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General Edge-isoperimetric Inequalities, Part I:
Information-theoretical Methods

RupoLF AHLSWEDE AND NING CAI

1. INTRODUCTION

In combinatorics we often meet two kinds of extremal problems. In one kind,
optimal configurations consist of ‘objects’, which are somehow uniformly spread in the
space under consideration; and in the other kind, optimal configurations consist of
‘objects’, which are somehow compressed. To the first kind belong packing, covering
and coding problems, whereas diametric (especially of Erdés—Ko—Rado type), vertex-
and edge-isoperimetric problems belong to the second kind.

For many problems of the spreading type, the probabilistic method gives good or
even asymptotically optimal results but, mostly, strictly optimal configurations are
unknown. In contrast, problems of the compressing type can often be solved exactly
with pushing techniques (‘pushing down’, ‘pushing to the left’ etc.; see [14]). However,
the success of pushing operations is linked to the property that there is a ‘nested’
structure of optimal configurations with respect to some order. When this is not the
case, then there are competing configurations (for example, in [6]) and solutions are
harder to obtain.

We concentrate here on edge-isoperimetric problems. They can be defined for any
graph G = (7, €) as follows. For any A c 7, define the set %B(A) of all boundary edges;
that is,

B(A) = {lx, y} e & I{x, y} N A = 1} (L1)

ProBLEM 1. For given positive integer m, find a set A = 7" of cardinality m with
minimal possible value of |B(A)|.

A similar problem in this.

ProBLEM 2. For given positive integer m, find a set A = 7" of cardinality m with
maximal possible value of |$(A)|, where #(A)={{x, y} e & {x, y} = A} is the set of
inner edges of A.

Notice that, for regular graphs G of degree d,
|B(A) + 2 |F(A) = d |A]

and in this case Problems 1 and 2 are equivalent in the sense that a solution of one of
these problems is at the same time a solution of the other.

Most results in the literature concern graphs the vertex set ¥ of which is a cartesian
product " =11, &, of sets &, ={0,1,..., «,} and the edges of which are pairs of
vertices with distance 1 under a specified metric p.

For the Hamming metric, Problems 1 and 2 were first solved in the binary case (i.e.
when @y =a,=---=a, =1) by Harper [16] and for arbitrary finite «,’s by Lindsey
[20]. (The results have been rediscovered many times: 8], [11],...,[18].) They proved
that for each m the set of the first m vertices of " in the lexicographic order gives a
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solution for both problems. As usual, by the lexicographic order £ is meant the order
induced by the following relation: x € & precedes y € &", if x, <y, for some ¢ with

X1= Vo5 X1 = Y10
Notice that under the Hamming metric it is natural to assume that all «,’s are finite,
because otherwise, if for instance a, =, the set {(0,...,0,x,0,...,0):0<x, <

m — 1} gives a trivial solution of Problem 2.

Under the Manhattan metric the graph is not regular in the non-binary case, and so
the equivalence of the two problems is not guaranteed. However, it was shown in [2]
that they still have a common solution, if all «,’s are infinite.

It is interesting that in the ‘bounded’ case, i.e. when all «,’s are finite, Problem 1 has
no nested structure of solutions, while Problem 2 always has it, and so in this case the
problems are not equivalent. For ‘smooth parameters’, both problems were first solved

by Bollobas and Leader [10] for ay=a,=---=a,. By a different and simpler
approach based on a certain order, Problem 2 was solved in [2] for arbitrary «,’s. Also
in [2] Problem 1 is solved in the case , = o for t =1, 2, ..., n and it is analysed in the

‘bounded’ case for n = 2. Here the same order competes with the lexicographic order.
In the present paper we keep the product structure of the vertex set, but include
much more general edge structures than those derived from metrics, in particular
metrics p, of ‘sum-type’; that is, p,(x", y") =2/ p(x, y;) (as are the Hamming or
Manhattan metrics).
More specifically, for graphs G, =(%, ¢,), t=1,2,...,n, we consider (what has
been called) the cartesian sum graph

Gn:G1XG2X"'XGn:(%n,%n).

Here, for n=2, & ={(x1,2), (y1,2)): (x1, 1) € &, 22 € B} U{((21, X2), (21, 12)):
(x2, v2) € %, z; € &} and, for general n, €" is defined inductively.

For the convenience of the readers, we limit ourselves here to the case of identical
factors, i.e. G,=G fort=1,2, ..., n. Here we call G" the nth power of G.

Not only do we establish general edge-isoperimetric theorems, but we also make
transparent which structures are responsible for proofs by pushing to work. The
starting point is the fact that ,(G, A) and B,,(G, A) are set functions. This leads us to
formulate (in Section 3) our problems even more generally as extremal problems for
set functions. Their submodularity becomes a key issue for ‘pushing down’ to work.

At this point we introduce our second idea. Since, mostly, there is no nested
structure, it is impossible to find optimal configurations among the downsets in the
present generality. However, as in earlier work [1, 3] we employ information-theoretic
methods to derive asymptotically (in n) first order optimal results (Theorem 1 in
Section 5 and Theorem 2 in Section 6). We also discuss several examples and compare
our results in the special case of a grid with those of [10].

Finally, in Section 8 we address the Shannon product of graphs G,°G, = (7 X
Y, €), where

E={((vy, v2), (v{, v})): for every i € {1, 2} v; =v] or (v;, v)) € &}

for G,;= (7, ¢),i=1,2.

Inductively, we define the nth Shannon product and denote the nth power of a graph
by G°". We consider the edge-isoperimetric problem for those powers. Actually, we
should explain that an asymptotic solution is implicitly already contained in [3].

In Part II we study when the lexicographic order (one of the most important orders
in combinatorics) has the property that its beginning segments give the solution to an
edge-isoperimetric problem (‘nested structure’).
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2. NotaTioN AND KNowN FAcTs

For a finite set &, we define P(¥) as the set of probability distributions on &, and for
a random variable X with values in & we denote its distribution by Py. Pyxy € (X X ¥)
is the distribution of the pair of RV’s (X, Y) with values in & X @.

We abbreviate P(Z) as #. For integers n, we put

1 2
g;l:{pe@;P(x)e{(),*,f,...,l}forallxe%}.
nn

For x" € &' we define, for every x € &, P.(x)=1/n (number of occurrences of x in
x").

P is a member of %, by definition. It is called the type of x”. Analogously, we define
the type P for pairs (x",y") e 2" X ¥". For P € P, the set J% of all P-typical
sequences in 2" is given by I = {x": P.. = P}. It can be empty.

Let Pxy € (& X ¥) have a 1-dimensional marginal distribution Py = P,». We define
a set of sequences Pyy-generated by x":

9y|X(xn) ={y": Poryn = Pyy}. (2.1)
If for the random variables X, Y we have
PXY(x)y):P(x)W(x|y) fOf allx;y’

then for the entropy H(X) and the conditional entropy H(Y | X) we also write H(P)
and H(W | P), respectively.
We shall use the facts

1Pl < (n+ 1), (2.2)
(n+ 1) explnH(W | Po)} <|Tyx(x") < exp(nH(W | Po)},  if Pey=Por - W.
(2.3)

SupporT LEMMA (Lemma 3 of [7]). Let P(%) be the set of all PD’s on the finite set &
and let f; (i=1,...,k): A¥)— R be continuous functions. Then, to any PD u on the
borel o-algebra of P(%), there exist k elements P, of P(¥) and non-negative numbers
ai, ..., with 35 a; =1 such that, for every j=1, ...k,

[ 1miar)= 3 ace (2.4

Proor. The map f=(fi,...,f): A(¥)—[E* is continuous, and since P(¥) is
compact and connected so is the image J = f(P(%)). O

Clearly, the point (fge A(P)u(dP), ..., [ fir(dP)) belongs to the convex
closure of J, and thus, by the Eggleston—Carathéodory theorem (cf. [13], Theorem 18)
there are k points in J, say, f(P,), ..., f(P), satisfying (2.4).

ReMARKs. (1) Originally, in [7], Carathéodory’s theorem was used, which does not
require connectedness and gives the weaker conclusion that k + 1 instead of k points
are needed.

(2) Notice that in the above proof only compactness and connectedness of (%) was
used. Therefore P(%) can be replaced by any set A with these topological properties.
In particular, for finite sets %,..., %, the set of product distributions P(Z;) X
P(D) X -+ - X P(X;) could serve as A.
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We shall also use the well-known Abel summation, as follows. For two sequences of

numbers {«;}i2, and {B;}/Z,, introduce the partial sums A, =>"_, o; (p=1,2,..., m).
Then
m m—1
2 ;i =ApuBm + 2 Ai(Bi — Biv1)- (2.5)
i=1 i=1

3. THE EXTREMAL PROBLEMS FOR SET FUNCTIONS
For finite sets %, (t=1,2) and two functions ¢;:2% —R (i=1,2) the product
@1 % 0 217" 5 R is defined by
o1 a(A) = Z e1(Ai(x)) + E ©2(Ax(x)) for Ac X &, (3.1)

xed xed

where, for all x € &5,
Ai(x) ={x; € : (x1, x) € A}
and, for all x € &3,
As(x)={x, € &: (x, x,) € A}.
The nth power of ¢ is defined as ¢" = (((¢* @) *) - - - * ¢). We check that the product

is associative and therefore we can write ¢” = @* - - - * ¢.
We actually have, for all A = &~ =T1I,.y %, where N={1,2, ..., n},

Pri@yx kg (A)=2 X @AM, (3.2)
t=1 xMte N
where
xN\{t} = (xly > ST PR PI ORE PI xn)) %N\{t} = %1 XX %*1 X %‘Fl XX %n)

and A,(x™N) ={x e Z: (x1,..., X1, % X411, ..., X,) € A} is the tth slice of A at x™.
For a fixed graph G, let ¢(-) =I(G, -) (or —B(G, -)). Then

¢"()=1(G",-) (or —B(G",")), (3.3)

and we see how our Problems 1 and 2 are subsumed under maximizing ¢".

Next we study ¢” and find conditions on ¢" under which the ‘pushing down operator’
does not decrease ¢”.

At first, of course, we have to define the direction ‘down’. Therefore, we need the
following property.

I (nestedness). One can label the elements of & in the form ¥ =1{0,1, ..., a} such
that, for all k € & and A < X with |A|=k + 1,
o(A) < o([k]), where [k]=1{0,1, ..., k}. (3.4)
One can readily verify that for edge-isoperimetric problems under the Hamming,
Manhattan and Lee distances, property I is satisfied.

Next, we need a less obvious property.

IT (submodularity).
o(A)+o(B)<@e(AUB)+@o(ANB) forA,BcZ. (3.5)
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Finally, observe that by replacing ¢ by ¢’ with ¢'(A) = ¢(A) — ¢(¢), we can always

assume the following.

1L ¢(¢)=0.

Obviously, for all graphs G, I(G, ¢) = B(G, ¢) =0, and it is also easy to establish

the following facts.

ProrosiTionN 1. For all graphs G, both I(G, -) and —B(G, -) satisfy 1.

Later, we need an extension of property II to more than two sets.

Lemma 1. II implies that, for any family {A;}{~, of subsets of %,

; @A) = él @( U (; A,»j>>. (3.6)

\<i|<iy<- - -<ip=m

Proor. For m =2, this is exactly II and the case m =1 is trivial.
Assume therefore that m =3 and that (3.6) holds for n — 1. II and this yield

k

Sel U |
I=si<ip<---<ip=m—1 \j=

) Ai]->) +e(A,)
o{Ua)ren) S, U, (H4)

k

W)eslan( @) S ol U, ()

©
g
(s

1

~o(0a)+'S wan,

where the two inequalities follow from the induction hypothesis and (3.5) respectively,

m—1 k
A;=Amﬂ<U A,-) and A,= U <ﬂAi>:
i=1 1<ij<iy<---<izg=m—1 \j=1 '

for k=2,3,..., m—1. Applying the induction hypothesis again to the second term of

the last summation, we obtain

m m m—1 k
S ool 0a) S o U (A1)
i=1 i=1 k=1 I=si1<ir<- - -<fp=m—1 \j=1

i cp( U < kl A,-,)),

k=1 I=si<ir<---<ip=m—1 \j=
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as, by definition of A;, A5> A;>--->A),, so that

N47)

1=ih1<ir<- - <ip=m—1 <]

k k
ooy Uy (0 ()0 U (040)
2=i<ip<- - -<ifp1=m—1 Jj=1 2=i1<ip< <ig=m—1 =

Al mAk>uAk+l

k m—1
(. ()0 (ann (G )0
1=sih<i<- <zk§m 1 Jj=1 i=1
k k+1
( (Qa)nan)v( .9, ... ()
I=i<ia<<-- <LkSm 1 Jj=1 I=sih<ia<<w - <igy1=m—1 \j=1
k+1
= L U i (m A,‘],),
I=si1<iz<- - <igp1=m \j=1
fork=2,...,m—1, and (for k=1)

(AiﬂA,,,))U( U ]<AilﬂAzz>)

l<iy<ir<m—

A;=A{UA§=<U
1

i=1

m

i=

= U (Ail ﬁ Aiz)' D
I=si1<i=m
We also need the sets
AFEM ={yN e Ary, = x, for s # 1}, (3.7)
which obviously satisfy
AN = 1A, (3.8)

Now we define the pushing down operation D, by choosing D,(A) as the subset of
™, which is obtained by exchanging, for all x™{ e ¥ all the tth components of
AF(™MM) ) namely A,(x™), by {0,1,. .., |4, — 1}. Clearly,

[A| = [D(A)]. (3.9)

LemmMma 2. If, for a fixed t and all s # t, ¢, satisfies Il and 11l and ¢, satisfies I and 111,
then for all A = %V,

k@, (A) < @ x -k @, (D(A)). (3.10)

Proor. By (3.2) it suffices to show that after the action of D, on A the contribution
of the sth component in (3.2), namely X v ¢, (A,(xV"*)), is not decreased.

For s =1t this is clear by I and (3.9). For s # ¢ we first simplify notation by setting
B =D,(A). Next, w.lo.g., we choose s=1 and t=n. Now x; e B,x™") iff
|A,, (x| = x,, + 1 iff there are at least (x, + 1) x,,’s with x; € A,(x™"1).

Consequently,

x,+1
By(x™ = U ( M Al(xN\{l’n}l}),

O=i1<ir<' - -<iy,+1=a, \[=1

where Z, ={0,1, ..., a,} and x™" = (x,, ..., x,,_1).



Edge-isoperimetric inequalities, 1 361

This and Lemma 1 give the result (considering X .wum @(A;(xM )=

Sevnin 21 @1 (A (xM1)) and applying Lemma 1 to 38, @1 (A;(xV1"))). O
4. AN AUXILIARY PROBABILISTIC DESCRIPTION OF ¢; X - -+ X ¢,(A) FOR A
Downser A

We now assume that & ={0,1,..., a;} (i=1,2,..., n) are finite sets and that all ¢,
(i=1,2,...,n) satisfy I-1I1.
We introduce the differences
A, (k) = e([k]) — e[k —1]), (4.1)

where [—1] is the empty set.

Lemma 3. For every downset Ac 2, X -+ - X &,

n

g3 X g, (A) =2, 2 Ay(a) A (a) (42)
t=1laei,
= 2 2 A, (4.3)
x"eA t=1
where
At(a) = {(x1; e X X1y xn): (xly s X1, Oy Xy xn) € A} (44)

Consequently, if X" is an RV with uniform distribution on A, then

1 n
TR @.(A) =D, EA, (X)) (4.5)
=1
and
Pr(X,=0)=Pr(X,=1)=---=Pr(X, = a,). (4.6)

Proor. Since A is a downset,
A0)2A,(1)>---2A,(a), (4.7)

and therefore (4.6) holds. Also (4.5) just rewrites (4.3), which in turn is readily seen to
be equivalent to (4.2)—the heart of the matter.
We begin its proof with the fact that, by (4.7), the non-empty sets in

{A,(O)\A,(l), 121,(1)\121,(2), R A,(ai\l)\fl,(ai), A,(a,)}
form a partition of |, A,(a) = 2V

M e A,(NA,(1+1) iff A,(xMY = (1) (4.8)
and
xN\{t} e At(at) iff A,(XN\{t}) — [ai] = % (49)

Therefore, by (3.2), (4.8) and (4.9),

e ()= 2| S @AW ~IA0+ D) + ellaD A | (410)

By our definition (4.1), we have ¢([/])=X/-,;A,(j) and therefore, by Abel’s
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summation ~ (see  (2.5)), we obtain, from (410), @ X---Xg,(A)=
Sy 2o Ay (1) |A(D)]; that is (4.2). O

5. A GeneraL UppER Bounp For ¢,(A)

Here, we measure a set A = 2" =[I] & by its rate (1/n) log |A.

THEOREM 1. Let X={0,1, 2, ..., a} be a finite set and let ¢:2X — R satisfy I-1I1. We
use @ = @k k.

For every set A = ", there exists a pair of random variables (X, U), where X takes
values in ¥ and U is an auxiliary RV with values in a set AU, such that

1
~log|A| = H(X | U), (5.1)
n
L (A) = EAL(X) (52)
nia ¢ T e '
and, for all u € U,
Pr(X=0|U=u)=Pr(X=1|U=u)=---=Pr(X =a | U=u). (5.3)

Moreover, it can be achieved that

U <12 + 1. (5.4)

Proor. By Lemma 2 we can assume that A is a downset. Furthermore, let X” be an
RV with uniform distribution on A and let / be an RV with uniform distribution on
{1,2,...,n}, which is independent of X" = (X, X5, ..., X,,). Now consider the pair of
RV’s (X, U') = (X, IX"""). Then, by Lemma 3, (5.2) holds and also

1 1 1
—log|A|=—H(X")==> H(X,| X" )=H(X | U").
n n n,5

Finally, we apply the Support Lemma (see Section 2) to # ={P e P(¥): P(0)=
P(1)---=P(a)}, a connected compact subset of P(Z), to replace U’ by an RV U
taking at most |Z] + 1 values. It also satisfies (5.3).

6. AsYMPTOTICALLY OPTIMAL CONFIGURATIONS

A pair (R, d) of numbers with R =0 is said to be achievable in our maximization
problem for ¢ on & if, for all €, €,>0, an n(eg;, &) exists such that, for n > n(ey, &,),
there is an A, = & with

1
‘*log |A,| —R‘ <g (6.1)
n
and
1 "(A)>d (6.2)
—_— —&,. .
nia,l ¢ ’

Denote by %, the achievable region, i.e. the set of all achievable pairs, let %* denote
the distributions Py of pairs of RV’s (X, U) satisfying (5.3) and (5.4), and set

R ={(H(X | U), EA,(X)): Pxy € P*}. (6.3)
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THEOREM 2. Let =1{0,1,2,..., a} be a finite set and let ¢:2* — R satisfy I-III.
Then

R < R, (6.4)
Combining Theorems 1 and 2, we obtain a complete characterization of %,.

TueorReM 3. Let ¢: 2% — R satisfy I-111. Then
%, =R’
Moreover, the set ®', and therefore also the set %, is in principle calculable within
any prescribed accuracy. Also, an asymptotically optimal sequence of sets (A,);, -

together with an estimate of the deviation from the optimum will be provided in the
proof.

Proor oF THEOREM 2. For any n, choose any Py, e #* with I, # ¢ and any
u" € 97 (defined in Section 2). For this fixed u” we define a partial order on
non-empty generated sets Ty, (u") (see Section 2) as follows:

Tx(u") < Txp(u") iff there are x" e Ty y(u") and x" € Ty y(u") with
x" < x'" (according to the natural order on &"; that is, x;<x/for t=1,..., n).

Now define
A, = U gx’\u(un) (6.5)

Tx oW =Tx|uu™)

and notice that A,, is a downset.

A well-known concept from the theory of inequalities is needed (see [21]). Let
¥={1,2,...,n} be a finite set and let P be a distribution from P(%). Denote by 1, a
permutation & — & with

P(m,(1)) < P(m,(2)) < - - - < P(1,(n)). (6.6)
It is said that, for Q,, O, € P(%), Q, majorizes Q, (or that Q, > Q,) iff

; 0,(1,(i) = ; 0.(mp(i))  forl=1,...,k (6.7)

A function ¥: P(%)— R is Schur convex (or Schur monotone) iff ¥(Q,) =¥(Q,) in
the case Q, > Q..

Now denote by ¢ the set of joint distributions Py, of pairs of RV’s (X', U) (U as
defined above) with Py (- | ) < Pxjy(- | u) for all u. @is a compact set in the natural
topology. Since the entropy function is Schur convex, for every u € %,

H(X |U=u)=max H(X'|U=u). (6.8)
Pxyeg

Now, by (5.3), it is clear that
T o) < Txp(u”) implies Py (- | u) < Pxjo(- | u), Vi (6.9)

Since the number of types is polynomial in n and since [Ty (u")| ~ exp{H (X" | U)n},
by (6.8), A, has the rate H(X | U) + o(n).
Finally, we have to show that

1
—¢"(A,) > EA(X) — &,. 6.10
n |A,,| (" ( n) (p( ) & ( )
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We introduce the §-neighbourhood of Py:
Moreover, we define

FTX|U,3(L£")= U gX'|U(un)- (6.12)

X'UE@E

Since H(X | U) is the unique maximal value of H(X'|U) on ¢ and therefore on
Os(Pxy), by the continuity of the entropy function

H(X |U)— max H(X'|U)>0. (6.13)

Py yeO\Cs

Consequently, there is an >0 and an n(n) such that for n=n(n) and A=
UPXrUeQ\Q5 ‘OJ—X'\U (")

|AZ] <|Txjuu")] exp{—nn}. (6.14)
If we set AL = A,\A2, then
|AZ < |Txju(u™)| exp{—nn} <|A,| - exp{—nn}. (6.15)

For (X', U) and fixed ¢ we consider the 1-dimensional marginal distribution on & of the
uniform distribution over Ty (u")

qxudx) = |“U/~X'|U(un)|71 " =(xq, ..., x,) € g—X’|U(un):xt = x}]. (6.16)

By the definition of typical sequences, this is of course just Py |y(x | u,).
We are now in a position to give a lower bound on the slices A,(a) (see (4.4)) and
then to apply Lemma 3:

A= 2 qxoud®) | Txju™)

PxyeQs

= D (Pxjulx |u) = 8)|Tx ™) = Al - (Pxjofx | u) — 8)

PyyeQs

and therefore, by (6.14),

Al 1
A~ 1+ exp{—mm}

(Pxjo(x | u)) = 8). (6.17)

Substituting this into (4.2) we obtain, if Va, A, (a) =0,

A=Al S Ay(a)

- (P t _s
t=1aei; 1+6Xp{—nn} ( X‘U(a|u) )

Y | )
1+ exp{—nn}uezmnpu(u) ; A(a) - (Pxjula | u) — 8)

n 1A,

zm ([EA¢(X) -0 max A(P(a))

and thus (6.10) by choosing § sufficiently small.
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Whenever min, A (a) = A, <0 (say), let A,(-) =A,(x) — Ao, and then, replacing the
role of A, by A,, we obtain

FA) = S ALa) A () + 1A, Ag

t=1laeZ
n 1A, ( )
=—(EA(X)— & Al +nlA,lA
1+ exp{—nn} oX) max ola) )+ 4] Bo
nlA,| < ) n A, A
=———|EA(X)— 6 A +—————(6 + -
T expl (EAC0 =9 max (@) |+ =200 (6 + expl—ma)),
also (6.10), when § is small enough and # is large enough. ]

7. COMMENTS ON OUR GENERAL EDGE-ISOPERIMETRIC THEOREMS

As compared to the existing results in this area, our results are significantly more
general. Moreover, they give a unified approach to several isoperimetric problems,
which have been solved more or less separately. We now substantiate this with some
detailed comments.

A. Bollobas and Leader wrote in [10] that one has to do almost no additional work
to obtain an essentially best possible edge-isoperimetric inequality for the powers Py of
k-paths from a corresponding inequality for the powers C7 of cycles. We can now make
a precise and instructive statement: “The two problems are equivalent’.

In fact, if we want to minimize B(P%, -) and B(C%, -) or, by regularity, maximize
I(C%, -), then we just define ¢(-) = —B(P,, -) and ¢'(-) = I(Cy, +) and use our Lemma
3. Then we observe that

~1 ifI=0, 0 ifI=0,
AD=3 1 itl=1,2,..., k=2, A ()=91 ifl=1,2,... k-2,
1 ifl=k—1, 2 ifl=k=1,

and therefore that
A,(D)+1=A,() for/=0,1,..., k-1,

i.e. the equivalence of the optimization problems.

B. Another striking example is that maximizing I(7", -) for trees T on k vertices
does not depend on the tree structure and thus is equivalent to maximizing I(P%, -).
This can be seen by just verifying that, for any tree T and ¢ = I(T, *),

0 if/=0,
1 otherwise.

Aw(l) = {
C. In [11], Clements solved the edge-isoperimetric problem for the Hamming
distance on & =1I/-, %, where Z,={0, 1, ..., a,} (by showing an equivalence to a

result in [12]). This problem amounts to maximizing I(K", -) for K" =1I}"; K, 1, a
product of complete graphs K, ;. Notice that, for ¢,(-) = I(K, 1, *)

A, (D=1 for/=0,1,..., a,

and that Lemma 3 implies the equivalence of the problem to that of maximizing
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e 201X, over the downsets A = " with fixed cardinality, which is the main result
of [11].

D. We now compare our bounds in Theorem 1 with those in [10] for the Taxi and Lee
metrics.

By the previous discussion it is enough to consider ¢, = I(Py, -) and ¢, =I(Cy, *).
Notice that

0 ifl=0
A 1={ ’ 7.1
D=1 =12, k-1, 7.1
0 ifI=0,
A D=11 ifl1=1,2,... k-2, (7.2)
2 ifl=k-1.

For i=1,2, let A; be the optimal downset for ¢ and let (X;, U;) be the pair of RV’s
associated with A; in Theorem 1. Then

EA, (X)) =1—-Pr(X,=0) (7.3)
and
EA, (X;)=1+Pr(X,=k —1) — Pr(X,=0). (7.4)

Furthermore, by the convexity of the log function,

log Pr(X,) =0) =log > Pr(U; =u) Pr(X, = 0| U, =u)
= > Pr(U, =u)log Pr(X, =0 | U, = u)
=> Pr(U;=u) X Pr(X,=x | Uy=u)log Pr(X, =0 | U, = u)

=> Pr(U,=u) D, Pr(X, =x | Uy =u)log Pr(X, =x | U, = u)

(by (5.3))
=-HX,|U)
and thus, by (5.1),

1
log Pr(X, =0)= ——log |A4,]. (7.5)

n

This, together with (5.2) and (7.3), imply that
1

7(,0’11(A1)$1 _Pr(X1 :0)$ 1 - |A1|71/n. (76)

n A

Next, we look at the Lee case, the product of k-cycles with the function ¢5. Recall that
in the Support Lemma (see Section 2) P(&) is the set of all probability distributions on
& and that a probability measure w on ?(&%) induces an element of P(%), namely

p*=((u*0),..., u*(a)) = (f P(0)du, fP(l) du, ..., fP(a) d,u) = Pdpu.

P(2)
(7.7)

Moreover, if p has a convex support & < P(¥), then u* € &.
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In order to simplify the bound on ¢35, we address the following maximization
problem.

LEMMA 7. Let & be a convex, compact subset of P(Z) and let f be a strictly N-convex
function on P(X). For Q € ¥, let

M, Q) ={un:support(n) = &, p* = O}
Then

min J.f(P) du
wed(F,0)

is assumed for a probability measure p' with support(n') < extr.(¥), the set of extreme
points of &.

Proor. By the Support Lemma 4, we know that u' has a support ('), say &', with
|¥'| < a +1=|Z] (notice that QO has only « independent components).
Assume, then, that one point in &', say P,, is not extremal in % X, 6,0, =P,
0., e¥ 0<6,<1.
Then define p” by
p'(P)y ifPed and P#P,
r"(P)=13 n'(R)6 if P=0,
0 otherwise

and notice that u”" e M(¥, Q) and

[reyaw= S fewe swe)Sore)

PeS'\{P,y

< S ew e wer(Se0)= [ e

PeS"\{Py}

This contradiction proves the result.

CoroLLarY 1. g:R— R defined by
g(r)=max{EA,(X): H(X | U) =r, (X, U) as in Theorem 1} (7.8)

is a non-decreasing function in r, if A, is a non-decreasing function.
If g(r) in (7.8) is non-decreasing in r, then the maximal value in the r.h.s. of (7.8) is
assumed for a pair (X, U), where U has a support set U=1{0,1,...,a} (=%) and

1/(u+1) ifx<u,

7.9
0 otherwise. (7.9)

Pr(X=x|U=u)={

Proor. If g(r) is non-decreasing, fixing H(X | U) and maximizing EA,(X) is
equivalent to fixing EA,(X) and minimizing H(X | U). By the previous lemma, for an
optimal (X, U) for all u € U, Pr(- | U=u) can be assumed to be an extremal point
satisfying (5.3).

So it suffices to show that, for any pair (X, U) satisfying (5.3) but not (7.9), for some
u, Pr(- | U =u) is not extremal.
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In fact, for those pairs we have s; <s,<---<s,,, m =2, with
Pr(X=0|U=u)=Pr(X=1|U=u)=---=Pr(X =5, —1|U=u)
>Pr(X =5, |U=u)="--
=Pr(X=s5,-1|U=u)>Pr(X =s,| U=u)

:...:...>...>Pr(X:sm|U:a):-..

Pr(X =a | U=u).
Expressed in another way, one can find 0<g,<1 (i=1, ..., m) such that
l
PriX=x|U=u)=2q, ifs, i <x<s, ., (7.10)
i=0

where we set s =0and s,,,; =« + 1.
Now, for 6;,=s,, ;.19; >0, set

1/sm7i+1 if x g*S‘mfi+1 - 1)

Oi(x) = { (7.11)

0 otherwise,
and, by (7.10), Q; e P(X) fori=1,2,...,mand Q;(0)=Q,(1)=- - - = Qi(«a).
Furthermore, for s,, ;<x <s,,_;+1, by (7.10) and (7.11),

Pr(X =x|U=u)= Z) 6,0i(x) = él:o 6,0:(x),

so Pr(- | U =u) is indeed not extremal.

Finally, we verify that g is non-increasing, if A, is non-increasing.

Let (X, U) maximize EA,(X) with H(X ] U) =r. Then there are u, x, and x; such
that Pr(U =u) #0 and

Pr(X=0|U=u)=Pr(X=1|U=u)=---=Pr(X =x, | U=u)
>Pr(X=xo+1|U=u)="--
>Pr(X=x, |U=u)>Pr(X =x,+ 1| U=u)
= =Pr(X=a|U=u).

By continuity and convexity of H(- | U=u), one can choose a small but positive 3,
such that, for all 6’ <4, there exists an € >0 and (X', U’), which satisfies (5.3), such
that H(X' | U')=r + &', if we define
Pr(X=x"|U=u")—¢/(xo+1) if u' =u and x' <x,,
Pr(X'=x"|U =u')={Pr(X =x"|U=u") if u' =u and x' > x,,
Pr(X=x"|U=u") otherwise.
However, since A, is non-decreasing

EA,(X)<EA,(X")

and therefore g(r + 8') = g(r).
Next we apply the corollary to the Lee case, namely ¢, in (7.2) and (7.4), and obtain
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the optimal (X, U) described by (7.9). Thus, by (7.4)-(7.9) (notice here that
a=k—1),

K Pr(U =u) K2 Pr(U=u)

1
EA (X)=1+Pr(U=k—-1)—— >, —=1— 7.12
o(X) =1+ Pr( e o PR R L)
and by (5.1) and (7.9) to A, = &" corresponds (X, U) in Theorem 1:
1 k—2
—log|Al=H(X |U)=Pr(U=k —1)logk — >, Pr(U=u)log (u+1)""
n u=0

k—2
=Pr(U=k—1)logk —Pr(U#k—1)-log > Pr(U=u |U#k —1)u+1)"",

u=0

(7.13)
Now set p =Pr(U=k —1) and p =1 —p. By (7.12) and (7.13),
B kp/ﬁ
[EA%(X) <1 —p W (7.14)
By (5.2) and (7.14),

B kp/p
¢3(Ay)sn |Az|<1 -P W) (7.15)

| Ao

Finally, we have to make a choice of p in (7.15) to maximize its r.h.s., which by a
simple calculation, is seen to be

n

5 =log, —
np =loge T,

and gives

e
2(A)<n A (1_,<1 ef>f>. 7.16
@3(Ar) <n A, 0g 1Al k ( )
Comparing our bounds in (7.15) and (7.16) with the bound of [10] (derived by a
completely different approach) we notice that our bound (7.16) is simpler and slightly
looser, because we use the real np instead of the integer r in [10]. This gap closes as
n— oo,

Concerning ¢{(A;), our bound in (7.3) is one of two quantities, the maximum of
which is the upper bound in [10], so it could only be better. However, we can see that
this quantity always equals the maximum of the two quantities and the other can thus
be avoided. This actually follows from the recent paper [2].

1 k"
n

8. ASYMPTOTIC SOLUTION OF THE EDGE-ISOPERIMETRIC PROBLEM IN THE SHANNON
Probuct oF GRAPHS

Here we consider the problem of maximizing the number of inner edges. Since
sequences (vertices) of the same type have equal degrees, the subgraph induced by the
vertices of one type is regular. Therefore, for these subgraphs, maximizing the number
of inner edges is equivalent to minimizing the number of outgoing edges. Finally,
asymptotic estimates for the two extremal problems are convertible, because there are
polynomially many types. For & < 7" denote the induced subgraph by G*(%). It
suffices to study the function

2,(8) =min{|%|: Z = ¥ and G*(%) has at least 2"° edges}.
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In [3], a related function was introduced:
8.(8) =min{|Z]: Z = V" and for all u" € ¥ degg«.,(u")=2""},

where degg«(4)(1") is the degree of u" in G*(%).

Actually, the more general problem of the ‘smallest rich world’” was studied and
solved in [3]. We describe the result.

For W: XX Z— [a, B] =R, any closed interval £<[a, B], and any p e R, n e N,
define

1 n
N(n, %, p)= min{|££|: Fc " andforallx” e & Hy” eZ—> W, y)e SZH 22"3}.
ni=1

THEOREM (‘Smallest rich world’ [3]).
1
lim —logN(n, 4, p)= min H(X|U),
n—o 1 (X, U)cQ(%p)

where Q(%, p) is the set of random variables Y such that
(1) HX |U)=pand H(YY | XU)=H(X | YU),

2) E¥Y(X,Y) e &,

(3) H(Y | XU)=p,

and U takes at most | %> + 4 values.

Notice that the closed interval £ can have one element. We obtain a characterization
of lim,, ...(1/n)g,(8) by choosing £ = {0} and ¥: ¥ X ¥— {0, 1} as

0 if (u,v) e,
1 otherwise,

W(u,v)= {
because then, for all u”, v" € &,
1 n
= > W(u, v,)=0& ", v") is an edge of G
n =1

Similarly, the quantity of our primary interest, lim,_... (1/n) log g,(8) is characterized
by the following ‘average’ version of the smallest rich world theorem. Define

_ 1& _
N, & p)= min{|££’|: F<Z" and H(x", Y X"y e & - > W(x, y,) e ffH 22””}.
n;—1

THEOREM (average version of smallest rich world theorem).

1 -
lim~N(n,a,p)= min H(X|U),

n—o N (X, U)eQ(a, p)
where Q(%, p) is the set of pairs of random variables (X, U) satisfying (1), (2) and,
H(XY|U)<p A),

and U takes at most | %> + 4 values.

SkeTCH OF PrOOF. We follow the notation of [3] and go along the original proof.
Noticing that the direct part of the proof is like the old with obvious modifications, we
turn to the converse part. Instead of considering degg«s (x"), namely |B(x", &£, s)| =
Pr(Y" =y" | X" =x")"
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for any y”, with (x", y") being an edge in G*(S) (which leads to (3)), we consider (3.6)
of the original proof and obtain (in the original notation)

np < > Pr(X, =x", ¥ =y")log|B(n, %, S)|

(x", y) edges in G*(S)

A

=HX"Y")=> HX, Y| X, Y
t=1

=nH(XY | U).
Thus (3) is established. O

ReMARK 3. Since H(XY | U)= H(X | U) + H(Y | XU) and since (3.5) in the original
proof means that the number of edges in a graph equals the number of vertices times
one half of the average degree, the average version (with a weaker restriction) gives
the same answer as the original version.

REFERENCES

1. R. Ahlswede and I. Althofer, The asymptotic behaviour of diameters in the average, J. Combin. Theory,
Ser. B, 61 (1994), 167-1717.

2. R. Ahlswede and S. L. Berzrukov, Edge isoperimetric theorems for integer point arrays, Appl. Math.
Letts., 8 (1995), 75-80.

3. R. Ahlswede and N. Cai, Models of multi-user write-efficient memories and general diametric theorems,
SFB ‘Diskrete Strukturen in der Mathematik’, Bielefeld, Preprint 93-019, to appear in Information and
Computation.

4. R. Ahlswede, N. Cai and Z. Zhang, Diametric theorems in sequence spaces, Combinatorica, 12 (1992),
1-17.

5. R. Ahlswede and G. Katona, Contributions to the geometry of Hamming spaces, Discr. Math., 17 (1977),
1-22.

6. R. Ahlswede and G. Katona, Graphs with minimal number of adjacent pairs of edges, Acta Math.
Hungar., 32 (1978), 97-120.

7. R. Ahlswede and J. Korner, Source coding with side information and a converse for degraded broadcast
channels, IEEE Trans. Inform. Theory, IT-21 (1975), 629-637.

8. A.J. Bernstein, Maximally connected arrays on the n-cube, SIAM J. Appl. Math., 15 (1967), 1485-1489.

9. B. Bollobés and I. Leader, Compressions and isoperimetric inequalities, J. Combin. Theory, Ser. A, 56
(1991), 47-62.

10. B. Bollobas and I. Leader, Edge-isoperimetric inequalities in the grid, Combinatorica, 11 (1991),
299-314.

11. C. F. Clements, Sets of lattice points which contain a maximal number of edges, Proc. Am. Math. Soc.,
27 (1971), 13-15.

12. G. F. Clements and B. Lindstrom, A generalization of a combinatorial theorem of Macaulay, J. Combin.
Theory, 7 (1969), 230-238.

13. H. G. Eggleston, Convexity, Cambridge University Press, Cambridge, 1958.

14. P. Frankl, The shifting technique in extremal set theory, in Surverys in Combinatorics 1987, C.
Whitehead (ed.), London Math. Soc. Lecture Note Ser. 123, Cambridge University Press, 1987, pp.
81-110.

15. L. H. Harper, A necessary condition on minimal cube numberings, J. Appl. Prob., 4 (1967), 397-401.

16. L. H. Harper, Optimal assignment of numbers to vertices, SIAM J. Appl. Math., 12 (1964), 131-135.

17. S. Hart, A note on the edges of the n-cube, Discr. Math., 14 (1976), 157-163.

18. D. J. Kleitman, M. M. Krieger and B. L. Rothschild, Configurations maximizing the number of pairs of
Hamming-adjacent lattice points, Stud. Appl. Math., 50 (1971), 115-119.

19. J. B. Kruskal, The number of s-dimensional faces in a complex: an analogy between the simplex and the
cube, J. Combin. Theory, 6 (1969), 86-89.

20. J. H. Lindsey, Assignment of numbers to vertices, Am. Math. Monthly, T (1964), 508-516.

21. A. W. Marshall and 1. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press,
New York, 1979.



372 R. Ahlswede and N. Cai

22. M. Salehi, Cardinality bounds on auxiliary variables in multiple-user theory via the method of Ahlswede
and Korner, Stanford Technical Report, 1978.

Received 17 October 1994 and accepted 23 May 1996

RUDOLF AHLSWEDE AND NING CAI
Universitiit Bielefeld,

Fakultit fiir Mathematik,

Postfach 100131,

33501 Bielefeld, Germany



