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Our main discovery is the inequality

D
�
(A, B) D

�
[A, B]�D

�
A D

�
B,

where A, B are arbitrary sets of positive integers, (A, B)=[(a, b) : a # A, b # B] is
the set of largest common divisors, [A, B]=[[a, b]: a # A, b # B] is the set of
least common multiples, and D

�
denotes the lower Dirichlet density. It is much

more general than our recent inequality for multiples of sets, which in turn is
sharper than Behrend's well-known inequality. We also extend another recently
discovered inequality, which does not seem to have number theoretic prede-
cessors. � 1997 Academic Press

1. INTRODUCTION

The starting point of our investigations is two new inequalities of [4],
which concern asymptotic densities of sets of multiples of certain sets of
positive integers. They are readily stated.

For sets A, B/N, the set of positive integers, consider the set of least
common multiples [A, B]=[[a, b]: a # A, b # B], the set of largest com-
mon divisors (A, B)=[(a, b) : a # A, b # B], the set of products A_B=
[a } b : a # A, b # B], and the sets of their multiples M(A)=A_N, M(B),
M[A, B], M(A, B), and M(A_B), respectively.

We use the abbreviations (1, n) =[1, 2, ..., n] and for any set C/N,
Cn=C & (1, n).

The asymptotic density dC is defined as dC=limn � � |Cn|�n, if the limit
exists. The lower (resp. upper) asymptotic densities d

�
C and d� C are defined

similarly with lim replaced by lim inf (resp. lim sup).
The discoveries in [4] are the inequalities

dM(A, B) dM[A, B]�dM(A) } dM(B) (1.1)
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and

dM(A) } dM(B)�dM(A_B), (1.2)

where A and B are finite.
The first inequality is by the factor dM(A, B) sharper than Behrend's

well-known inequality [9, 25, 16]. This in turn is a generalisation of an
earlier inequality of Rohrbach [27] and Heilbronn [18], which settled a
conjecture of Hasse concerning an identity due to Dirichlet (see [27]).
A simple proof was given in [28] via a probabilistic inequality, which
actually is a special case of the earlier FKG inequality [15].

The second inequality does not seem to have predecessors in number
theory.

We mentioned already in [4] that structural similarities between
Behrend's inequality and the AD inequality (see Section 2) led us to
conjecture the first inequality.

Now we go further in three directions. We mention first that these
similarities are more than just analogies. In fact, we show in Section 2 that
(1.1) is a consequence of the AD inequality. Thus we have a unified view
and the AD-inequality now not only includes several correlation
inequalities from statistical physics [15], resp. probability theory [17, 19]
and combinatorics [22, 29, 12, 7], but also well-known density inequalities
[27, 18, 9] in number theory.

Second, this approach gives more than just another proof of (1.1), because
it works for arbitrary subsets C, D # N and not just sets of multiples M(A),
M(B) with A, B finite (Theorem 1 in Section 2).

The application of the AD inequality is made to isomorphic images of An

and Bn in finite lattices of multisets (that is, divisors of an integer). The
transition to the (possibly infinite) sets A and B proceeds via Dirichlet
series D(C, s)=�n # C n&s and Dirichlet densities

DC= lim
s � 1+

(s&1) D(C, s), (1.3)

if they exist. Otherwise we use the lower (resp., upper) Dirichlet densities
D
�
C and D� C, which are defined with lim replaced by lim inf (resp., lim sup).
Finally, we explore number theoretic analoga to other known correlation

inequalities. Sets of multiples correspond to upsets in lattices.
Thus far our main finding is that the inequality in (1.2) corresponds to

and can also be derived via Dirichlet series from the van den Berg�Kesten
inequality (see Section 3). It plays a role in (and was discovered in the
context of) reliability theory (see [8], [24]) and also in percolation theory
(see [10], [21]). This inequality holds only for upsets and as striking
confirmation of our ideas we note that (1.2) does not extend to arbitrary
sets! (See Example 3 in Section 3.)
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However, our approach gives an extension of (1.2) to multiples of infinite
sets in terms of Dirichlet densities (Theorem 2 in Section 3). Further
perspectives of our ideas are discussed in Section 4. We conclude with
relations between density concepts, which are used in the paper.

Dirichlet proved (see [25, page 96]) that DA equals the so called
logarithmic density

$A= lim
n � �

1
log n

:
a # An

1
a

. (1.4)

Inspection of the proof shows that the corresponding lower and upper
densities are also equal:

D
�
A=$

�
A and D� A=$� A. (1.5)

It is also well-known (see [25]) that

0�d
�
A�D

�
A�D� A�d� A. (1.6)

Consequently the existence of dA implies the existence of DA. (For con-
verse implications see [20, 23, 25]). A famous example of Besicovitch
([11], [16]) shows that infinite sets of multiples need not have an
asymptotic density. However, Davenport and Erdo� s [13] proved that for
every A/N

$M(A)=d
�
M(A). (1.7)

2. A NUMBER THEORETIC CONSEQUENCE OF THE
AD INEQUALITY

We state first the

AD inequality. Let L/[0, 1]n be a sublattice of [0, 1]n and let
:, ;, #, $ : L � R+, then

:(a) ;(b)�#(a 6 b) $(a 7 b) for all a, b # L (2.1)

implies

:(A) ;(B)�#(A 6B) $(A 7 B) for all A, B # L, (2.2)

where

:(A)= :
a # A

:(a) etc. and A 6 B=[a6 b: a # A, b # B] etc.
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We state next our main result. It is an inequality, which is sharper and
considerably more general than all its predecessors, inequalities by
Rohrbach, Heilbronn, Behrend, and Ahlswede�Khachatrian (see [27],
[18], [9], [4]). It holds for arbitrary sets and not just for sets of multiples
of finite sets.

Presently we have no proof without transfinite methods. Whereas
An , Bn /(1, n) we know in general only that [An , Bn]/(1, n2) , which
makes comparisons of densities difficult.

Theorem 1. For arbitrary A, B/N

D
�
A } D

�
B�D

�
[A, B] } D

�
(A, B).

Before we give a proof we present some immediate consequences.

Corollary 1.

(i) For finite A, B/N dM(A) dM(B)�dM[A, B] dM(A, B) ([4]).

(ii) For arbitrary A, B/N DM(A) DM(B)�DM[A, B] DM[A, B].

Furthermore, this inequality can be given in equivalent forms by writing $
or d

�
instead of D.

Proof. First observe that

M[A, B]=[M(A), M(B)] and M(A, B)=(M(A), M(B)).

These identities and application of Theorem 1 to the sets M(A) and M(B)
give

D
�
M(A) } D

�
M(B)�D

�
M[A, B] } D

�
M(A, B).

Now (i) follows, because multiples of finite sets have asymptotic density
and by (1.6) we can replace D

�
by d

�
.

Finally (ii) follows, because we know from (1.7) and (1.5) that for any
C # N d

�
M(C)=$

�
M(C)=DM(C).

Proof of Theorem 1. We consider the Dirichlet series D associated with
A, B, [A, B], and (A, B) in the domain [s : s # R, s>1], where they all
converge.

It is also clear that for An=A & (1, n) and Bn=B & (1, n) ,

lim
n � �

D(An , s)=D(A, s), lim
n � �

D(Bn , s)=D(B, s),

lim
n � �

D([An , Bn], s)=D([A, B], s),
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and

lim
n � �

D((An , Bn), s)=D((A, B), s). (2.3)

Using these facts we derive below from the AD-inequality the inequality

D(A, s) } D(B, t)�D([A, B], s) D((A, B), t) for 1<s<t. (2.4)

This immediately yields

lim inf
s � 1+

D(A, s) } D(B, t)�lim inf
s � 1+

D([A, B], s) } D((A, B), t)

and thus D
�
A } D

�
B�D

�
[A, B] } D

�
(A, B).

We prove now (2.4). Let [ p1 , p2 , ..., pm] be the set of all primes in (1, n).
Clearly An _ Bn _ [An , Bn] _ (An , Bn)/L$=[>m

i=1 p?i
i : 0�?i�n] and

c$ # L$ has a unique representation

c$= `
m

i=1

p?i (c$)
i . (2.5)

f : L$ � [0, 1]m } n, defined by f (c$)=c=(c11 , ..., cn1 , c12 , ..., cn2 , ..., c1m , ...,
cnm) with

cji={1
0

if ?i (c$)� j
if ?i (c$)< j,

(2.6)

embeds the lattice L$ isomorphically into the lattice ([0, 1]m } n, 6, 7).
Denote the image by L.

The quadruple (:, ;, :, ;), where

:(c)=
1

(c$)s= `
m

i=1

p&?i (c$) s
i , ;(c)=

1
(c$)t= `

m

i=1

p&?i (c$) t
i (2.7)

for c # L and equals 0 otherwise, satisfies (2.1), because (a, b)�a, b�
[a, b], (a, b) } [a, b]=a } b and thus for 1<s<t

1
as

1
bt�

1
[a, b]s }

1
(a, b)t . (2.8)

Since

[a, b]= `
m

i=1

pmax(?i (a), ?i (b))
i , (a, b)= `

m

i=1

pmin(?i (a), ?i (b))
i (2.9)
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the AD-inequality implies now (2.2), that is,

:
a # An

1
as } :

b # Bn

1
bt� :

c # [An , Bn]

1
cs } :

d # (An , Bn)

1
d t , (2.10)

or that

D(An , s) D(Bn , t)�D([An , Bn], s) D((An , Bn) t). (2.11)

This and (2.3) finally imply (2.4).

Obviously, from (2.4) we can derive also other inequalities for arbitrary
A, B # N, namely D

�
A } D� B�D

�
[A, B] } D� (A, B), D� A } D� B�D� [A, B] }

D� (A, B), and D� A } D
�
B�D� [A, B] } D

�
(A, B).

It is a wide field of research to investigate for which sets the various
densities exist.

Now we deduce from Theorem 1 an inequality for non-multiples N(C)=
N"M(C).

Corollary 2.

(i) For finite A, B # N dN(A) } dN(B)�d[N(A), N(B)] dN(A _ B).

(ii) For arbitrary A, B # N DN(A) DN(B)�D[N(A), N(B)] DN(A _ B).

Here D can be replaced by $ or d
�
.

Proof. First observe that (N(A), N(B))=N(A _ B). This identity and
application of Theorem 1 to the sets N(A) and N(B) give

DN(A) } DN(B)�D
�
[N(A), N(B)] } DN(A _ B).

Here D
�

can be replaced by D, because [N(A), N(B)]=N(A) _ N(B) and
DN(A)+DN(B)&DN(A _ B)=D(N(A) _ N(B)).

This gives (ii) and, since for a finite set C,

DN(C)=1&DM(C)=1&dM(C)=dN(C),

also (i).
Note that (i) is by the factor d[N(A), N(B)] better than Behrend's

inequality. In [4] we have shown that (i) in Corollary 1 is equivalent to

dN(A) dN(B)�dN(A _ B)&dN(A, B)(1&dN[A, B]), (2.12)

which is by the term dN(A, B)(1&dN[A, B]) better than Behrend's
inequality!

Quite surprisingly the two inequalities are different and none implies the
other!
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Example 1. A=[3, 4], B=[6], dN(A)=1&( 1
3+ 1

4& 1
12)= 1

2 , dN(B)=
5
6 , dN(A _ B)=dN(A)= 1

2 , d[N(A), N(B)]= 11
12 , (A, B)=[2, 3], dN(A, B)=

1
3 , [A, B]=[6, 12], dN[A, B]=dN([6])=dN(B)= 5

6.
We have therefore dN(A _ B)&dN(A, B)(1&dN[A, B])= 1

2& 1
3 (1& 5

6)=
4
9< 11

24= 1
2 } 11

12=dN(A _ B) } d[N(A))N(B)].

Example 2. A=[2], B=[2, 3], dN(A)= 1
2 , dN(B)=1& 1

2& 1
3+ 1

6= 1
3 ,

dN(A _ B) = dN(B)= 1
3 , since [N(A), N(B)] = N(A) _ N(B) = N(A) and

thus d[N(A), N(B)]= 1
2 , dN(A _ B)=dN(B)= 1

3 , dN(A, B)=0.
We have therefore

dN(A _ B)&dN(A, B)(1&dN[A, B])

= 1
3> 1

6= 1
3 } 1

2

=dN(A _ B) d[N(A), N(B)].

We mention that in the case A=[4], B=[6], the order is as in Example 1,
but with equality in (2.12).

3. FROM ``NEW BETTER THAN USED'' (NBU) TO
THE INEQUALITY DM(A_B)�DM(A) } DM(B)

The role played by the AD-inequality in the forgoing section is now
played by the BK-inequality, which we now introduce.

For a=(a1 , ..., an) and b=[b1 , ..., bn) # Rn, a�b means at�bt for
t=1, 2, ..., n. A set A/Rn is called increasing, if a # A and b�a implies
b # A.

In reliability theory (see [8] for a systematic account) a non-negative
random variable X is called ``new better than used'' or in short NBU, if its
probability distribution on R+ satisfies for all x1 , x2�0

P[X>x1+x2 | X>x1]�P[X>x2], (3.1)

or equivalently,

P[X>x1+x2]�P[X>x1] P[X>x2]. (3.2)

Motivated by the study of critical probabilities in percolation theory
(see [21], [10]) van der Berg and Kesten introduced and analysed the
following concept.

A random vector X=(X1 , ..., Xn) is strongly new better than used
(SNBU), if for all increasing Borel sets A, B/Rn

P[X # A+B]�P[X # A] P[X # B]. (3.3)
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They found the

BK inequality. If X1 , X2 , ..., Xn are NBU and independent, then

X=(X1 , ..., Xn) is SNBU. (3.4)

Since N _ [0]/R+ this inequality applies also for products of chains.
We state and prove now our second inequality.

Theorem 2. For arbitrary A, B # N DM(A) } DM(B)�DM(A_B). Here
D can be replaced by d

�
and also by d if A and B are finite.

Proof. We use the product of chains L(l, m)=[0, 1, ..., l]m and the
probability distribution &(m)=>m

i=1 &i , where

&i (li)= p&sli
i } \ :

l

*=0

p&s*
i +

&1

(3.5)

and thus

&(m)(l1 , ..., lm)= `
m

i=1

p&sli
i } `

m

i=1
\ :

l

*=0

p&s*
i +

&1

. (3.6)

Note that for any A, B/N

M(A)=A_N, M(A_B)=A_B_N. (3.7)

Define N(l, m)=[>m
i=1 pli

i : (l1 , ..., lm) # L(l, m)] and note that

M(A) _ N(l, m)=(((A & N(l, m))_N(l, m)) & N(l, m), (3.8)

M(A_B) & N(l, m)=(((A & N(l, m))_(B & N(l, m))

_N(l, m)) & N(l, m) (3.9)

and that

lim
l, m � �

M(A) & N(l, m)=M(A). (3.10)

Since all summands in our Dirichlet series are non-negative we have
therefore also for s>1

lim
l, m � �

D(M(A) & N(l, m), s)=D(M(A), s) (3.11)

and

lim
l, m � �

D(M(A_B) & N(l, m), s)=D(M(A_B), s) (3.12)
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We show next that the &i 's are NBU:

&i ([*1 , ..., l]) } &i ([*2 , ..., l])�&i ([*1+*2 , ..., l]).

For *1+*2>l this inequality obviously holds.

Lemma. For any *1 , *2 # [0, 1, ..., l], *1+*2�l

:
l

*�*1

1
p* } :

l

*�*2

1
p*� :

l

*�*1+*2

1
p* } :

l

*=0

1
p* .

Proof. The claimed statement is equivalent with

(1+ p+ } } } + pl&*1)(1+ p+ } } } + pl&*2)

�(1+ p+ } } } + pl&*1&*2)(1+ p+ } } } + pl).

and consequently with

( pl&*1+1&1)( pl&*2+1&1)�( pl&*1&*2+1&1)( pl+1&1).

This in turn is equivalent with

pl&*1&*2+1+ pl+1� pl&*1+1+ pl&*2+1

and with

1+ p*1+*2� p*2+ p*1,

which is true.
Since U=M(A) & N(l, m) and V=M(B) & N(l, m) are increasing sets,

we can apply the BK-inequality and get with W=M(A_B) & N(l, m)

:
u # U

1
us \ :

n # N(l, m)

1
ns+

&1

} :
v # V

1
vs \ :

n # N(l, m)

1
ns+

&1

� :
w # W

1
ws \ :

n # N(l, m)

1
ns+

&1

and consequently

:
u # U

1
us } :

v # V

1
vs� :

w # W

1
ws :

n # N(l, m)

1
ns . (3.13)

Now, together with (3.11) and (3.12) this implies

D(M(A), s) } D(M(B), s)�D(M(A_B), s) } `(s), (3.14)

if ` is Riemann's Zetafunction. We know that the logarithmic and also the
Dirichlet densities exist for sets of multiples. Since also lims � 1+(s&1)
`(s)=1, we complete the proof with (1.3).
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Example 3. In the case A=[1], B=N we have 1=d(A_B)�3
dA } dB=0. This shows that for the present inequality it is essential to work
with sets of multiples.

4. CONCLUDING REMARKS

Supplementary material can be found in the preprint [6]. Besides
investigations of the existence of the various densities it concerns in par-
ticular firstly a discussion of possible number theoretic implications of the
work [3] and secondly inequalities of an elementary nature. We give here
a brief sketch.

1. We dare to say that we did not just discover new density
inequalities, but that we discovered a method to produce density
inequalities from combinatorial correlation inequalities.

Since the AD-inequality is much more general and also sharper than its
predecessors ([17], [22], [15], [29], [19]) it received strong attention.
However, it went almost unnoticed in the subsequent literature that this
inequality is a very, very special case of the much more general inequalities
of [3].

More importantly, the discovery of [3] was that the basis of such
correlation inequalities are not lattice properties (as was believed earlier),
but Cartesian product properties of the operations used.

As the AD-inequality passes from a ``local'' property (2.1) to a ``global''
property (2.2), those more general inequalities also constitute local-global
principles.

It should be explored, which of these inequalities lead to number
theoretic inequalities (``twins''). Conversely, now number theoretic ques-
tions may give hints for the search after combinatorial or probabilistic
correlation inequalities.

Recently, a beautiful generalization of AD has been given in (to our
knowledge) independent papers [1] and [26]. We state without proof its
number theoretic ``twins'' obtained by our approach for these sets.

For arbitrary A, B, C # N,

D
�
A } D

�
B } D

�
C�D

�
[A, B, C] D

�
[(A, B), (A, C), (B, C)] D

�
(A, B, C). (4.1)

From Theorem 1 we also get the bound

D
�
A } D

�
B } D

�
C

�(D
�
[A, B] D

�
(A, B) } D

�
[A, C] } D

�
(A, C) } D

�
[B, C] D

�
(B, C))2. (4.2)
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We conjecture that the upper bound in (4.1) is always at least as good
as the upper bound in (4.2). If true, this gives an inequality for these
bounds.

2. We consider here only finite sets A, B # N.
Some observations were made by asking just out of curiosity whether in

(1.1) we can replace the operation M by the operation N, if we
simultaneously reverse the inequality sign. Quite luckily, this is the case,
but the inequality is very elementary:

dN[A, B] dN(A _ B)�dN(A) dN(B). (4.3)

Equality holds exactly if N(A)#N(B) or N(B)#N(A).
Since N(A, B)/N(A _ B), we also have

dN[A, B] dN(A, B)�dN(A) dN(B). (4.4)

Slightly more sophisticated is

d(M(A) & M(B)) d(M(A) _ M(B))�dM(A) dM(B), (4.5)

where equality holds exactly if

dM(A)/dM(B) or dM(B)/dM(A).

Since M(A) _ M(B)=M(A _ B) and M(A & B)/M(A) & M(B) this
implies

dM(A & B) dM(A _ B)�dM(A) dM(B), (4.6)

where equality holds exactly if

B/M(A & B) or A/M(A & B).

Combining (4.5) and Theorem 2, that is, by taking the maximum of the
left-hand sides in the inequalities, we get an inequality truly better than any
one of them.

We conclude with a combinatorial ``twin'' of (4.6):
For downsets U, V/L

( |L&|U 6 V| )( |L|&|U 7 V| )�(|L|&|U| )(L&|V| ), (4.7)

where equality holds exactly if U/V or V/U.
Consistent with our observation about Theorem 2 is, that (4.7) does not

extend to the non-monotone case.
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