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SUMMARY

Shannon’s two-way communication channels are studied in case of no feedback. Let
(n, Ny, N,, Ay, A;) denote a code for the two-way channel with word length 7, code length N,
and maximal error probability A, in one direction, and code length N, and maximal error prob-
ability 4, in the other direction. -

The following “‘strong converse type’ estimate is proved (Theorem 1 in Section 3): Given
& >0, A, 4, strictly between 0 and 1, then every code (n, Ny, N,, 4,, A,) satisfies

1
I:llogNl—-s, —logN2—8:|eG,
n n

for all sufficiently large n, where G| denotes the inner capacity region.

This result implies that one can achieve a pair of rates (R, R,) ¢ Gy with codes of maximal
error only if at least one of the error probabilities tends to one as the word length n tends to
infinity.

Zarankiewicz [18] posed the problem to find the least k = & j(n) so that an n X n — matrix
containing k ones and n® — k zeros, no matter how distributéd, contains a j X j submatrix
(minor) consisting entirely of ones.

Theorem 2 (Section 4) gives the lower bound
kin) = (> n*~ @ forallnandall i<n.

Using this result it is shown (Section 5) that in general one cannot reduce a code with average
errors for two-way channels to a code with maximal errors without an essential loss in code length
or error probability, whereas for one-way channels it is unessential whether one uses average
or maximal errors.

1. INTRODUCTION

In the following we give a formal description of Shannon’s two-way communic-
ation channel [7] which we abbreviate as t.w.c. — and we restate the main results
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about them. For proofs we refer to [7], familiarity with which we assume. We adopt
the following notation: :

Let X ={1,...a}, Y={1,...,b}, X = {1, .., a}, Y={1,..., b} be finite sets.
X (Y) and Y (X) are the input and output alphabets, respectively, at terminal I (II)
of the t.w.c. ’

Write X' =X, Y' =Y, X' =X, V" =Vfort = 1,2, ...

Define

X, =]1x", v,=]]Y, A)?,,zn)?t, Y, =]]Y for n=1,2,..
1=1

Let w(%, 7 | x, y) be a non-negative function defined for every element (x, y, X, j)
of X x Y x X x Y, and such that

(1.1) 2 2 wE T [x,y) =1

xeX yeY
for every (x, y)e X x Y.
The transition probabilities of a t.w.c. are defined by

(1.2) P(%ys Fu | Xus ) = JIRICA AR

for every x, = (x!,...,x")eX,, y, =" .., yeY, x,=(%,..,5)eX, and
every j, = (3, .., 7)€Y, n=1,2, ...
A code (n, Ny, N,) for the t.w.c. — neglecting feedback — is a system

(1.3) {wpvp 4y B) i =1, N3 j=1,..,N,}

where u; € X,, v;€Y,, 4;; < X,, B;; =Y, for i =1, N3 j=1,...,N, and for
ﬁXCdj,j = 1, ...,Nz,

(1.4) A0 Ap; =0 for i+
and for fixedi, i =1,..., Ny,
B,--j N By =0forj+j.
For A = X,, B = Y, define

(1.5) P(A] Xy ya) = 3 Y P(% T | Xus ¥a)

XneA yne¥n
for (x,, y,)eX, x Y,.
A code (n, Ny, N,) is an (n, Ny, Na, Ay, 4;) code if

(1.6) P(A;;|upv)=1—2, and P(B;|uy,v)=1— 4,

fOI' i = 1,...,N1; j = 1,...,N2.
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A code (n, Ny, N,) is an (n, Ny, Ny, 44, 4,) code if

1 Ny N> I
(17) RO WLC DS
and ‘
1 Ny N; ) : _
P(B;;|u,u)y=1-—4,.
N, .N, igl jgl ( J l J 2

We say an (n, N, N,, Ay, /12) code is a code with mfzxir_nal errors A,, A, and an
(n, Ny, N3, 24, 1,) code is a code with average errors 1, .

Obviously, every (n, Ny, N,, 44, ;) code is an (n, N|, N,, 1,, Z,) code for A, = 1,
A, = A,; the converse is not true.

We give now some further definitions.

Let p be a probability distribution on X and g be a probability distribution on Y.
Define

(1.8)  Riy(p,q) = yqu(y) ;X )_;Xp(x) w(® | x, y) log w(x | x, y)

Lo w(E[ %)’

(1) Rou(pq) = x;(p('x)z 5 4(5) w(3 | 5, ) log —"F1%:2)

yer sev qu(y) w(y | x, )
ye
and
(1.10) G, = convex closed hull of the set

{(Ry2(p, 9)s R.1(p, q)) ] p, q prob. distr. on X, Y},

where the closure is taken with respect to the natural topology in the euclidean
plane E2.

It was proved in [7], page 625 that G, contains with every point (Ry, R;) also the
projections (R, 0), (0, R,). ,

Denote by G(¢) the points in E? which have a distance less than ¢ from G,.

We are now ready to state Shannon’s main result.

THEOREM S (Theorem 3 and equation (34) of [7]).

a) (Coding theorem) For any point (Ry, Ry) in Gy and any ¢ > O there exists
a code

(n, Nl: N2, zl: j'-2) = ("a e(RI—E)na e(RZ—E)", e‘A(E)"’ e—A(a)n)

for all sufficiently large n, and some positive A(e).

b) (Weak converse to the coding theorem) Given & > 0, then there exist 1,(g),
A5(g) strictly between 0 and 1, such that every code (n, Ny, Ny, ,(¢), A,(€)) satisfies
[(1/n)log N, (1/n)log N,] e G(¢) for all sufficiently large n. :
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REMARK. Libkind [6] proved the weak converse also in case of feedback.

Shannon’s proof of the coding theorem uses his random coding method [8] and
in so far no other proof has been given, whereas for discrete memoryless channels
(d.m.c) and several other channels different methods for a proof of the coding theorem
exist (see for instance [10]).

Theorem S establishes the coding theorem for average errors, that is, code concept
(1.7) is used, Shannon’s random coding method works only for average errors. It
seems to the author that a drawback of code concept (1.7) is that a small error
probability is guaranteed only if both senders use their code words with equal prob-
abilities. For a d.m.c. it is unimportant whether we work with average or with
maximal errors (cf. [10], Lemma 4.2.1). However, for compound channels it already
makes a difference for rates above capacity. The strong converse of the coding
theorem holds in this case for maximal but not for average errors (cf. [2], [4]).
This shows that even though Shannon used in his coding theory average errors
only — which may be appropriate for all practical communication problems —
there is certainly from a purely mathematical point of view a theory of coding for
average errors and a theory of coding for maximal errors.

In section 3 we prove the following “strong converse type” estimate for t.w.c.:
given & > 0, 4;, 1, strictly between 0 and 1, then every code (n, Ny, Ny, Ay, 4,)
satisfies [(1/n)log Ny (1/n)log N,] € Gi(¢) for all sufficiently large n. This implies
that we can achieve a pair of rates (Ry, R,) ¢ G; with codes of maximal error only
if at least one of the error probabilities tends to one as the word length » tends to
infinity. . _

One would like to have a result like this also for average errors.

In case of a d.m.c. we can reduce a code with average error to a code with maximal
error and still maintain the rate simply by application of Lemma 4.2.1 in [10].

In Section 5 we prove that the analogous result is not true for t.w.c. Our proof
uses an estimate concerning a problem of Zarankiewicz [18], which we derive
in Section 4. ,

It seems not unlikely that for maximal errors the region of achievable rates G}
is in general smaller than G,.

2. AUXILIARY RESULTS

LEMMA 1. Let Zg, s =1, ...,d, be non-negative chance variables, defined on the
same probability space, such that

, EZ Za, s=1,...,d.
For any B > O the probability of
B* = {Z < d(a + B) for s =1,..., d}
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satisfies

* B
P(B™Y = —— .
( )_a+[)'

This is a trivial refinement of the lemma in [7], for a proof see [3], page 467.

In [1] we proved (a coding theorem and) a strong converse of the coding theorem
for non-stationary d.m.c., thus generalizing the results of [9] from the stationary
to the nonstationary case. Then Augustin [5] found a simpler proof. His main result
is stated as Lemma 2 below. (Compare [11] for a related result.)

Before we can state the Lemma, we need some preparatory definitions.

LetX':{1,...,47},}7:{1,...,5} and define . ‘

X,=]1%X, ¥,=[]Y for n=1,2,...
1

-n

Let (F'(+|*))i=1.2,... be a sequence of stochastic matrices, i.e.
(2.1) ~ F(5|%)=0 forevery %eX,5e¥
and ‘

ye¥

YF(§|%)=1 forevery %X and r=1,2,...
The transition probabilities of a nonstationary d.m.c. are defined by
(2.2) F(§,| %) = [1F'(5' | %) forevery %,=(%',...,5")eX,
t=1 .

and every j, = (5',..., 7 e¥, n=1,2,...
An (n, N, 2) code for the nonstationary d.m.c. F is a systém
(@@, A)|i=1,..,N},
where #;€X,, 4, = ¥,i=1,..,N, 4;n A; = 0 for i + j and which satisfies
(2.3) F(A4;]@)=1—-2, i=1,..,N.
Let {(@; = (a}, ..., @}), A)|i=1,..,N} be an (n, N, %) code for F.
Define '

. ~t o~ s )
(2.4) n-‘(x).:l{’l”‘i“x’;ve{l""’N}}l for %X, t=1,2,..,n,

and

(2.5) () = Y. 7' (%) F(§ | %) for eV, 1=1,2,...,n,

eX

=
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and

"]
2.6 R,=Y —
29 N

1t/ ~t ~t
F(5 | &) log U | @) (;Vt | &)

1 yre¥e T (yt)

LeMMA 2 (Theorem 3 of [5]). Let {(4,, A;)) | i = 1,..., N} be an (n, N, ) code and
let n'(+), n'(+), t = 1, ..., n, be defined as in (2 4) (2 5). The following estimates
- hold for any 4, d, 0</1 d<1l;n=12,.

Mz

a) log (4 dN) <R, +

A(1 1- d) M)

where k depends only on & and not on (F),21.2

) Ro= 3 3 TR ) log (,y,(':;t)

The strong converse of the coding theorem for nonstationary d.m.c. is an immediate
consequence of Lemma 2.

3. ASTRONG CONVERSE TYPE ESTIMATE FOR T.W.C.
WITHOUT FEEDBACK FOR MAXIMAL ERRORS

In this section we shall prove the

THEOREM 1 (Strong converse for t.w.c. without feedback). Given &> 0, 14, 4,
strictly between 0 and 1, then every code (n, Ny, N,, A4, /12) satisfies

<1 log Ny, ! log N2> € G((e)
n n

Sfor all sufficiently large n.

Proof. Let {(u, v, 4;;, B;)|i =1,..,N;;j =1, ..., N,} be an (7, N1, Ny, Ay, 25)
code for the t.w.c.

Write u; = (uj,...,u}) for i =1,...,N, and v; = (vj,..,0)) for j=1,..,N,
and define ‘ :

_lilui=x e {1, N
3.1 oy - HiJui=xie{l,...,N,
(3.1) pi(x) o
forxeX', t=1,2,...,n, and

<] -t .
3.2 oy [{i] o= v,iefl,..,N,}}
(32) a'(y) N
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for yeY', t=1,2, ..., n. p(+)isa probability distribution on X* and ¢*(+) is a prob-
ability distribution on Y".

For every v; = (v},....,v7), j =1,..., N;, we define probability distributions
pi(:|v)on Xt =1,..,m, by

(33) P [6) = X o) wl |0

"~ for all x*e X

For every u; = (u},...,u}), i =1,...,N;, we define probability distributions
g'(*|uf) on Y, t =1,2,...,n, by

(3.4) g (7' | uf) = }:Yq’(y) w(y | ul, y)
yeYt

forall ' e Y
For fixed v;, P(+|*, v;) given by

(35) | s P(fn I X vj) - H W(it i xt’ U;)
t=1

for all x, = (x',...,x")eX,, ¥, =(%',..,%)eX,, defines the transition prob-
abilities of a nonstationary d.m.c. for words of lengths n. Similarly, for fixed u;,
P(+| u;+) given by :

(3.6) P(3, | uss va) = [T w7 i »)
t=

forally, = (y', ..., )€Y, 3, = (J', ..., ") € Y,, defines the transition probabilities
of a nonstationary d.m.c. for words of length n.

Define

St ot
(3.7) Ry,(vh) = Y p'(x") w(x' | x', ) . log w
| : e
forj=1,..,N,, t=1,2,...,nand

T AT
(3.8) Ry (uf) = >.4'(y") w(i' I ul, y') . log w
) yt . ql()—;l)

fori=1,..,Ny,t=1,2,...,n.
We denote ) R,,(vf) by Ry,(v;) and ) R,;(u}) by R,;(uy).
t=1 t=1

{(ui A;;) | i =1, ..., N,} is a code with maximal error A, for all P(+|-,v)), j =
=1,...,Ny; and {(v;, B;;)|j = 1, ..., N,} is a code with maximal error 1, for all
P(-|u;+), i=1,..,N. |

Application of Lemma 2 yields for d = %

5
(3.9) log (4 . Ny) = Rys(v;) + —k(a)/n for j=1,..,N,

Ay
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and

(310)  log (A .1N) = Ryy(us) + f_ k(b)Jn for i=1,...N,.
. 2
We write the system of inequalities (3.9) more explicitly as

(3.11) log Ny < Ryp(vy) + ... + Ri,(v]) + z k(a) \/n — Iog%,
J

‘1

1og Ny < Ryp(03) + ... + Ryy(uh) + %k(a) Jn - 1Ogi21,
1

log N, < Rlz(U}VZ) + ..+ Rlz(vj’vz) 4 ;Jz—k(a) \/n _ log%‘.

‘1

Summing the right sides of the inequalities and dividing by N, yields

Ny n R
(3.12) logN; < - Y Y Rys(t!) + 2 k(a)/n — log 1,
Nz j=1 t=1 /1‘1.1 2
(3.12) and (3.1) imply
(3.13) log Ny £33 pl(x) Rialx') + %k(a) Jn = log?.
t=1 xteXt 1

Analogously one can show that
. t t t 2 ; 4 lz
(3.14) log Ny =3 > q'(V) Ro(y) + = k(b) yn — log 22 .
t=1 yteyt Ay 2

Recalling definitions (1.8), (1.9) we see that

Z Pt(xt) Rlz(xt) = R12(Pta qt)

xteXt

and

ZY qt(yt) R21(yt) = R21(Pt> q[) .
yte t
We obtain therefore from (3.13), (3.14) that

(3.15) : 1log N, < I > Rix(p', ¢') + 2 k(a)n™1% — 1—logil
n nie=1 A n 2

1
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and
1 Ay

1 1< 2 -
‘(3-16) -log N, = - ZIR21(Pt, C]t) + — k(b) n~ 42 = log —= .
_ ni=

A, n 2
The theorem follows now from (3.15) and (3.16).

n

REMARK 1. Lemma 2 does not hold for average errors. Since, if the contrary would
be true, one could use it to prove a strong converse of the coding theorem for com-
pound channels with average errors by arguments used in [1], page 37. But this
would be a contradiction to Theorem 1 of [4].

REMARK 2. One can prove b) in Theorem 5 by using Theorem 1, Lemma 1 and
an additional approximation argument. But this proof is relatively complicated
as compared to the proof given by Shanonn and we therefore omit the lengthy details
of this argument.

4. A RANDOM VERSION OF A PROBLEM BY ZARANKIEWICZ

Zarankiewicz [ 18] posed the problem to find the least k = k(n)so thatann x n —
matrix, containing k ones and n* — k zeros, no matter how distributed, contains
aj x jsubmatrix (minor) consisting entirely of ones. This problem naturally general-
izes to that of finding the least k = k; (m, n) so that an m x n matrix containing k
ones and mn — k zeros, no matter how distributed, contains an i x j submatrix
consisting entirely of ones. Several asymptotic and non-asymptotic results have been
obtained under various conditions on m, n, i, j. (See references [12], ..., [20], and
especially [13] for a more systematic account.)

We limit ourself here to the case m = n, i = j — even so our results can be general-
ized —, and we are interested only in asymptotic results.

Hartman, Mycielski and Ryll - Nardzewski [14] obtained bounds for k,(n),
which were improved by Kovari, Sos and Turan [16], who showed that
(4.1) lim n™% ky(n) =1.

n—* oo

Brown (see [13]) pfoved the first inequality in
(4.2) 27 < Imn7 3P ky(n) £ 2773

thus partially confirming a conjecture of Kovari et al. [16], who gave the second
inequality, and of Erdds (see [13]). The existence of lim n™ >/ ky(n) is still unproved.

For i = 4 only upper bounds on k(n)are known (cf. [13], page 130).
Recently Guy and Znam [13] proved by a simple application of the pigeon-hole
principle the
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THEOREM. If an m X n matrix contains more than nu ones, and it can be shown

that
n (Z’) > (j - 1) (”:)

then there is an i x j submatrix consisting entirely of ones.
As an immediate consequence of this Theorem one obtains

(4.3) m ky(n) n= 7D < (i = )Y for iz 2.

n—=w

This bound is sharp for i = 2, but not sharp for i = 3 as can be seen by comparison
with (4.1) and (4.2).
By a rather simple reasoning we obtain the lower bound on ky(n):

(4.4) k(n)n™@TH0 (T = 1 forallpandall i< n.

(4.4) together with (4.3) gives a good estimate on k(n) for larger values of i.

In the sequel we shall refer to the problem of Zarankiewicz as Problem Z and
to the problem, which we introduce now, as Problem R. ,

Let M(n, k) be the set of all n x n — matrices with k ones and n? — k zeros
1n its entries. »

Clearly,

(4.5) | B |M(n, k)| = (”2> :

k
Let R(n, k) be a random matrix with values in M(n, k). We assume that R(n, k)
. PN
takes any value M(n, k), M(n, k) e M(n, k), with probability <n > . Whether

-

R(n, k) contains an i X i — submatrix with all entries one is now a matter of chance.

Denote by ki(n, ¢) the smallest integer k for which the probability p(n, k, i, )
that R(n, k) contains an i x i — submatrix with all entries one is greater than
orequal to 1 — ¢ where 0 < ¢ < 1.

Problem R consists in finding estimates for k{n, ¢).

If we allow the value ¢ = 0 in the definition given above then we obtain that ‘
ki(n) equals k(n, 0).

Since k(n, &) increases as & decreases we get
(4.6) kfn) = kyn, ¢)
foralle, 0 < ¢ < 1, and also
(4.7) ki(n) = kyn, ¢,)

for every sequence (z,),-; ,. . converging to 0.
We shall make use only of relation (4.6).
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Lower bounds on k(n, €) are a fortiori Jower bounds on k{(n).
Denote by T(n, i) the total number of i x i — submatrices ofann X n — matrix.

We have
(43) T(n, i) = (?)2 .

An (i x 1, 1) — submatrix is an i x i — submatrix (of an n x n — matrix) with
all its entries one. We denote the number of matrices in M(n, k) which contain
a particular (i x i, 1) — submatrix by N(n, k, i).

Obviously, '

(4.9) N(n, k, i) = (’Z B l_’j) .

N*(n, k, i) shall count the matrices in M—(ﬁ, k) which contain at least one (i x i,1) —

-~ submatrix. -

Let L be a system of [ (i x i,1) — submatrices and let M(n, k, L) be the subset
of matrices of M(n, k) which contain every element of L as a submatrix.

We define now F(n, k, i) by

(4.10) Fyn, k, i) = \M(n, k, L) for I=1,2,..
IL1=1

For F(n, k, i) we obtain
(4.11) Fy(n, k, i) = T(n, i) - N(n, k, i) .

It follows from the inclusion-exclusion-principle that we can express N*(n, k, i)
in terms of the F(n, k, i). We state this more explicitly as

LEMMA.
k .
a) N*(n, k, i) = ), (—1)”1 Fin, k, i),
t = l t+1
b) S (1) Fy(n, ki) < N¥(n, k, 1) £ 3 (=17 Fyn, k, 1)
=1 =1 .

for any even integer t.
2
Since p(n, k, i) = N*(n, k, i) <nk

to good estimates for k{(n, ¢). However, it seems to be not easy to get those estimates.
The reason for this is that elements of L may have entries in common for a large
proportion of L’s.

~1
> , good estimates on F(n, k, i) would lead

1t follows from the Lemma that

N*(n, k, i) < Fy(n, k, i),
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and from (4.8), (4.9), and (4.11) that

. n® — %\ /n\?
N¥(n, k,i) < .
(m k) (k — i’ > < i>
» nZ ~1
Since p(n, k, i) = N*(n, k, i) < k> we obtain

) ) n® — i*\ /n\?* [n*\ 7!
(4.12) p(n, k, l) =< <k B i2><i> <k>

and by the definition of k(n, ¢) and k{n) also

.13 (ki(i 9 ’ ) <> (kl-(i >> =i

and

(4.14) | (ksz)_—iziz> C) <k7(1)>—1

One easily verifies that n?!|(i)? . (k{n))"/n*" is greater than the left side in (4.14)
and therefore also

[\

1.

(4.16)

]
1\

We thus have proved

THEOREM 2.
(4_17) k,-(n) > (i!)z.i—z -1

forall nand all i < n.

Theorem 2 implies

(4.18) k{n) =z n*~*" forallnandall i< n.

5. ON THE RELATIONSHIP BETWEEN CODES WITH AVERAGE
ERROR AND CODES WITH MAXIMAL ERROR FOR T.W.C.

For one-way channels it is unessential whether we use average or maximal errors.
This is due to the simple fact that an (n, N, 1) code {(u;, 4,) | i = 1, ..., N} contains
a subcode {(u;, 4;)|v =1,...,[N/2]} which is an (n, [N/2], %) code for 1 = 2]
(cf. Lemma 4.2.1 in [10]).

34



In this section we shall prove that in general one cannot reduce a code with average
error for t.w.c. to a code with maximal error without an essential loss in code length
or error probability.

Let {(u; v, A;j, B;;) li=1,..,N;j=1 ....N,} be a code with average
errors 1, 4,, that is

1 1 2
P(A;;|u,v)=1-12
(5:) X L) =1
and
1 Ny N3 B
: P(B;;|u,v;)=1— 4A,.
(5.2) NN Py ,-; (Bij | uis v)) 2

Let A, > 1,, 2, > A, and define

| N={@j)]i=1,...,N j=1,..,N;}.
Let

N, 45) = {(i, j) | (i, )) e N, P(4;; |u,v;) > 1 — A; and P(B;; | u;, v)) > 1 — 25} .

The cardinality of N(4,, 4,) depends on the distribution of the values P(4;; | u,, vj)
and P(B;; | u;, v)).

We denote the minimal cardinality which N(2;, 1,) achieves for values of
P(A;j | usvy), P(Byj|upvy) (i =1,.., Ny j =1,..., N,) satisfying (5.1) and (5.2)
by k(2;, 4;). The minimal cardinality of N(4,, A,) is achieved if the P(4;; | u;, v)),
(i=1,...Nyj =1,...,N,)take only the values 1 and 1 — 1, and the P(B;; | u;, v;)
take only the values 1 and 1 — 4,.

Hence,

"

k(21, 4,) £ min i }“iNlNz i

i=1,2

i

The system {(u;. v;), A;;, Bi;) | (i, j) € N(1, 1)} is not a code in the sense of (1.3),
(1.4), because N(4,, 4,) is not a cartesian product of subsets of {1,...,N,} and
{1, ... N,

Our problem reduces now to the question whether we can find a set G = N(4,, A2)
satisfying

a) G=G, xG,, G,={l,...Ny}, G,<={1,....,N,},
and
b) |G| # N,, |G,] ~N,,

where ‘““~’’ means that the numbers are close to each other in a sense which we make
precise later.
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Let M =(My),s=1,....,N;,t =1,...,N,,bean N, x N, — matrix with zeros
and ones as entries, where v

My, =1 for (s,1)eN(A, ),
M, =0 for (s,t)¢N(1, 4,).

The problem described above is equivalent to the problem to find a {G,| x |G,] —
submatrix of M with all entries one.

We are lead to the problem of Zarankiewicz and we shall make use of (4.15)

We limit ourself to Ny =N, = N =¢e®" where R>0, m =1,2,..., and to
|G| = |G,|. |G;| ~ N, shall mean that for any > 0 |G| = Ne™" for all sufficiently
large m. (4.18) yields for i = Ne ™ and n = N:

(54) K(N) = 2Rn(etm)-2emt= k-1
The right side in (5.3) is maximized for 2, = 4, = 1, therefore,
| k(21, 4;) < min(1 — 1,) . N? .
However, e

lim (eRm)—Zexp[—(R—r,)m] =1

nm-— o

and (5.4) imply that k(4,, 4,) < k{N) for m large enough. It is impossible to find
the desired subcode.
In our argument we assumed 4,, 4, to be constant. We can obtain this result also if

I, =e Bm 7, =e B and E,E, <R, Wlo.g.

we can assume E; = E,.
Choose # such that R — 5 > E. It suffices to show that

(5.5) | (1 — e™B™) < (eRm) = 2/expl(R=mm]
for all sufficiently large m, and for this it is enough to show that
(5:6) —e TP < ) e RTIM Ry

(5.6) holds, because R — 5 > E,.

In order to decide what happens in case E;, E, > R one would have to make
a careful evaluation of the formula given in the Theorem by Guy and Znam.
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