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General Edge-isoperimetric Inequalities, Part II: a Local-Global
Principle for Lexicographical Solutions

RuUDOLF AHLSWEDE AND NING CAI

1. INTRODUCTION

The lexicographical order ¥ on a sequence space " ={0, 1, ..., a}’, defined by
x"<,y" iff there exists a ¢ such that x, <y, and x, =y, for s <t, is one of the most
important and frequently encountered orders in combinatorial extremal theory. An
early result in this area, Harper’s solution of an edge-isoperimetric problem (EIP) in
binary Hamming space ([13]) (generalized in [16] to non-binary cases and rediscovered
many times; see, e.g, [6], [9] and [15]) says that first segments in ¥ are optimal.

There are two kinds of EIP. They can be represented as extremal problems in graph
theory. Let G = (¥, €) be a graph. For any A c ¥, define the set %(A) of all boundary
edges, that is,

B(A) ={{x, yt e € {x, ytN A =1} (L1)
and the set £(A) of all inner edges; that is,
J(A)={{x,y} e € x,y € A}. (1.2)

1. BOUNDARY-EDGE-ISOPERIMETRIC PROBLEM (BEIP). For a given graph and positive
integer m, find a set A < ¥ of cardinality m with minimal possible value of |B(A)|.

2. INNER-EDGE-ISOPERIMETRIC PROBLEM (IEIP). For a given graph and positive integer
m, find a set A 7" with maximal possible value of |$(A)|.

Notice that, for regular graphs of degree d,
[B(A)| +2|9(A)| =d |A]

and that therefore the two problems are equivalent in the sense that a solution of one
of these problems is at the some time a solution of the other.
We concentrate here on EIP’s of the Cartesian sum graphs

G" =G X Gy X X G, = (X", €) (1.3)

of graphs G,= (4, €); t=1,2,...,n, where "= X 5L X---XZ, and for x" =
(1, X)), Y=y, 1) € X" X7,y € € ff there exists a t {1, 2, ..., n} such
that, for all t' #¢, x,, = y, and {x,, y,} € €. Then EIP’s in Hamming, Manhattan and Lee
metrics can be understood as EIP’s of Cartesian sum graphs of complete graphs, paths
and cycles, respectively. We speak of an (optimal) order for an EIP if the initial
segments of this order always achieve the extremal value. Then Harper’s Theorem and
its generalization show that ¥ is an order for the EIP in Cartesian sums of complete
graphs. Notice that the regularity implies that the BEIP and the IEIP become the same
here. Of course, £ is not always optimal for these EIP’s, and for many of these
problems there is no order at all. One can find such examples for Manhattan and Lee
spaces in [1], [4] and [8].
On the other hand, one can ask
‘Is & optimal for an EIP in G"?’ (1.4)
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Since there are [I_; |Z,] orders on &, one might expect the complexity of an algorithm
deciding this question to be very high. Quite surprisingly, our main delivery, a
local-global principle, shows that the problem is not NP-hard and not even P-hard.
Actually, its complexity is independent of !

For the convenience of the readers, we limit ourselves here in (1.3) to the case of
identical factors, i.e. G,= G fort =1, 2, ..., n. Here we call G" the nth power of G. It
is not very hard to extend our main result to general Cartesian sum graphs. In another
direction, our work is more general. We introduce a fairly large family of set functions
on G", including ‘boundary-edge’ and ‘inner-edge’ functions. Our local-global prin-
ciple says that £ is an optimal order for the extremal problems of the functions of this
family in nth power space exactly if it is optimal in the first and the second power
spaces. This means that often the question (1.4) can be decided by a simple inspection!

In Section 2 we give the necessary definitions, state known facts from [2] and present
a generalization of a lemma from [2]. Our main result (Theorem 1) is presented and
proved in Section 3. Finally, as an example demonstrating the power of our
local-global principle, we give an edge-isoperimetric theorem for the powers of
complete bipartite graphs C,,,, (Theorem 2) in Section 4.

2. PRELIMINARIES

2.1. Definitions and known facts. We list all definitions and needed known facts in the
first part of this section. The proofs of these facts are not very hard and can be found in
[2]. For allJ =« N = {1,2,...,n}, x" € 2", denote by x’ the subsequence of x" obtained
by deleting components x, with ¢ ¢ J. &’ is defined analogously. Thus x” and " can be
rewritten as x" and 2, respectively. Define, for any A = 27, the general slices

AN E e X xN e A for xMY e aNY 2.1)
and the projections
A2 U AN (2.2)
XNV e PNV

For J = N, write the set of the lexicographically first m elements in 2’ as L(X’, m).
Then the general pushing down operations under ¥ on &’ are defined by

D& sty= J {yMiyM=xTand y'e AX 1A, (2.3)
for all A = &™.

When J = {t} we also write D, = D,. A< Z" is a downset, if y” € A implies x" € A in
the case x, <y, for all #. In other words, a downset A of 2" is a set with D,(A) = A for
all t € N. For a given graph G, |%(-)| in (1.1) and |#(-)| in (1.2) are functions on the
subsets of the vertex set and we write them as B(G, -) and I(G, -). We shall state their
essential properties and study them as abstract set functions.

FAor this goal, we define the nth power function ¢” of a set function ¢ on
2*2{A: Ac &)} as a function on 2"

FW=2 3 e ), X))
=1 xN\ i Eg(/)N\ i
where we abbreviate Ag,(+) as A, {-}.
One readily verifies that for the nth power G” of a graph G = (&, €) in the sense of
(1.3), ¢"(-)=—-B(G", ) (or I(G", ")), if we let ¢(-)=—B(G, ) (or I(G, -)). Thus
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EIP’s are reduced to maximizing, for given ¢, ¢"(A) over all A < " with fixed |A|. The
following properties were proved in [2].

(1) max4—,, ¢"(A) is assumed on a downset of &”, if the following conditions are
satisfied:
I (nestedness)—for all k e =1{0,1,..., a}, Ac X with |A|=k +1,

o(A) =< o([k]) where [k]=1{0,1, ..., k}; (2.5)
IT (submodularity)—for A, B = &,
¢(A) + ¢(B)< (AU B) + (AN B); (2.6)

III—e(p) = 0.

(We can always assume that III holds by replacing ¢ by ¢, where ¢'(A)=
¢(A) — ¢(¢). Furthermore, obviously III holds for ¢(-) = —B(G, ) or I(G, -) for all
G.)

(2) For all graphs G, both —B(G, -) and I(G, ) satisfy II.

(3) II implies that, for any family {A;}7~, of subsets of &,

i_i] P(A) = 2 <0< U (,:1 Aij>> : (2.7)

I<ii<iy<---<ix=m

(4) Let
A, (k) = e([k]) — ¢[(k —1]), (2.8)
(where we set [—1] as empty set.) Then
SW= 3 3 a,w), 2.9)

if A is a downset.

ReMARks. (1) Condition I (2.5) says exactly that £ is an order for maximizing
¢"(A) for fixed |A|, when n = 1. —B(G, -) (I(G, -)) satisfies I, if G has nested solutions
for BEIP (IEIP) after labeling the vertices properly.

(2) Condition II (2.6) is a key issue for pushing down to work. (2.7) is an extension
of condition II to more than two sets.

(3) By known facts (1), (2) and (4), the EIP’s of power graph G" have been reduced
to maximizing ..., f(x") over all downsets A of & for a sum-type function
fxmEIn, A, (x,) (if G has nested solutions for the corresponding EIP’s). The
importance of the extremal values of X .., f(x") over the downsets of 2" was known
to Ahlswede and Katona [3] 20 years ago, and the problems for & = {0, 1} were well
studied there. In the sequel, we always assume that |#]=3. Actually, comparing
Theorem 1 in Section 3 of the present paper with the solutions of the corresponding
problems in the binary case in [3], one may immediately notice that the local-global
principle does not extend to a binary alphabet. In the sequel, we consider maximizing
¢"(A) (or ¢(A)) for A of a given size, and speak of an order for ¢” (or ¢).

2.2. A lemma concerning general pushing down operations. In this subsection we
generalize Lemma 2 of [2] to general pushing down operations. In the following
lemma, ¥ can be replaced by any order. For any JS N ={1,2,...,n}, A e 2’ and ¢,
we write

PA)=2 D oA "), (2.10)

jelJ XMt e g\
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where A;(-) = Ag;(+) is defined by (2.1).

LemMA 1. If ¢ satisfies Il and if & is an order for ¢’ (J = N) then, for all A = ¥",
ID,(Z£, A)| = |A] (2.11)
and
™ (A) < "(D)(Z, A)), (212)
where D,(¥, -) is defined by (2.3) and ¢" is written as ¢".

Proor. (2.11) follows from the definition of D,(%, -). Let B = D;(Z, A). Then, by
(2.1), (2.4) and (2.10), for all C = %™ (in particular, for C = A or B),

MO =2 X (G + 22 (G

ted xN\ie N\ te N\J xN\te N\

= > JCEM)+ X M(Chux)). (2.13)
xN\l E%N\I X‘I e g’l
By the definition of D,(%, ) in (2.3) and B =D,(¥, A), we have B,(x"“)=
AL, |A,(xN)) for all XV e VY. Thus, £ being an (optimal) order for ¢’ implies,
for all x™ e 2VV,

@’ (A;,(xMY)) < ¢’ (B, (xMY)). (2.14)
Denote An/(x”) (Bav(x”)) by A, (By) if x” is the lexicographically kth sequence in 2.
We have for all yM e VY, yVY e B, exactly if there are at least k A,’s containing
yNV; or, in other words,

B, = (2.15)

k

(H4,)-
1<ij<iy<- - -<izg=<|2¥ \j=1 '
Furthermore, we observe that by (2.10) the submodularity II of ¢ implies the
submodularity of ¢’', and therefore ¢ and & in (2.7) can be replaced by ¢’ and &’ for
all J'=N. Applying the resulting inequality and (2.15) to J'=N\J, m=|2]",
Soew ¢V (Any(x’)), which equals 37, ¢VV(Ay), and X qr @V (Byy(x')), which
equals X7, ¢"V(By), we obtain

> eMAn) = X eV (Bru(r)), (2.16)
x' ey’ x'eqdd
which, together with (2.13) and (2.14), implies (2.12). O

3. A NECCESSARY AND SUFFICIENT CONDITION FOR THE LEXICOGRAPHICAL ORDER TO BE
OPTIMAL FOR EDGE-ISOPERIMETRIC PROBLEMS SATISFYING I-III

Before we state and prove our main result (Theorem 1), here we first derive two
auxiliary results (Lemmas 2 and 3).
LEMMA 2. Assume that =10, 1, ..., a}, « =2, and that n >2. Now suppose that
Ac X and that, for all J <N ={1,2,...,n}, J#N,
D;(£, A)= A, (3.1)

then, for a” € A, the following sequences belong to A:
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(i) all xN e XN with x, = a, and x" "V < ,a™V;
(i) bVN=(a,—1,q,...,a,a,), ifa; =1, and all x" with x, = a; — 1 and x""V < ,p™;
(iii) in case a, =2 all x" with x,<a, — 2.

Proor. Since Dyy(¥, A) = A, (i) holds. Thus, by (i), for (ii) and (iii) it is sufficient
to show that

bNeA, ifa,—1=0 (3.2)
and
N=(a, -2, a,...,a)eA, ifa,—2=0. (3.3)
Now (3.2) follows from aV € A, Dyyy(A)=A and (a;,—1,@,...,a)(e """ <,
aN\{n}.

Finally, (3.3) follows from (3.2), Dy\(A)=A and, for (a;, -2, a,..., @), (a;—
La...,0,0,)ed" (a,-2,a,...,a)<y4(a;—1,q,...,a,a,) (the second com-
ponents are deleted from both " and ¢”, and this is possible because n >2).

Lemma 3. Assume that |Z) =3 and let ¢ satisfy I-111 in Section 2. Then:
(i) If & is the optimal order for ¢, then
A (D)=<A,2) (3.4)

and, fora, b, ie £=1{0,1,...,a} witha<b<b+i<aand eithera=0o0r b +i=a,

g)Aq,(a +j) =< gko(b +7). (3.5)

(i) If &L is the order for ¢™, then, forae X', a=1and x, e X (i=2,...,m) not all
equal to «,

éAq,(x,-) +A(a)s(m—1A (a)+ A (a—1). (3.6)

Proor. (i) If £ is the order for ¢?, then, in particular,
¢*({00, 01, 10}) < ¢*({00, 01, 02}) (3.7)

and therefore (2.9) in property (4) of Section 2 gives (3.4).
While showing (3.5) we can assume that

a+i<b, (3.8)

because otherwise we can delete the common terms on both sides of (3.5).
Now define the interval

(@, y)={' e Zx'<y,2' <4y}, () =0, ). (3.9)

Case a=0. By (3.8), (L b+i\1,b), (L b+i)))U(20), (2 i)={(0,0),
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©,1),...,0,a), (1,0),..., 1,b—1), (2,0),...,(2,i)} =B, say, is a downset and
|B| = (1, b +i))|. Since £ is the order for ¢, we conclude with (2.9) that

0= (1, b +i))) — ¢(B)

= 2 Q) +A)) - X (A +A()

x2e{(1,b+i))\B x2e B\(1,b+i))

(G4 03,0+ 3 8,0+9) - (64 02,0+ 5 8,0)

or, equivalently,

2%@ - %AM = (i + 1)(A,(2) — A (1)), (3.10)

In this case, this and (3.4) imply (3.5).
Case a #0 and b + i = . Instead of ((1, b +i)) and B, we now consider {(2, a — 1))
and
B'=((2,a =1)N(, b), (1, a))) UL(2, a), (2,a + 1))
={(0,0),...,(0, @), (1,0),...,(1,b—=1),(2,0),...,2,a-1),...,2,a+i)}

and by the previous argument we also obtain (3.5) in this case.
(i) For x', y' € &, now define the half-open interval

(e yh) =& YNy (3.11)

Then, for x” = (a, x5, ..., x,), y"=(@—-1,q,..., a),
(0", x™)) = (" MNy™})- (3.12)
Since both arguments in (3.12) are downsets, we can use (2.9) to estimate them. Then
we delete the common terms on both sides and obtain (3.6). O

Quite surprisingly, we found the following result.

Tueorem 1. If |%| =3, then for any set function ¢:2* — R satisfying I-11I and any
integer n =2, & on X" is optimal for ¢" iff & on I is optimal for ¢>. (Condition I says
that £ is an optimal order for ¢.)

PrOOF. Assume to the contrary that £ is optimal for ¢ but not for ¢” and that
n =3 is smallest with this property.
By Lemma 1 in Section 2 we can assume that, for all J # N,

D)%, A)=A (3.13)

for an optimal set A, and therefore A is a downset.

Moreover, among all optimal sets satisfying (3.13) we choose as A one which
achieves the minimal value of |[AA(B(|A]))|, where 8(]A|) is the |A|th smallest element in
Z" in lexicographical order (i.e. 8(A) = L(X", |A])). Since, by assumption, £ is not the
order of ¢", we have

|[AA(B(|AIN >0 or A #(OB(|A])). (3.14)
Now let a” be the lexicographically last element of A. Then, obviously,

A @), (3.15)
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Since % is optimal for ¢" !, a; #0.
It immediately follows from Lemma 2 that all elements in (a”")\A are of the form
(ai—1 e, ..., x), x>a,. (3.16)
Moreover, by (3.13), none of the a;’s equals «. Thus, by (3.16),
@NA={(a,—1),a,...,,x): B<x=<a} (3.17)

for some o =B >a,.
Since A is a downset,

{as,...,a,-1,y):0<y=<a,;cA. (3.18)
Considering a,, < 3, one can choose a, b and i such that
a=0, a+i=a,, b=p and Bri<a (3.19)
or
a>0, a+i=a,, b=8 and B+i=a. (3.20)

In both cases, we have a >b. When a, < a — 8, we choose (3.19) and otherwise (3.20).
Now we remove the ‘top part’

{ay,az,...,a,1,y):y=a,a+1,...,a+i}cA
from A and add
{ai—1,a,...,0,x):x=b,b+1,...,b+1i}

which is disjoint from A, to A and obtain a set A’, with |A’| =|A| and |A’AB(JA])| <
|AAB(JA])]-
From the structure of A, as described in Lemma 2, it is not hard to see that A’ also

satisfies (3.13).
On the other hand, by (2.9) and Lemma 3,

S - (A)= 3 Ada+))+ 0+ D( D Ada) +8a)
=S A +])+ (1~ A (@) + A~ D)+ )

“(Zadan-Za04)

n—

# 6 D((( 8u00) + Auta)) ~ (1= 280 + 80— 1)) <0,

j=

in contradiction to the definition of A. O

4. AN APPLICATION OF THEOREM 1 TO COMPLETE BIPARTITE GRAPHS

This last section demonstrates how useful the local—global principle of Theorem 1 is.
We begin with the simple C, and then consider all complete bipartite graphs.

4.1. The lexicographical order & is optimal for 1(C}, -) or, by regularity, equivalently
for B(C%, -). We know from Theorem 1 that it suffices to show the property for
I(C3, -). This in turn is readily done by the following simple observation.
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For all A={0, 1,2,3}, |A]<8=3[{0,1,2, 3},

[Al—1 if |A| <4,
I(C;, A)<q2]A|—4 if4]lA]
2]A|—5 otherwise.

4.2. The complete bipartite graph C,,, .. Let Z=1{0,1,...,2m — 1} be the vertex set
with edges exactly between even and odd numbers. This defines C,,,, which is a
regular graph, so that boundary- and inner isoperimetric problems are equivalent.

We set ¢(-) = I(C,,,., ) and readily verify that I-III hold, and that

A¢(l)=[£D for (=0,1,...,2m— 1. (4.1)

THEOREM 2. The first segments in lexicographical order £ give optimal sets for the
(inner and boundary) edge-isoperimetric problems for C2, ., and therefore for C%, ..

Proor. Let us consider C2, .. In order to proceed by induction on m, we introduce
the notation W,, = A,.

Case m =2. Notice that C, = C,, and that the result was established above.

Case m —m + 1. For any A < [2m + 1]?, we have to show that replacement of A by
the first |A|-segment of [2m + 1]* under ¥ cannot decrease ¢*(A). We shall make use of
the fact that the following three properties are equivalent:

(@) Ac[2m +1]> = %" is optimal among the subsets of cardinality |A|.

(B) A°=2*\A is optimal among the subsets of cardinality |A°| = | %7 — |A|.

(y) The set A={(2m +1—x,2m +1—y):(x, y) € A°} is optimal among the subsets of
cardinality |27 — |A|.

Notice that A is a downset iff A is a downset.

Case 1. There is no (x, y) € A with x = 2m. Therefore we are able to rule out the last
two columns {(x, y): x =2m, 2m + 1}, which are useless.
Let ‘top’ and ‘bottom’ of the part remaining be

T={xy);0<sx<2m-1,2<y<2m+1} (4.2)
and
B={(x,y);0sx<2m—-1,0<y<2m-—1} (4.3)

respectively.

Define O; (resp. Op) as the operator keeping the A\T (resp. A\B) part unchanged
and changing A;2 AN T (resp. Az = A N B) to the first |A;| (resp. |Ap|) elements of T
(resp. B) in order £.

Obviously, both Or(A) and Og(A) are downsets whenever A is a downset.
Furthermore, by the induction hypothesis, for B {0, 1, ..., 2m —1}3,

¢*(05(A4)) = ¢*(A). (4.4)

In fact, the induction hypothesis also implies that ¢*(O7(A)) = ¢*(A), since by (4.1),
for 2<sy<2m+1, ¥,,,1(y)=1+W¥,(y —2) holds, so that we can shift two units
down and transform T to {(x,y):0sx<2m—1, 0<y<2m —1} and apply the
induction hypothesis. However, O;(A)# A (resp. Og(A)# A) implies that the
operator Oy (resp. Op)) strictly decreases the maximal element in the order £ of A,
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(resp. Ag). Thus one can use O; and Oy repeatedly finitely often, and obtain as
resulting set A’ a downset with
(A" = ¢*(A), Or(A)=A' and Op(A")=A". (4.5)
Thus, A% and A must have the following forms:

Ar={(x,y):0sx<a-1,2<y<2m+1}U{(a, y):2<y<u}

for some 0<¢r<2m —1 and 2<su<2m+1,
and
Ag={(x,y):0sx<b—-1,0sy<2m—1}U{(x, b):0<y <v}
for some r<b<2m—1 and 0=<v <min(u, 2m —1).

Now, considering that A" is a downset and A’ = A7U Ajp, a simple calculation shows
that in case A’ is not the first segment of ¥*=[2m +1]°, we have a=b—1,
ue{2m—1,2m}, ve{0,1}, and A" must be one of the following four subsets
described in (a)—(d) below. Write

A*={(x,y):0=<x<a-1,0<sy<2m+1}.
Then:
(a) A'=A*U{(a,y):0sy<2m—1}U{(a+1,y):y=0,1}
(b) A'=A*U{(a,y):0<y<2m}U{(a+1,y)y=0,1}
(¢) A’ =A*U{(a,y):0sy<2m—1}U{(a +1,0)}
(d) A’ =A*U{(a,y):0sy <2m}U{(a+1,0)}

Now let K, = (a,2m + 1), K, = (a,2m), K3=(a +1,1) and K, = (a + 1, 0). We make
the following operations, which change A’ to the first segment in £:
case (a)—remove K; and K, from A’ and add K; and K, to it;
case (b)—remove K; from A’ and add K, to it;
case (c)—remove K, from A’ and add K, to it;

case (d)—remove K, from A’ and add K, to it.
Now the value of ¥, ; (=A,) at K, (i=1,2, 3, 4) is, by (4.1),

KW, 1(a) + W,y 1 2m + 1) = [gﬂ+ m+1,
KWy, 1(a) + Wy, (2m) = [gm m,

+1
K3 Wy 1(a +1) +W,,,4(1) = [%D‘F 1,

Bz +1
K4: lpzm+1(a + 1) + III2m+1(0) = 2 D

Remember that we assumed that m =2. The operations in (a)—(d) cannot make things
worse. This concludes the proof in the first case.

Moreover, by symmetry and the equivalences (a)—(y), the following cases can be
excluded too:

{(x,):0sx<2m+1, y=2m}NA=0, {(x,y):x<1,0sy<2m+1}cA,
and {x, y):0=sx<2m+1, y<l1}c A (4.6)
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Thus we can always assume that
(0,2m), 2m,0) e A and 1,2m+1), 2m+1,1) ¢ A. (4.7)

Case 2. (4.7) holds, and at least one of the elements (0,2m +1) and (2m + 1, 0) is
not in A. Assume that (2m +1, 0) ¢ A and, consequently, that A N{(x, y):x =2m +
1}=. Let Cl,,, ={(x, y) € A: x =2m} and R,,, ={(x, y) € A: y =2m}.

Then (4.7) implies that CL,,, # & and R,,, # .

W.l.o.g., we can assume that

Clyy| 2 ¢ <R, (4.8)

because otherwise we can exchange the roles of rows and columns and, if necessary,
move the (2m + 1)st column to the (2m + 1)st row.

When (0, 2m + 1) ¢ A, i.e. there is no element of A in the last row at all, we remove
Cl,, ={2m,0), 2m,1)---(2m,c—1)} from A and add {(0,2m +1), (1,2m +
1)---(c—1,2m + 1)} to A.

By (4.8), the resulting set is a downset and (4.1) shows that it has a larger value of
¢> If (0,2m +1) € A and |Cl,,,| <|B,,,|, one can also remvoe Cl,,, from A, but add
{,2m+1)---(c,2m + 1)} to A. When (0,2m + 1) € A and ¢ =|CL,,,| = |Ry,| # 1, we
remove {(2m, 1), 2m,2) - - - (2m, ¢ — 1)} from A and add {(1,2m +1)---(c—1, 1)} to
it.

For all of the three subcases above, we change our A to a downset in Case 1 or a set
of type (4.6) for Case 1. Finally, we assume that

(0,2m+1)eA,  ChL,={2m,0)},  Rs,=1{0,2m)h (4.9)

Thus (0,2m + 1) € A implies (2m + 1, 0) ¢ A, where A is defined in ().
Now (2m, 1) ¢ A and A is a downset. This, together, implies that 2m +1,1) ¢ A
and therefore (1,2m), (0,2m) e A. Similarly, since (1,2m) ¢ A, (2m, 1), (2m, 0) € A.
Therefore, both the (2m)th row and the (2m)th column of A have at least two
elements. By (a)-(7y), instead of A we can consider A, which has been settled in the
previous subcases of this case.

Case 3. (0,2m +1), (2m +1,0) € A. Here (2m +1,0) ¢ A and (0,2m +1) ¢ A. By
(7v), we can consider A and reduce our problem to Case 2.
Finally, the theorem now follows from Theorem 1.

RemaRrk 4. The result does not extend to general C,, .. Already, for Cy,, 2,1, £ is
not optimal for the inner isoperimetric problem. The first 4m —4 elements of
[2m — 1] X [2m — 2] in the order ¥ are

{(0’ O)a (0’ 1)7 s (0’ 2m — 1)) (19 0)7 ) (1: 2m — 3)}
However, {(0,0),...,(0,2m —2), (1,0), ..., (1, 2m — 2)} has more inner edges.
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