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 General Edge-isoperimetric Inequalities , Part I :
 Information-theoretical Methods

 R UDOLF  A HLSWEDE   AND  N ING  C AI

 1 .  I NTRODUCTION

 In combinatorics we often meet two kinds of extremal problems .  In one kind ,
 optimal configurations consist of ‘objects’ ,  which are somehow uniformly  spread  in the
 space under consideration ;  and in the other kind ,  optimal configurations consist of
 ‘objects’ ,  which are somehow  compressed .  To the first kind belong packing ,  covering
 and coding problems ,  whereas diametric (especially of Erdo ̈  s – Ko – Rado type) ,  vertex-
 and edge-isoperimetric problems belong to the second kind .

 For many problems of the spreading type ,  the probabilistic method gives good or
 even asymptotically optimal results but ,  mostly ,  strictly optimal configurations are
 unknown .  In contrast ,  problems of the compressing type can often be solved exactly
 with pushing techniques (‘pushing down’ ,  ‘pushing to the left’ etc . ;  see [14]) .  However ,
 the success of pushing operations is linked to the property that there is a ‘nested’
 structure of optimal configurations with respect to some order .  When this is not the
 case ,  then there are competing configurations (for example ,  in [6]) and solutions are
 harder to obtain .

 We concentrate here on edge-isoperimetric problems .  They can be defined for any
 graph  G  5  ( 9 ,  % ) as follows .  For any  A  ’  9 ,  define the set  @ ( A ) of all boundary edges ;
 that is ,

 @ ( A )  5  hh x ,  y j  P  % :  u h x ,  y j  >  A u  5  1 j .  (1 . 1)

 P ROBLEM  1 .  For given positive integer  m ,  find a set  A  ’  9   of cardinality  m  with
 minimal possible value of  u @ ( A ) u .

 A similar problem in this .

 P ROBLEM  2 .  For given positive integer  m ,  find a set  A  ’  9   of cardinality  m  with
 maximal possible value of  u ) ( A ) u ,  where  ) ( A )  5  hh x ,  y j  P  % :  h x ,  y j  ’  A j   is the set of
 inner edges of  A .

 Notice that ,  for regular graphs  G  of degree  d ,

 u @ ( A ) u  1  2  u ) ( A ) u  5  d  u A u

 and in this case Problems 1 and 2 are equivalent in the sense that a solution of one of
 these problems is at the same time a solution of the other .

 Most results in the literature concern graphs the vertex set  9   of which is a cartesian
 product  -  n  5  p n

 t 5 1  - t   of sets  - t  5  h 0 ,  1 ,  .  .  .  ,  a t j   and the edges of which are pairs of
 vertices with distance 1 under a specified metric  r .

 For the Hamming metric ,  Problems 1 and 2 were first solved in the binary case (i . e .
 when  a  1  5  a  2  5  ?  ?  ?  5  a n  5  1) by Harper [16] and for arbitrary finite  a t ’s by Lindsey
 [20] .  (The results have been rediscovered many times :  [8] ,  [11] ,  .  .  .  ,  [18] . ) They proved
 that for each  m  the set of the first  m  vertices of  -  n   in the lexicographic order gives a
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 solution for both problems .  As usual ,  by the lexicographic order  +   is meant the order
 induced by the following relation :   x  P  -  n   precedes  y  P  -  n ,  if  x t  ,  y t   for some  t  with
 x 1  5  y 1  ,  .  .  .  ,  x t 2 1  5  y t 2 1 .

 Notice that under the Hamming metric it is natural to assume that all  a t ’s are finite ,
 because otherwise ,  if for instance  a t  5  ̀  ,  the set  h (0 ,  .  .  .  ,  0 ,  x t  ,  0 ,  .  .  .  ,  0) :  0  <  x t  <
 m  2  1 j   gives a trivial solution of Problem 2 .

 Under the Manhattan metric the graph is not regular in the non-binary case ,  and so
 the equivalence of the two problems is not guaranteed .  However ,  it was shown in [2]
 that they still have a common solution ,  if all  a t ’s are infinite .

 It is interesting that in the ‘bounded’ case ,  i . e .  when all  a t ’s are finite ,  Problem 1 has
 no nested structure of solutions ,  while Problem 2 always has it ,  and so in this case the
 problems are not equivalent .  For ‘smooth parameters’ ,  both problems were first solved
 by Bolloba ́  s and Leader [10] for  a  1  5  a  2  5  ?  ?  ?  5  a n  .  By a dif ferent and simpler
 approach based on a certain order ,  Problem 2 was solved in [2] for arbitrary  a t ’s .  Also
 in [2] Problem 1 is solved in the case  a t  5  ̀    for  t  5  1 ,  2 ,  .  .  .  ,  n  and it is analysed in the
 ‘bounded’ case for  n  5  2 .  Here the same order competes with the lexicographic order .

 In the present paper we keep the product structure of the vertex set ,  but include
 much more general edge structures than those derived from metrics ,  in particular
 metrics  r n   of ‘sum-type’ ;  that is ,   r n ( x n ,  y n )  5  o n

 t 5 1  r  ( x t  ,  y t ) (as are the Hamming or
 Manhattan metrics) .

 More specifically ,  for graphs  G t  5  ( - t  ,  % t ) , t  5  1 ,  2 ,  .  .  .  ,  n ,  we consider (what has
 been called) the cartesian sum graph

 G n  5  G 1  3  G 2  3  ?  ?  ?  3  G n  5  ( -  n ,  % n ) .

 Here ,  for  n  5  2 ,  % 2  5  h ( x 1  ,  z 2 ) ,  (  y 1  ,  z 2 )) :  ( x 1  ,  y 1 )  P  % 1  ,  z 2  P  - 2 j  <  h (( z 1  ,  x 2 ) ,  ( z 1  ,  y 2 )) :
 ( x 2  ,  y 2 )  P  % 2  ,  z 1  P  - 1 j   and ,  for general  n ,  % n   is defined inductively .

 For the convenience of the readers ,  we limit ourselves here to the case of identical
 factors ,  i . e .   G t  5  G  for  t  5  1 ,  2 ,  .  .  .  ,  n .  Here we call  G n   the  n th power of  G .

 Not only do we establish general edge-isoperimetric theorems ,  but we also make
 transparent which structures are responsible for proofs by pushing to work .  The
 starting point is the fact that  I n ( G ,  A ) and  B n ( G ,  A ) are set functions .  This leads us to
 formulate (in Section 3) our problems even more generally as extremal problems for
 set functions .  Their submodularity becomes a key issue for ‘pushing down’ to work .

 At this point we introduce our second idea .  Since ,  mostly ,  there is no nested
 structure ,  it is impossible to find optimal configurations among the downsets in the
 present generality .  However ,  as in earlier work [1 ,  3] we employ information-theoretic
 methods to derive asymptotically (in  n ) first order optimal results (Theorem 1 in
 Section 5 and Theorem 2 in Section 6) .  We also discuss several examples and compare
 our results in the special case of a grid with those of [10] .

 Finally ,  in Section 8 we address the Shannon product of graphs  G 1  +  G 2  5  ( 9 1  3
 9 2  ,  % ) ,  where

 %  5  h (( y  1  ,  y  2 ) ,  ( y  9 1  ,  y  9 2 )) :  for  every  i  P  h 1 ,  2 j  y  i  5  y  9 i  or  ( y  i  ,  y  9 i )  P  % i j

 for  G i  5  ( 9 i  ,  % i ) , i  5  1 ,  2 .
 Inductively ,  we define the  n th Shannon product and denote the  n th power of a graph

 by  G o n .  We consider the edge-isoperimetric problem for those powers .  Actually ,  we
 should explain that an asymptotic solution is implicitly already contained in [3] .

 In Part II we study when the lexicographic order (one of the most important orders
 in combinatorics) has the property that its beginning segments give the solution to an
 edge-isoperimetric problem (‘nested structure’) .
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 2 .  N OTATION   AND  K NOWN  F ACTS

 For a finite set  - ,  we define  3 ( - ) as the set of probability distributions on  - ,  and for
 a random variable  X  with values in  -   we denote its distribution by  P X . P X Y  P  3 ( -  3  = )
 is the distribution of the pair of RV’s ( X ,  Y ) with values in  -  3  = .

 We abbreviate  3 ( - ) as  3 .  For integers  n ,  we put

 3 n  5 H P  P  3 :  P ( x )  P H 0 ,
 1
 n

 ,
 2
 n

 ,  .  .  .  ,  1 J  for  all  x  P  - J .

 For  x n  P  - n   we define ,  for every  x  P  - , P x n ( x )  5  1 / n  (number of occurrences of  x  in
 x n ) .

 P x n   is a member of  3 n   by definition .  It is called the type of  x n .  Analogously ,  we define
 the type  P x n y n   for pairs ( x n ,  y n )  P  - n  3  = n .  For  P  P  3 ,  the set  7 n

 P   of all  P -typical
 sequences in  - n   is given by  7 n

 P  5  h x n :  P x n  5  P j .  It can be empty .
 Let  P X Y  P  3 ( -  3  = ) have a 1-dimensional marginal distribution  P X  5  P x n .  We define

 a set of sequences  P X Y -generated by  x n :

 7 Y 3 X ( x n )  5  h  y n :  P x n y n  5  P X Y j .  (2 . 1)

 If for the random variables  X , Y  we have

 P X Y ( x ,  y )  5  P ( x ) W  ( x  3  y )  for  all  x ,  y ,

 then for the entropy  H ( X  ) and the conditional entropy  H ( Y  3  X  ) we also write  H ( P )
 and  H ( W  3  P ) ,  respectively .

 We shall use the facts

 u 3 n u  <  ( n  1  1) u - u ,  (2 . 2)

 ( n  1  1) 2 u - u 2  exp h nH ( W  3  P x n ) j  <  u 7 Y 3 X ( x n ) u  <  exp h nH ( W  3  P x n ) j ,  if  P X Y  5  P x n  ?  W .

 (2 . 3)

 S UPPORT  L EMMA  (Lemma 3 of [7]) .  Let P ( ] )  be the set of all PD ’ s on the finite set  ]
 and let f i   ( i  5  1 ,  .  .  .  ,  k ) :  3 ( ] )  5  R   be continuous functions . Then , to any PD  m   on the
 borel  s  - algebra of  3 ( ] ) , there exist k elements P i  of  3 ( ] )  and non - negati y  e numbers
 a  1  ,  .  .  .  ,  a k  with  o k

 i 5 1  a i  5  1  such that , for e y  ery j  5  1 ,  .  .  .  ,  k ,

 E
 3 ( Z )

 f i ( P ) m  (d P )  5  O k
 i 5 1

 a i  f i ( P i ) .  (2 . 4)

 P ROOF .  The map  f  5  (  f 1  ,  .  .  .  ,  f k ) :  3 ( ] )  5  E k   is continuous ,  and since  3 ( ] ) is
 compact and connected so is the image  J  5  f  ( 3 ( ] )) .  h

 Clearly ,  the point ( e 3 ( ] )  f 1 ( P ) m  (d P ) ,  .  .  .  ,  e 3 ( ] )  f k m  (d P )) belongs to the convex
 closure of  J ,  and thus ,  by the Eggleston – Carathe ́  odory theorem (cf .  [13] ,  Theorem 18)
 there are  k  points in  J ,  say ,   f  ( P 1 ) ,  .  .  .  ,  f  ( P k ) ,  satisfying (2 . 4) .

 R EMARKS .  (1) Originally ,  in [7] ,  Carathe ́  odory’s theorem was used ,  which does not
 require connectedness and gives the weaker conclusion that  k  1  1 instead of  k  points
 are needed .

 (2)  Notice that in the above proof only compactness and connectedness of  3 ( ] ) was
 used .  Therefore  3 ( ] ) can be replaced by any set  A  with these topological properties .
 In particular ,  for finite sets  - 1  ,  .  .  .  ,  - L  ,  the set of product distributions  3 ( - 1 )  3
 3 ( - 2 )  3  ?  ?  ?  3  3 ( - L )   could serve as  A .
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 We shall also use the well-known Abel summation ,  as follows .  For two sequences of
 numbers  h a i j m

 i 5 1  and  h b i j m
 i 5 1 ,  introduce the partial sums  A p  5  o p

 i 5 1  a i   (  p  5  1 ,  2 ,  .  .  .  ,  m ) .
 Then

 O m
 i 5 1

 a i b i  5  A m b m  1  O m 2 1

 i 5 1
 A i ( b i  2  b  i 1 1 ) .  (2 . 5)

 3 .  T HE  E XTREMAL  P ROBLEMS   FOR  S ET  F UNCTIONS

 For finite sets  - t   ( t  5  1 ,  2) and two functions  w i  :  2 - i  5  R   ( i  5  1 ,  2) the product
 w 1  p  w 2 :  2 - 1 3 - 2

 5  R   is defined by

 w 1  p  w 2 ( A )  5  O
 x P - 2

 w 1 ( A 1 ( x ))  1  O
 x P - 1

 w 2 ( A 2 ( x ))  for  A  ’  - 1  3  - 2  ,  (3 . 1)

 where ,  for all  x  P  - 2  ,
 A 1 ( x )  5  h x 1  P  - 1 :  ( x 1  ,  x )  P  A j

 and ,  for all  x  P  - 1  ,
 A 2 ( x )  5  h x 2  P  - 2 :  ( x ,  x 2 )  P  A j .

 The  n th power of  w   is defined as  w  n  5  ((( w  p  w )  p  )  ?  ?  ?  p  w ) .  We check that the product
 is associative and therefore we can write  w n  5  w  p  ?  ?  ?  p  w .

 We actually have ,  for all  A  ’  - N  5  p t P N  - t  ,  where  N  5  h 1 ,  2 ,  .  .  .  ,  n j ,

 w 1  p  w 2  p  ?  ?  ?  p  w n ( A )  5  O n
 t 5 1

 O
 x N \ h t j P - N \ h t j

 w t ( A t ( x N \ h t j )) ,  (3 . 2)

 where

 x N  \ h t j  5  ( x 1  ,  x 2  ,  .  .  .  ,  x t 2 1 ,  x t 1 1 ,  .  .  .  ,  x n ) ,  - N  \ h t j  5  - 1  3  ?  ?  ?  3  - t 2 1  3  - t 1 1  3  ?  ?  ?  3  - n  ,

 and  A t ( x N \ h t j )  5  h x  P  - t :  ( x 1  ,  .  .  .  ,  x t 2 1 ,  x ,  x t 1 1 ,  .  .  .  ,  x n )  P  A j   is the  t th slice of  A  at  x N \ h t j .
 For a fixed graph  G ,  let  w ( ? )  5  I ( G ,  ? ) (or  2 B ( G ,  ? )) .  Then

 w  n ( ? )  5  I ( G n ,  ? )  (or  2 B ( G n ,  ? )) ,  (3 . 3)

 and we see how our Problems 1 and 2 are subsumed under maximizing  w n .
 Next we study  w n   and find conditions on  w  n   under which the ‘pushing down operator’

 does not decrease  w n .
 At first ,  of course ,  we have to define the direction ‘down’ .  Therefore ,  we need the

 following property .

 I (nestedness) .  One can label the elements of  -   in the form  -  5  h 0 ,  1 ,  .  .  .  ,  a  j   such
 that , for all k  P  -   and A  ’  -   with  u A u  5  k  1  1 ,

 w ( A )  <  w ([ k ]) ,  where  [ k ]  5  h 0 ,  1 ,  .  .  .  ,  k j .  (3 . 4)

 One can readily verify that for edge-isoperimetric problems under the Hamming ,
 Manhattan and Lee distances ,  property I is satisfied .

 Next ,  we need a less obvious property .

 II (submodularity) .

 w ( A )  1  w ( B )  <  w ( A  <  B )  1  w ( A  >  B )  for  A ,  B  ’  - .  (3 . 5)
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 Finally ,  observe that by replacing  w   by  w 9  with  w 9 ( A )  5  w ( A )  2  w ( f  ) ,  we can always
 assume the following .

 III .  w ( f  )  5  0 .

 Obviously ,  for all graphs  G , I ( G ,  f  )  5  B ( G ,  f  )  5  0 ,  and it is also easy to establish
 the following facts .

 P ROPOSITION  1 .  For all graphs G , both I ( G ,  ? )  and  2 B ( G ,  ? )  satisfy II .

 Later ,  we need an extension of property II to more than two sets .

 L EMMA  1 .  II implies that , for any family  h A i j m
 i 5 1   of subsets of  - ,

 O m
 i 5 1

 w ( A i )  <  O m
 k 5 1

 w S  !

 1 < i 1 , i 2 , ?  ?  ? , i k < m
 S "

 k

 j 5 1
 A i j D D .  (3 . 6)

 P ROOF .  For  m  5  2 ,  this is exactly II and the case  m  5  1 is trivial .
 Assume therefore that  m  >  3 and that (3 . 6) holds for  n  2  1 .  II and this yield

 O m
 i 5 1

 w ( A i )  <  O m 2 1

 k 5 1
 w S  !

 1 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S "

 k

 j 5 1
 A i j D D  1  w ( A m )

 5 S w S  !

 m 2 1

 i 5 1
 A i D  1  w ( A m ) D  1  O m 2 1

 k 5 2
 w S  !

 1 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S "

 k

 j 5 1
 A i j D D

 < S w S !

 m

 i 5 1
 A i D  1  w S A m  > S  !

 m 2 1

 i 5 1
 A i D D D  1  O m 2 1

 k 5 2
 w S  !

 1 < i 1 , i 2 , ?  ?  ? , i j < m 2 1
 S "

 k

 j 5 1
 A i j D D

 5  w S !

 m

 i 5 1
 A i D  1  O m 2 1

 k 5 1
 w ( A 9 k ) ,

 where the two inequalities follow from the induction hypothesis and (3 . 5) respectively ,

 A 9 1  5  A m  > S  !

 m 2 1

 i 5 1
 A i D  and  A 9 k  5  !

 1 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S "

 k

 j 5 1
 A i j D ,

 for  k  5  2 ,  3 ,  .  .  .  ,  m  2  1 .  Applying the induction hypothesis again to the second term of
 the last summation ,  we obtain

 O m
 i 5 1

 w ( A i )  <  w S !

 m

 i 5 1
 A i D  1  O m 2 1

 k 5 1
 w S  !

 1 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S "

 k

 j 5 1
 A 9 i j D D

 5  O m
 k 5 1

 w S  !

 1 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S "

 k

 j 5 1
 A i j D D ,
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 as ,  by definition of  A 9 k  ,  A 9 2  ”  A 9 3  ”  ?  ?  ?  ”  A 9 m  ,  so that

 !

 1 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S "

 k

 j 5 1
 A 9 i j D

 5 S  !

 2 < i 9 1 , i 9 2 , ?  ?  ? , i 9 k 2 1 < m 2 1
 S A 9 1  > S "

 k

 j 5 1
 A 9 i 9 j D D  < S  !

 2 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S "

 k

 j 5 1
 A 9 i j D D D

 5 S A 9 1  >  A 9 k D  <  A 9 k 1 1

 5 S  !

 1 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S S "

 k

 j 5 1
 A i j D  > S A m  > S  !

 m 2 1

 i 5 1
 A i D D D D  <  A 9 k 1 1

 5 S  !

 1 < i 1 , i 2 , ?  ?  ? , i k < m 2 1
 S S "

 k

 j 5 1
 A i j D  >  A m D D  < S  !

 1 < i 1 , i 2 , ?  ?  ? , i k 1 1 < m 2 1
 S  "

 k 1 1

 j 5 1
 A i j D D

 5  !

 1 < i 1 , i 2 , ?  ?  ? , i k 1 1 < m
 S  "

 k 1 1

 j 5 1
 A i j D ,

 for  k  5  2 ,  .  .  .  ,  m  2  1 ,  and (for  k  5  1)

 !

 m

 i 5 1
 A 9 i  5  A 9 1  <  A 9 2  5 S  !

 m 2 1

 i 5 1
 ( A i  >  A m ) D  < S  !

 1 < i 1 < i 2 < m 2 1
 S A i 1  >  A i 2 D D

 5  !

 1 < i 1 , i 2 < m
 ( A i 1

 >  A i 2
 ) .  h

 We also need the sets

 A t *( x N  \ h t j  5  h  y N  P  A :  y s  5  x s  for  s  ?  t j ,  (3 . 7)

 which obviously satisfy
 u A t *( x N  \ h t j ) u  5  u A t ( x N  \ h t j ) u .  (3 . 8)

 Now we define the pushing down operation  D t   by choosing  D t ( A ) as the subset of
 -  N ,  which is obtained by exchanging ,  for all  x N  \ h t j  P  -  N  \ h t j ,  all the  t th components of
 A * t  ( x N  \ h t j ) ,  namely  A t ( x N  \ h t j ) ,  by  h 0 ,  1 ,  .  .  .  ,  u A t ( x N  \ h t j ) u  2  1 j .  Clearly ,

 u A u  5  u D t ( A ) u .  (3 . 9)

 L EMMA  2 .  If , for a fixed t and all s  ?  t ,  w s  satisfies II and III and  w t  satisfies I and III ,
 then for all A  ’  - N ,

 w 1  p  ?  ?  ?  p  w n ( A )  <  w 1  p  ?  ?  ?  p  w n ( D t ( A )) .  (3 . 10)

 P ROOF .  By (3 . 2) it suf fices to show that after the action of  D t   on  A  the contribution
 of the  s th component in (3 . 2) ,  namely  o x N \ h s j  w s ( A s ( x N \ h s j )) ,  is not decreased .

 For  s  5  t  this is clear by I and (3 . 9) .  For  s  ?  t  we first simplify notation by setting
 B  5  D t ( A ) .  Next ,  w . l . o . g .,  we choose  s  5  1 and  t  5  n .  Now  x 1  P  B 1 ( x N  \ h 1 j ) if f
 u A n ( x N \ h n j ) u  >  x n  1  1   if f there are at least ( x n  1  1)  x n ’s with  x 1  P  A 1 ( x N  \ h 1 j ) .

 Consequently ,

 B 1 ( x N  \ h 1 j  5  !

 0 < i 1 , i 2 , ?  ?  ? , i x n 1 1 < a n

 S  "

 x n 1 1

 l 5 1
 A 1 ( x N \ h 1 ,n j i l D ,

 where  - n  5  h 0 ,  1 ,  .  .  .  ,  a n j   and  x N \ h 1 ,n j  5  ( x 2  ,  .  .  .  ,  x n 2 1 ) .
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 This and Lemma 1 give the result (considering  o x N \ h 1 j  w 1 ( A 1 ( x N  \ h 1 j ))  5

 o x N 1 \ h 1 , n j  o a n
 i 5 1  w 1 ( A 1 ( x N \ h 1 ,n j i ))   and applying Lemma 1 to  o a n

 i 5 1  w 1 ( A 1 ( x N \ h 1 ,n j i ))) .  h

 4 .  A N  A UXILIARY  P ROBABILISTIC  D ESCRIPTION   OF   w 1  3  ?  ?  ?  3  w n ( A )  FOR   A

 D OWNSET   A

 We now assume that  - i  5  h 0 ,  1 ,  .  .  .  ,  a i j   ( i  5  1 ,  2 ,  .  .  .  ,  n ) are finite sets and that all  w i

 ( i  5  1 ,  2 ,  .  .  .  ,  n )   satisfy I – III .
 We introduce the dif ferences

 D w t
 ( k )  5  w t ([ k ])  2  w t ([ k  2  1]) ,  (4 . 1)

 where [ 2 1] is the empty set .

 L EMMA  3 .  For e y  ery downset A  ’  - 1  3  ?  ?  ?  3  - n  ,

 w 1  3  ?  ?  ?  3  w n ( A )  5  O n
 t 5 1

 O
 a P - n

 D w t
 ( a )  u A ̂  t ( a ) u  (4 . 2)

 5  O
 x n P A

 O n
 t 5 1

 D w t
 ( x t ) ,  (4 . 3)

 where

 A ̂  t ( a )  5  h ( x 1  ,  .  .  .  ,  x t 2 1 ,  x t 1 1 ,  .  .  .  ,  x n ) :  ( x 1  ,  ?  ?  ?  ,  x t 2 1 ,  a ,  x t 1 1 ,  x n )  P  A j .  (4 . 4)

 Consequently ,  if  X n   is an RV with uniform distribution on  A ,  then

 1
 u A u

 w 1  3  ?  ?  ?  3  w n ( A )  5  O n
 t 5 1

 E D w t
 ( X t )  (4 . 5)

 and
 Pr( X t  5  0)  >  Pr( X t  5  1)  >  ?  ?  ?  >  Pr( X t  5  a t ) .  (4 . 6)

 P ROOF .  Since  A  is a downset ,

 A ̂  t (0)  ”  A ̂  t (1)  ”  ?  ?  ?  ”  A ̂  t ( a t ) ,  (4 . 7)

 and therefore (4 . 6) holds .  Also (4 . 5) just rewrites (4 . 3) ,  which in turn is readily seen to
 be equivalent to (4 . 2)—the heart of the matter .

 We begin its proof with the fact that ,  by (4 . 7) ,  the non-empty sets in

 h A ̂  t (0)  \  A ̂  t (1) ,  A ̂  t (1)  \  A ̂  t (2) ,  .  .  .  ,  A ̂  t ( a i  \  1)  \  A ̂  t ( a i ) ,  A ̂  t ( a t ) j

 form a partition of  ! a P - t
 A ̂  t ( a )  ’  - N  \ h t j :

 x N \ h t j  P  A ̂  t ( l )  \  A ̂  t ( l  1  1)  if f  A t ( x N  \ h t j )  5  [ l ]  (4 . 8)
 and

 x N  \ h t j  P  A t ( a t )  if f  A t ( x N  \ h t j )  5  [ a i ]  5  - i  .  (4 . 9)

 Therefore ,  by (3 . 2) ,  (4 . 8) and (4 . 9) ,

 w 1  3  ?  ?  ?  3  w n ( A )  5  O n
 t 5 1

 F  O a t 2 1

 l 5 0
 w ([ l ])( u A ̂  t ( l ) u  2  u A ̂  t ( l  1  1) u )  1  w ([ a t ])  u A ̂  t ( a t ) u G .  (4 . 10)

 By our definition (4 . 1) ,  we have  w t ([ l ])  5  o l
 j 5 1  D w t

 (  j ) and therefore ,  by Abel’s
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 summation (see (2 . 5)) ,  we obtain ,  from (4 . 10) ,   w 1  3  ?  ?  ?  3  w n ( A )  5

 o n
 t 5 1  o a t

 l 5 0  D w t
 ( l )  u A ̂  t ( l ) u ;   that is (4 . 2) .  h

 5 .  A G ENERAL  U PPER  B OUND   FOR   w n ( A )

 Here ,  we measure a set  A  ’  - n  5  p n
 1  -   by its rate (1 / n )  log  u A u .

 T HEOREM  1 .  Let  -  5  h 0 ,  1 ,  2 ,  .  .  .  ,  a  j   be a finite set and let  w  :  2 χ
 5  R   satisfy I  – III . We

 use  w n  5  w  p  ?  ?  ?  p  w .
 For e y  ery set A  ’  -  n , there exists a pair of random  y  ariables  ( X ,  U ) , where X takes

 y  alues in  -   and U is an auxiliary RV with  y  alues in a set  8 , such that

 1
 n

 log  u A u  5  H ( X  3  U ) ,  (5 . 1)

 1
 n  u A u

 w  n ( A )  <  E D w ( X  ) ,  (5 . 2)

 and , for all u  P  8 ,

 Pr( X  5  0  3  U  5  u )  >  Pr( X  5  1  3  U  5  u )  >  ?  ?  ?  >  Pr( X  5  a  3  U  5  u ) .  (5 . 3)

 Moreo y  er , it can be achie y  ed that

 u 8 u  <  u - u  1  1 .  (5 . 4)

 P ROOF .  By Lemma 2 we can assume that  A  is a downset .  Furthermore ,  let  X n   be an
 RV with uniform distribution on  A  and let  I  be an RV with uniform distribution on
 h 1 ,  2 ,  .  .  .  ,  n j ,  which is independent of  X n  5  ( X  1  ,  X  2  ,  .  .  .  ,  X n ) .  Now consider the pair of
 RV’s ( X ,  U 9 )  5  ( X  1  ,  IX I 2 1 ) .  Then ,  by Lemma 3 ,  (5 . 2) holds and also

 1
 n

 log  u A u  5
 1
 n

 H ( X n )  5
 1
 n
 O n
 t 5 1

 H ( X t  3  X t 2 1 )  5  H ( X  3  U 9 ) .

 Finally ,  we apply the Support Lemma (see Section 2) to  3 9  5  h P  P  3 ( - ) :  P (0)  >
 P (1) ?  ?  ?  >  P ( a  ) j ,  a connected compact subset of  3 ( - ) ,  to replace  U 9  by an RV  U
 taking at most  u - u  1  1 values .  It also satisfies (5 . 3) .

 6 .  A SYMPTOTICALLY  O PTIMAL  C ONFIGURATIONS

 A pair ( R ,  d ) of numbers with  R  >  0 is said to be achievable in our maximization
 problem for  w   on  -   if ,  for all  »  1  ,  »  2  .  0 ,  an  n ( »  1  ,  »  2 ) exists such that ,  for  n  .  n ( »  1  ,  »  2 ) ,
 there is an  A n  ’  -  n   with

 U 1
 n

 log  u A n u  2  R U  ,  »  1  (6 . 1)

 and
 1

 n  u A n u
 w  n ( A )  .  d  2  »  2  .  (6 . 2)

 Denote by  5 w   the achievable region ,  i . e .  the set of all achievable pairs ,  let  3 * denote
 the distributions  P X U   of pairs of RV’s ( X ,  U ) satisfying (5 . 3) and (5 . 4) ,  and set

 5 9  5  h ( H ( X  3  U ) ,  E D w ( X  )) :  P X U  P  3 * j .  (6 . 3)
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 T HEOREM  2 .  Let  -  5  h 0 ,  1 ,  2 ,  .  .  .  ,  a  j   be a finite set and let  w :  2 -
 5  R   satisfy I  – III .

 Then
 5 9  ’  5 w .  (6 . 4)

 Combining Theorems 1 and 2 ,  we obtain a complete characterization of  5 w .

 T HEOREM  3 .  Let  w :  2 -
 5  R   satisfy I  – III . Then

 5 w  5  R 9 .

 Moreover ,  the set  5 9 ,  and therefore also the set  5 w  ,  is in principle calculable within
 any prescribed accuracy .  Also ,  an asymptotically optimal sequence of sets ( A n ) ̀

 n 5 1
 together with an estimate of the deviation from the optimum will be provided in the
 proof .

 P ROOF   OF  T HEOREM  2 .  For any  n ,  choose any  P X U  P  3 * with  7 n
 XU  ?  f   and any

 u n  P  7  n
 U   (defined in Section 2) .  For this fixed  u n   we define a partial order on

 non-empty generated sets  7 X  9 3 U ( u n ) (see Section 2) as follows :

 7 X  0 3 U ( u n )  <  7 X  9 3 U ( u n ) if f there are  x 0 n  P  7 X  0 3 U ( u n ) and  x 9 n  P  7 X  9 3 U ( u n ) with
 x 0 n  <  x 9 n   (according to the natural order on  -  m ;  that is ,   x 0 t  <  x 9 t   for  t  5  1 ,  .  .  .  ,  n ) .

 Now define

 A n  5  !

 7 X  9 3 U ( u n ) < 7 X 3 U ( u n )
 7 X  9 3 U ( u n )  (6 . 5)

 and notice that  A n   is a downset .
 A well-known concept from the theory of inequalities is needed (see [21]) .  Let

 ]  5  h 1 ,  2 ,  .  .  .  ,  n j   be a finite set and let  P  be a distribution from  3 ( ] ) .  Denote by  π P   a
 permutation  ]  5  ]   with

 P ( π p (1))  <  P ( π p (2))  <  ?  ?  ?  <  P ( π p ( n )) .  (6 . 6)

 It is said that ,  for  Q 1  ,  Q 2  P  3 ( ] ) , Q 1  majorizes  Q 2  (or that  Q 1  s  Q 2 ) if f

 O l

 i 5 1
 Q 1 ( π Q 1 ( i ))  >  O l

 i 5 1
 Q 2 ( π Q 2 ( i ))  for  l  5  1 ,  .  .  .  ,  k .  (6 . 7)

 A function    :  3 ( ] )  5  R   is Schur convex (or Schur monotone) if f    ( Q 1 )  >    ( Q 2 ) in
 the case  Q 1  s  Q 2  .

 Now denote by  Q   the set of joint distributions  P X  9 U   of pairs of RV’s ( X  9 ,  U ) ( U  as
 defined above) with  P X  9 3 U ( ?  3  u )  a  P X  3 U ( ?  3  u ) for all  u .  Q   is a compact set in the natural
 topology .  Since the entropy function is Schur convex ,  for every  u  P  8 ,

 H ( X  3  U  5  u )  5  max
 P X 9 U P Q

 H ( X  9  3  U  5  u ) .  (6 . 8)

 Now ,  by (5 . 3) ,  it is clear that

 7 X  9 3 U ( u n )  <  7 X  3 U ( u n )  implies  P X  9 3 U ( ?  3  u )  a  P X  3 U ( ?  3  u ) ,  ; u .  (6 . 9)

 Since the number of types is polynomial in  n  and since  u 7 X  9 3 U ( u n ) u  ,  exp h H ( X  9  3  U ) n j ,
 by (6 . 8) ,   A n   has the rate  H ( X  3  U )  1  o ( n ) .

 Finally ,  we have to show that

 1
 n  u A n u

 w  n ( A n )  .  E D w ( X  )  2  »  2  .  (6 . 10)
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 We introduce the  d  -neighbourhood of  P X U :

 Q d  5  h P X  9 U :  u P X  9 3 U ( x  3  u )  2  P X  3 U ( x  3  u ) u  ,  d  for  x  P  - ,  u  P  8 j  >  Q .  (6 . 11)

 Moreover ,  we define

 7 X  3 U , d ( u n )  5  !

 P x 9 U P Q d

 7 X  9 3 U ( u n ) .  (6 . 12)

 Since  H ( X  3  U ) is the unique maximal value of  H ( X  9  3  U ) on  Q   and therefore on
 Q d  ( P X U ) ,  by the continuity of the entropy function

 H ( X  3  U )  2  max
 P X 9 U P Q  \ Q d

 H ( X  9  3  U )  .  0 .  (6 . 13)

 Consequently ,  there is an  h  .  o  and an  n ( h  ) such that for  n  >  n ( h  ) and  A 2
 n  5

 ! P X 9 U P Q  \ Q d
 7 X  9 3 U  ( u n )

 u A 2
 n u  ,  u 7 X  3 U ( u n ) u  exp h 2 h n j .  (6 . 14)

 If we set  A 1
 n  5  A n  \ A 2

 n ,  then

 u A 2
 n u  <  u 7 X  3 U ( u n ) u  exp h 2 h n j  <  u A 1

 n u  ?  exp h 2 h n j .  (6 . 15)

 For ( X  9 ,  U ) and fixed  t  we consider the 1-dimensional marginal distribution on  -   of the
 uniform distribution over  7 X  9 3 U ( u n )

 q X  9 U ,t ( x )  5  u 7 X  9 3 U ( u n ) u 2 1  u h x n  5  ( x 1  ,  .  .  .  ,  x n )  P  7 X  9 3 U ( u n ) :  x t  5  x j u .  (6 . 16)

 By the definition of typical sequences ,  this is of course just  P X  9 3 U ( x  3  u t ) .
 We are now in a position to give a lower bound on the slices  A ̂  t ( a ) (see (4 . 4)) and

 then to apply Lemma 3 :

 u A ̂  t ( x ) u  >  O
 P X  9 U P Q d

 q X  9 U ,t ( x )  u 7 X  9 3 U ( u n ) u

 >  O
 P X  9 U P Q d

 ( P X  3 U ( x  3  u t )  2  d  )  u 7 X  9 3 U ( u n ) u  5  A 1
 n  ?  ( P X  3 U ( x  3  u t )  2  d  )

 and therefore ,  by (6 . 14) ,

 u A ̂  t ( x ) u
 u A n u

 >
 1

 1  1  exp h 2 h m j
 ( P X  3 U ( x  3  u t )  2  d  ) .  (6 . 17)

 Substituting this into (4 . 2) we obtain ,  if  ; a ,  D w t
 ( a )  >  0 ,

 w n ( A n )  $  u A n u  O n
 t 5 1

 O
 a P - t

 D w ( a )
 1

 1  1  exp h 2 h n j
 ?  ( P X 3 U ( a  3  u t )  2  d  )

 5
 u A n u

 1  1  exp h 2 h n j  O u P 8
 nP U ( u )  O

 a
 D w ( a )  ?  ( P X  3 U ( a  3  u )  2  d  )

 >
 n  u A n u

 1  1  exp h 2 h n j  S E D w ( X  )  2  d  max
 a

 D w ( a ) D
 and thus (6 . 10) by choosing  d   suf ficiently small .
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 Whenever min a  D w ( a )  5  D 0  ,  0 (say) ,  let  D 9 w ( ? )  5  D w ( x )  2  D 0  ,  and then ,  replacing the
 role of  D w   by  D 9 w  ,  we obtain

 w n ( A n )  5  O n
 t 5 1

 O
 a P -

 D 9 w ( a )  u A ̂  t ( a ) u  1  n  u A n u  D 0

 >
 n  u A n u

 1  1  exp h 2 h n j  S E D 9 w ( X  )  2  d  max
 a

 D 9 w ( a ) D  1  n  u A n u  D 0

 5
 n  u A n u

 1  1  exp h 2 h n j  S E D w ( X  )  2  d  max
 a

 D w ( a ) D  1
 n  u A n u  D 0

 1  1  exp h 2 h n j
 ( d  1  exp h 2 h n j ) ,

 also (6 . 10) ,  when  d   is small enough and  n  is large enough .  h

 7 .  C OMMENTS   ON   OUR  G ENERAL  E DGE - ISOPERIMETRIC  T HEOREMS

 As compared to the existing results in this area ,  our results are significantly more
 general .  Moreover ,  they give a unified approach to several isoperimetric problems ,
 which have been solved more or less separately .  We now substantiate this with some
 detailed comments .

 A .  Bollobas and Leader wrote in [10] that one has to do almost no additional work
 to obtain an essentially best possible edge-isoperimetric inequality for the powers  P n

 k   of
 k -paths from a corresponding inequality for the powers  C n

 k   of cycles .  We can now make
 a precise and instructive statement :  ‘The two problems are equivalent’ .

 In fact ,  if we want to minimize  B ( P n
 k ,  ? ) and  B ( C n

 k ,  ? ) or ,  by regularity ,  maximize
 I ( C n

 k ,  ? ) ,  then we just define  w ( ? )  5  2 B ( P k  ,  ? ) and  w 9 ( ? )  5  I ( C k  ,  ? ) and use our Lemma
 3 .  Then we observe that

 D w ( l )  5 5  2 1  if  l  5  0 ,

 1  if  l  5  1 ,  2 ,  .  .  .  ,  k  2  2 ,

 1  if  l  5  k  2  1 ,

 D w 9 ( l )  5 5  0  if  l  5  0 ,

 1  if  l  5  1 ,  2 ,  .  .  .  ,  k  2  2 ,

 2  if  l  5  k  5  1 ,

 and therefore that

 D w ( l )  1  1  5  D w 9 ( l )  for  l  5  0 ,  1 ,  .  .  .  ,  k  2  1 ,

 i . e .  the equivalence of the optimization problems .

 B .  Another striking example is that maximizing  I ( T  n ,  ? ) for trees  T  on  k  vertices
 does not depend on the tree structure and thus is equivalent to maximizing  I ( P n

 k ,  ? ) .
 This can be seen by just verifying that ,  for any tree  T  and  w  5  I ( T ,  ? ) ,

 D w ( l )  5 H 0  if  l  5  0 ,

 1  otherwise .

 C .  In [11] ,  Clements solved the edge-isoperimetric problem for the Hamming
 distance on  - n  5  p n

 t 5 1  - t  ,  where  - t  5  h 0 ,  1 ,  .  .  .  ,  a t j   (by showing an equivalence to a
 result in [12]) .  This problem amounts to maximizing  I ( K n ,  ? ) for  K n  5  p n

 t 5 1  K a t 1 1 ,  a
 product of complete graphs  K a t 1 1 .  Notice that ,  for  w t ( ? )  5  I ( K a t 1 1 ,  ? )

 D w t
 ( l )  5  l  for  l  5  0 ,  1 ,  .  .  .  ,  a t

 and that Lemma 3 implies the equivalence of the problem to that of maximizing
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 o x n P A  o n
 t 5 1  x t   over the downsets  A  ’  -  n   with fixed cardinality ,  which is the main result

 of [11] .

 D .  We now compare our bounds in Theorem  1  with those in  [10]  for the Taxi and Lee
 metrics .

 By the previous discussion it is enough to consider  w 1  5  I ( P k  ,  ? ) and  w 2  5  I ( C k  ,  ? ) .
 Notice that

 D w 1 ( l )  5 H 0  if  l  5  0 ,
 1  if  l  5  1 ,  2 ,  .  .  .  ,  k  2  1 ,

 (7 . 1)

 D w 2 ( l )  5 5  0  if  l  5  0 ,
 1  if  l  5  1 ,  2 ,  .  .  .  ,  k  2  2 ,

 2  if  l  5  k  2  1 .
 (7 . 2)

 For  i  5  1 ,  2 ,  let  A i   be the optimal downset for  w  n
 i    and let ( X i  ,  U i ) be the pair of RV’s

 associated with  A i   in Theorem 1 .  Then

 E D w 1 ( X  1 )  5  1  2  Pr( X  1  5  0)  (7 . 3)
 and

 E D w 2 ( X  2 )  5  1  1  Pr( X  2  5  k  2  1)  2  Pr( X  2  5  0) .  (7 . 4)

 Furthermore ,  by the convexity of the log function ,

 log  Pr( X  1 )  5  0)  5  log  O
 u

 Pr( U 1  5  u )  Pr( X  1  5  0  3  U 1  5  u )

 > O
 u

 Pr( U 1  5  u )  log  Pr( X  1  5  0  3  U 1  5  u )

 5 O
 u

 Pr( U 1  5  u )  O
 x

 Pr( X  1  5  x  3  U 1  5  u )  log  Pr( X  1  5  0  3  U 1  5  u )

 > O
 u

 Pr( U 1  5  u )  O
 x

 Pr( X  1  5  x  3  U 1  5  u )  log  Pr( X  1  5  x  3  U 1  5  u )

 (by  (5 . 3))
 5  2 H ( X  1  3  U 1 )

 and thus ,  by (5 . 1) ,

 log  Pr( X  1  5  0)  >  2
 1
 n

 log  u A 1 u .  (7 . 5)

 This ,  together with (5 . 2) and (7 . 3) ,  imply that

 1
 n  u A 1 u

 w  n
 1 ( A 1 )  <  1  2  Pr( X  1  5  0)  <  1  2  u A 1 u 2 1/ n .  (7 . 6)

 Next ,  we look at the Lee case ,  the product of  k -cycles with the function  w  n
 2 .  Recall that

 in the Support Lemma (see Section 2)  3 ( - ) is the set of all probability distributions on
 -   and that a probability measure  m   on  3 ( - ) induces an element of  3 ( - ) ,  namely

 m  *  5  ( m  *(0) ,  .  .  .  ,  m  *( a  ))  5 S E  P (0)  d m  ,  E  P (1)  d m  ,  .  .  .  ,  E  P ( a  )  d m D  5 E
 3 ( - )

 P  d m .

 (7 . 7)

 Moreover ,  if  m   has a convex support  6  ’  3 ( - ) ,  then  m  *  P  6 .
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 In order to simplify the bound on  w n
 2  ,  we address the following maximization

 problem .

 L EMMA  7 .  Let  6   be a con y  ex , compact subset of  3 ( - )  and let f be a strictly  > - con y  ex
 function on  3 ( - ) . For Q  P  6 , let

 } ( 6 ,  Q )  5  h m  :  support ( m  )  ’  6 ,  m  *  5  Q j
 Then

 min
 m  P } ( 6 ,Q )

 E  f  ( P )  d m

 is assumed for a probability measure  m 9   with support ( m 9 )  ’  extr . ( 6 ) , the set of extreme
 points of  6 .

 P ROOF .  By the Support Lemma 4 ,  we know that  m 9  has a support ( m 9 ) ,  say  6 9 ,  with
 u 6 9 u  <  a  1  1  5  u - u   (notice that  Q  has only  a   independent components) .

 Assume ,  then ,  that one point in  6 9 ,  say  P 0  ,  is not extremal in  6  :  o m
 i 5 1  θ i Q i  5  P 0  ,

 Q i  P  6 ,  0  ,  θ i  ,  1 .
 Then define  m 0   by

 m 0 ( P )  5 5  m 9 ( P )
 m 9 ( P 0 ) θ i

 0

 if  P  P  6 9  and  P  ?  P 0

 if  P  5  Q i

 otherwise

 and notice that  m 0  P  } ( 6 ,  Q ) and

 E  f  ( P )  d m 0  5  O
 P P 6 9 \ h P 0 j

 f  ( P ) m 9 ( P )  1  m 9 ( P 0 )  O
 i

 θ i  f  ( Q i )

 ,  O
 P P 6 9 \ h P 0 j

 f  ( P ) m 9 ( P )  1  m 9 ( P 0 ) f S O
 i

 θ i Q i D  5 E  f  ( P )  d m 9 .

 This contradiction proves the result .

 C OROLLARY  1 .  g :  R  5  R   defined by

 g ( r )  5  max h E D w ( X  ) :  H ( X  3  U )  5  r ,  ( X ,  U )  as  in  Theorem  1 j  (7 . 8)

 is a non - decreasing function in r , if  D w   is a non - decreasing function .
 If g ( r )  in  (7 . 8)  is non - decreasing in r , then the maximal  y  alue in the r .h .s . of  (7 . 8)  is

 assumed for a pair  ( X ,  U ) , where U has a support set  8  5  h 0 ,  1 ,  .  .  .  ,  a  j   (  5  - )  and

 Pr( X  5  x  3  U  5  u )  5 H 1 / ( u  1  1)
 0

 if  x  <  u ,
 otherwise .

 (7 . 9)

 P ROOF .  If  g ( r ) is non-decreasing ,  fixing  H ( X  3  U ) and maximizing  E D w ( X  ) is
 equivalent to fixing  E D w ( X  ) and minimizing  H ( X  3  U ) .  By the previous lemma ,  for an
 optimal ( X ,  U ) for all  u  P  8 ,  Pr( ?  3  U  5  u ) can be assumed to be an extremal point
 satisfying (5 . 3) .

 So it suf fices to show that ,  for any pair ( X ,  U ) satisfying (5 . 3) but not (7 . 9) ,  for some
 u ,  Pr( ?  3  U  5  u ) is not extremal .
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 In fact ,  for those pairs we have  s 1  ,  s 2  ,  ?  ?  ?  ,  s m  , m  >  2 ,  with

 Pr( X  5  0  3  U  5  u )  5  Pr( X  5  1  3  U  5  u )  5  ?  ?  ?  5  Pr( X  5  s 1  2  1  3  U  5  u )

 .  Pr( X  5  s 1  3  U  5  u )  5  ?  ?  ?

 5  Pr( X  5  s 2  2  1  3  U  5  u )  .  Pr( X  5  s 2  3  U  5  u )

 5  ?  ?  ?  5  ?  ?  ?  .  ?  ?  ?  .  Pr( X  5  s m  3  U  5  a )  5  ?  ?  ?

 5  Pr( X  5  a  3  U  5  u ) .

 Expressed in another way ,  one can find 0  ,  q i  ,  1 ( i  5  1 ,  .  .  .  ,  m ) such that

 Pr( X  5  x  3  U  5  u )  5  O l

 i 5 0
 q i  ,  if  s m 2 l  <  x  ,  s m 2 l 1 1 ,  (7 . 10)

 where we set  s 0  5  0 and  s m 1 1  5  a  1  1 .
 Now ,  for  θ i  5  s m 2 i 1 1 q i  .  0 ,  set

 Q i ( x )  5 H 1 / s m 2 i 1 1

 0
 if  x  <  s m 2 i 1 1  2  1 ,

 otherwise ,
 (7 . 11)

 and ,  by (7 . 10) ,   Q i  P  3 ( - ) for  i  5  1 ,  2 ,  .  .  .  ,  m  and  Q i (0)  >  Q i (1)  >  ?  ?  ?  >  Q i ( a  ) .
 Furthermore ,  for  s m 2 l  <  x  ,  s m 2 l 1 1 ,  by (7 . 10) and (7 . 11) ,

 Pr( X  5  x  3  U  5  u )  5  O l

 i 5 0
 θ i Q i ( x )  5  O m

 i 5 0
 θ i Q i ( x ) ,

 so Pr( ?  3  U  5  u ) is indeed not extremal .
 Finally ,  we verify that  g  is non-increasing ,  if  D w   is non-increasing .
 Let ( X ,  U ) maximize  E D w ( X  ) with  H ( X  3  U )  5  r .  Then there are  u , x 0  and  x 1  such

 that Pr( U  5  u )  ?  0 and

 Pr( X  5  0  3  U  5  u )  5  Pr( X  5  1  3  U  5  u )  5  ?  ?  ?  5  Pr( X  5  x 0  3  U  5  u )

 .  Pr( X  5  x 0  1  1  3  U  5  u )  >  ?  ?  ?

 .  Pr( X  5  x 1  3  U  5  u )  .  Pr( X  5  x 1  1  1  3  U  5  u )

 5  ?  ?  ?  5  Pr( X  5  a  3  U  5  u ) .

 By continuity and convexity of  H ( ?  3  U  5  u ) ,  one can choose a small but positive  d  ,
 such that ,  for all  d  9  <  d  ,  there exists an  »  .  0 and ( X  9 ,  U 9 ) ,  which satisfies (5 . 3) ,  such
 that  H ( X  9  3  U 9 )  5  r  1  d 9 ,  if we define

 Pr( X  9  5  x 9  3  U 9  5  u 9 )  5 5  Pr( X  5  x 9  3  U  5  u 9 )  2  »  / ( x 0  1  1)
 Pr( X  5  x 9  3  U  5  u 9 )
 Pr( X  5  x 9  3  U  5  u 9 )

 if  u 9  5  u  and  x 9  <  x 0  ,
 if  u 9  5  u  and  x 9  .  x 1  ,
 otherwise .

 However ,  since  D w   is non-decreasing

 E D w ( X  )  <  E D w ( X  9 )

 and therefore  g ( r  1  d 9 )  >  g ( r ) .
 Next we apply the corollary to the Lee case ,  namely  w 2  in (7 . 2) and (7 . 4) ,  and obtain



 Edge - isoperimetric inequalities , I  369

 the optimal ( X ,  U ) described by (7 . 9) .  Thus ,  by (7 . 4) – (7 . 9) (notice here that
 a  5  k  2  1) ,

 E D w 2 ( X  )  5  1  1  Pr( U  5  k  2  1)
 1
 k

 2  O k 2 1

 u 5 0

 Pr( U  5  u )
 u  1  1

 5  1  2  O k 2 2

 u 5 0

 Pr( U  5  u )
 u  1  1

 ,  (7 . 12)

 and by (5 . 1) and (7 . 9) to  A 2  ’  -  n   corresponds ( X ,  U ) in Theorem 1 :

 1
 n

 log  u A 2 u  5  H ( X  3  U )  5  Pr( U  5  k  2  1)  log  k  2  O k 2 2

 u 5 0
 Pr( U  5  u )  log  ( u  1  1) 2 1

 >  Pr( U  5  k  2  1)  log  k  2  Pr( U  ?  k  2  1)  ?  log  O k 2 2

 u 5 0
 Pr( U  5  u  3  U  ?  k  2  1)( u  1  1) 2 1 .

 (7 . 13)
 Now set  p  5  Pr( U  5  k  2  1) and  p #  5  1  2  p .  By (7 . 12) and (7 . 13) ,

 E D w 2 ( X  )  <  1  2  p #
 k p / p #

 u A u 2 1/ n p #  .  (7 . 14)

 By (5 . 2) and (7 . 14) ,

 w n
 2 ( A 2 )  <  n  u A 2 u S 1  2  p #

 k p / p #

 u A 2 u 1/ n p # D .  (7 . 15)

 Finally ,  we have to make a choice of  p  in (7 . 15) to maximize its r . h . s .,  which by a
 simple calculation ,  is seen to be

 np #  5  log e
 k n

 u A 2 u
 and gives

 w n
 2 ( A 2 )  <  n  u A 2 u  S 1  2

 1
 n
 S log e

 k n

 u A 2 u
 D  e

 k
 D .  (7 . 16)

 Comparing our bounds in (7 . 15) and (7 . 16) with the bound of [10] (derived by a
 completely dif ferent approach) we notice that our bound (7 . 16) is simpler and slightly
 looser ,  because we use the real  np #    instead of the integer  r  in [10] .  This gap closes as
 n  5  ̀  .

 Concerning  w n
 1 ( A 1 ) ,  our bound in (7 . 3) is one of two quantities ,  the maximum of

 which is the upper bound in [10] ,  so it could only be better .  However ,  we can see that
 this quantity always equals the maximum of the two quantities and the other can thus
 be avoided .  This actually follows from the recent paper [2] .

 8 .  A SYMPTOTIC  S OLUTION   OF   THE  E DGE - ISOPERIMETRIC  P ROBLEM   IN   THE  S HANNON

 P RODUCT   OF  G RAPHS

 Here we consider the problem of maximizing the number of inner edges .  Since
 sequences (vertices) of the same type have equal degrees ,  the subgraph induced by the
 vertices of one type is regular .  Therefore ,  for these subgraphs ,  maximizing the number
 of inner edges is equivalent to minimizing the number of outgoing edges .  Finally ,
 asymptotic estimates for the two extremal problems are convertible ,  because there are
 polynomially many types .  For  ]  ’  9  n   denote the induced subgraph by  G *( ] ) .  It
 suf fices to study the function

 g #  n ( d  )  5  min h u ] u :  ]  ’  9  n  and  G *( ] )  has at least  2 n d  edges j .
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 In [3] ,  a related function was introduced :

 g n ( d  )  5  min h u ] u :  ]  ’  9 n  and  for  all  u n  P  ]  deg G *( u ) ( u n )  >  2 n d  j ,

 where deg G *( ] ) ( u n ) is the degree of  u n   in  G *( ] ) .
 Actually ,  the more general problem of the ‘smallest rich world’ was studied and

 solved in [3] .  We describe the result .
 For    :  -  3  -  5  [ a  ,  b  ]  ’  R ,  any closed interval  +  ’  [ a  ,  b  ] ,  and any  r  P  R , n  P  N ,

 define

 N ( n ,  + ,  r  )  5  min H u ] u :  ]  ’  -  n  and  for  all  x n  P  ]  U H y n  P  ]  :
 1
 n
 O n
 t 5 1

   ( x t  ,  y t )  P  + J U  >  2 n d J .

 T HEOREM  (‘Smallest rich world’ [3]) .

 lim
 n 5 ̀

 1
 n

 log  N ( n ,  + ,  r  )  5  min
 ( X ,U ) P Q ( + , r  )

 H ( X  3  U ) ,

 where Q ( + ,  r  )  is the set of random  y  ariables Y such that
 (1)  H ( X  3  U )  >  r   and H ( Y  3  XU )  5  H ( X  3  YU ) ,
 (2)  E   ( X ,  Y )  P  + ,
 (3)  H ( Y  3  XU )  >  r  ,
 and U takes at most  u - u 2  1  4  y  alues .

 Notice that the closed interval  +   can have one element .  We obtain a characterization
 of lim n 5 ̀  (1 / n ) g n ( d  ) by choosing  +  5  h 0 j   and    :  -  3  -  5  h 0 ,  1 j   as

   ( u ,  y  )  5 H 0  if  ( u ,  y  )  P  % ,

 1  otherwise ,

 because then ,  for all  u n ,  y  n  P  - n ,

 1
 n
 O n
 t 5 1

   ( u t  ,  y  t )  5  o  ï  ( u n ,  y  n )  is  an  edge  of  G o n .

 Similarly ,  the quantity of our primary interest ,  lim n 5 ̀  (1 / n )  log  g #  n ( d  ) is characterized
 by the following ‘average’ version of the smallest rich world theorem .  Define

 N #  ( n ,  + ,  r #  )  5  min H u ] u :  ]  ’  -  n  and  U H ( x n ,  y n ) :  x n ,  y n  P  ] ,
 1
 n
 O n
 t 5 1

   ( x t  ,  y t )  P  + J U  >  2 n r # J .

 T HEOREM  (average version of smallest rich world theorem) .

 lim
 n 5 ̀

 1
 n

 N #  ( n ,  a  ,  r #  )  5  min
 ( X ,U ) P Q #  ( a  ,  r #  )

 H ( X  3  U ) ,

 where Q #  ( + ,  r #  )  is the set of pairs of random  y  ariables  ( X ,  U )  satisfying  (1) ,  (2)  and ,

 H ( XY  3  U )  <  r #  (3 #  ) ,

 and U takes at most  u - u 2  1  4  y  alues .

 S KETCH   OF  P ROOF .  We follow the notation of [3] and go along the original proof .
 Noticing that the direct part of the proof is like the old with obvious modifications ,  we
 turn to the converse part .  Instead of considering deg G *( S )  ( x n ) ,  namely  u B ( x n ,  + ,  s ) u  5
 Pr( Y ̂  n  5  y n

 3  X ̂  n  5  x n ) 2 1
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 for any  y n ,  with ( x n ,  y n ) being an edge in  G *( S ) (which leads to (3)) ,  we consider (3 . 6)
 of the original proof and obtain (in the original notation)

 n r #  <  O
 ( x n ,  y n )  edges  in  G *( S )

 Pr( X ̂  n  5  x n ,  Y ̂  5  y n )  log  u B ( n ,  + ,  S ) u

 5  H ( X ̂  n ,  Y ̂  n )  5  O n
 t 5 1

 H ( X ̂  t  ,  Y ̂  t  3  X ̂  t ,  Y ̂  t )

 5  nH ( XY  3  U ̃  ) .

 Thus (3 # ) is established .  h

 R EMARK  3 .  Since  H ( XY  3  U )  5  H ( X  3  U )  1  H ( Y  3  XU ) and since (3 . 5) in the original
 proof means that the number of edges in a graph equals the number of vertices times
 one half of the average degree ,  the average version (with a weaker restriction) gives
 the same answer as the original version .
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