owing to (6.21), the length function given by

¢ (4) = [dr + logy(j)]1

which is defined as a naive generalization of the binary case
(ct. (5.3)), cannot be a codeword length function for any prefix
code at all. As in the binary case, getting 3 closer to 1 from
above, we have an infinite sequence of prefix codes with

AHLSWEDE e al.: UNIVERSAL CODING OF INTEGERS AND UNBOUNDED TREES 681

shorter lengths ¢} ;(j). The algorithmic construction of such
codes remains still an open problem.

We conclude this section by giving the r-ary counterpart of
Theorem 8 for the binary case.

Theorem 9: Let r > 3 be any integer, and let f(j)(j €
NT) be any integer-valued function satisfying Kraft inequality

d orf0 < (6.42)
j=1
Then, for infinitely many j € A1,
() 2 logy(4) — afw}(j) +log, (wi(s)) (6.43)

where it should be noted that o < 0 for » > 3.
Proof: The proof is quite similar to that of Theorem 8.
As was pointed out in Remark 9, the right-hand side of (6.43)
can be replaced by log(m)f (m > 2). O
APPENDIX
PROOF OF THEOREM 3

First let us recall that the codeword length (4.17) of the
modified Elias «’ code is given by

dp(e) = W@ =2+) A(z)

1>1:A (z)>3

(real z > 1) (AD)

where A(z) is the extended function of A(y) in (1.2)
A(z) = |logoz| +1

and A’ is the i-fold composition of A. It is obvious that g, is
a monotone-increasing right-continuous step function, because
it contains the floor function |[-|.

(real z > 1) (A2)

A. Lower Bound on the Codeword Length of '

We can bound ¢j;(z) for > 4 from below as follows:

cp(x) > 2+ logy(x) + log, logy(x) + - - -
+logh ~(z) + A¥ (z) (A3)

by repeatedly using the inequalities for any real number x > 1,

A(z) > logh(z) (i=1,2,---) (A4)

where k* is the unique positive integer satisfying AF (z) = 3.
Here we use the convention that logh(z) = 0 if logh(x) is
negative or undefined.

Now we assume k* > 2. Then, £* — 1 > 1 and hence
A¥ ~1(z) must be an integer. Therefore, by the definition
(A2) of A(z) it follows that 4 < A* ~1(z) < 7, from which
we have logh ~!(z) < 7. Therefore, we obtain the following
inequalities:

log§ () < log, 7
logh T (z) < logylog, 7
logh +2(z) < log, log, log, 7 < 1.
Hence,

wi(z) < k* +2.

Thus in the case of k* > 2, we obtain the lower bound as
follows:

(@) > logs () +5— (1ogh (2)+logh *(x)+logh **(2))
>logs(z)+5—(log, 7+1og, log, 7+1og, log, log, 7)
>logy(z)+5—4.877 - -
>logs(z) =1L (z).

Remark 10: In the above derivation, when k* = 1 it holds
that A¥ ~1(z) = A°(z) = . Hence, A¥ (z) = 3 is equivalent
to 4 < 2 < 8. We have already shown that c/z(z) > logs(z)

for 4 < z < 7. Therefore, it may occur that cz(z) < log3(z)
only for 7 < z < 8, and it really occurs.

(A5)

B. Upper Bound on the Codeword Length of '

For convenience, we set

g(z) =logyz+1 (real z > 1) (A6)
and observe that
Alz) < g(z) (real z > 1). (A7)

Now we investigate the relation between g"(z) (the r-fold
composition of g(z)) and logy(x). For » = 2, we have

9%(z) = logy(logy & + 1) +1

1
= log, {log2 :z:<1 + og, w)} +1

1
= log, log, = + log, (1 + 10g2$> +1

a
< 10g§(a:) + @ +1

where a = log, e. For 7 = 3, it holds in the same way that

(12 a

log2(z) loa(z) | log2(z)

After repeating similar calculations, we have, for any positive
integer k,

9*(z) < logy(z) +

Ak(w) < gk(m) < logg () + Ax(z) +1 (AB)
where
k—2 ;
g+l
A = A9
{0 = T e) e

and we have set A;(z) = 0.
Now we determine the positive integer w for any real
number x > 4 such that

2 <logy (z) < 4 = expy(2). (A10)
Since for any integer [(w > 1 > 1)
logy ~!(z) > exp}(2)
we have for any integer £ satisfying 2 < k < w
)< Z w=k+1(g w— koi:l w—k+j+1 70\
=0 €XP3 2)expy " 77(2) - - -expy (2)

682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

Therefore,

> Ax(x)
k=1
w k—2

<ZZ

it

k
=32 expy T (2) expy TR (2) - expy TMHH(2)
Jj=0
w 1
X X w—k+1 w—k+2 w—k+j+1
kejr2 €XP3 (2) expy (2)---expy (2)
w—2
J=0
1
X —
Zz% expzz-l—l eXpl+2(2) __exp12+J+1(2)
— w—j—2 1
= ' T+
j=0 i=0 {GXPEH(Z)}

Applying an obvious inequality exps™t(2) > {exp,(2)}**t,

we obtain
w—j—2

w w—2
TCED N DY
k=1 3=0 =0

To upper-bound the right-hand side, we continue the compu-
tation as follows:

;Ak(x) < JZO ot Z (4j+1)z+1
w—2

Z (a)j+1 4
j=0 4 3
a (a)j
3j=0 4

4a

On the other hand, 4a/3(4 — a) = 0.9092... because ¢ =
log, ¢ = 1.4427. ... Hence, from (A12) we have

zw:Ak- (z) <1
k=1

From (A8), (A10), and (A13), we obtain
A¥(z) £ ¢g¥(z) Llogy(z) + Ap(z)+1<4+14+1=6

{oxpy2) Gy - AD

IN

IN

(A.13)

which means A¥(z) < 5, because A*¥(x) must be an integer.
Now let us investigate the case, when A*(z) is 4 or 5. In
this case, owing to (A10), we have

1 <logd¥™(z) <2, 0<logy™(z)< 1.

Therefore, there is the relation between w defined in (A10)
and w3(z) defined in (4.4) such that

wy(z) =w + 2. (A14)

Hence, we obtain
A (z) =3 < logy T (z) + logy™2(2) + 2. (Al5)

Summarizing (Al), (A8), (A14), and (A15), we obtain an
upper bound for the codeword length cz(z) of the modified
Elias w’ code for any real > 4 in the case of A¥(z) =4 or 5

de@) =2+ 3 Aix)
i>1:A(x)>3
<2+ Y. 4@
1>1: A (z)>3
<ly(z) (A16)
where we have set
ly(z) = logy(z) + w3 (z) + 3. (A17)

By virtue of a similar discussion, we can derive the same upper
bound (A16) also for the case A¥(z) < 3.

Thus we have established Theorem 3 by means of the above
a), b), and Remark 10.

ACKNOWLEDGMENT

The authors wish to thank H. Yamamoto and A. Barg for
bringing [4] and [7], respectively, to their attention.

REFERENCES

[1] P. Elias, “Universal codword sets and representation of the integers,”
IEEE Trans. Inform. Theory, vol. IT-21, pp. 194-203, 1975.

[2] J. L. Bentley and A. C. Yao, “An almost optimal algorithm for
unbounded searching,” Inform. Processing Lett., vol. 5, no. 3, pp. 82-87,
1976.

[3] S. Even and M. Rodeh, “Economical encoding of commas between
strings,” Commun. ACM, vol. 21, no. 4, pp. 315-317, 1978.

[4]1 Q. F. Stout, “Improved prefix encodings of the natural numbers,” JEEE
Trans. Inform. Theory, vol. IT-26, pp. 607-609, 1980.

[5] S. K. Leung-Yan-Cheng and T. M. Cover, “Some equivalences between
Shannon entropy and Kolmogorov complexity,” IEEE Trans. Inform.
Theory, vol. IT-24, pp. 331338, 1978.

[6] J. Rissanen, “A universal prior for integers and estimation by minimum
description length,” Ann. Statist., vol. 11, pp. 416-431, 1983.

[71 V.1 Levenshtein, “On the redundancy and delay of decodable coding
of natural numbers,” Probl. Cybern., vol. 20, pp. 173-179, 1968, (in
Russian),

