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ABSTRACT

It is well-known that the deterministic code capacity (for the average error probability
criterion) of an arbitrarily varying channel (AVC) either equals its random code
capacity or zero. Here it is shown that if two components of a correlated source are
additionally available to the sender and receiver, respectively, the capacity always
equals its random code capacity.

Keywords and phrases: Common randomness, arbitrarily varying channel, side infor-
mation, positivity of average error capacity



1. INTRODUCTION AND RESULT

A well-known dichotomy [1] in the behaviour of the deterministic code capacity (for
the average error probability criterion) C(W) for an arbitrarily varying channel
(AVC) with set of transmission matrices W is this: either C(W) = 0 or else

C(W) = Cr(W), the random code capacity min C(W), where C(W) is the
wew
ordinary capacity of the discrete memoryless channel (DMC) W and W is the

convex closure of W . It can happen that Cr(W) >0 and C(W) =0.

We prove here that in the presence of a correlated source (U™, V™)o%, (which is
independent of the message) with I(U A V) > 0 and access of the sender to U™
and of the receiver to V™ this cannot happen!

Clearly, if (U™)22; and (V™) ; have positive common randomness, CR(U,V)
then the result is readily established by the elimination technique of [1]. Here the
common randomness CR(U,V) of a correlated source (U™, V™)°2; is defined as
the maximal real R such that for all € > 0 and sufficiently large n there exist
functions ¢ : U™ — {1,2,...,2"E=9)} and & : V" — {1,2,...,2"E-9)} with

Pr(¢p(U™) # @(V")) <e (c.f. [2]).

So the interesting case arises when

(a) the common randomness CR(U,V) of the correlated source is 0
and

(b) CW) =0, but CR(W) > 0.

Now we know not only that a positive CR(U,V) can help to make the channel
capacity positive, but from [3] also that a positive channel capacity C(W) can be
used to make the common randomness positive. However, we are confronted with the
situation where both quantities are 0!

Actually we can always find binary—valued functions f and g sothat (f(Us), g(Vt)):il
satisfies I(f(U)Ag(V))>0,if IUAV)>0.

So we can assume that we are given a binary correlated source with alphabets U =

Y =1{0,1}.

Quite surprisingly, we found a complete solution of the problem.

Theorem. For an AVC W let the sender observe U™ = Uy,...,U, and let the
receiver observe V™ = Vi,...,V, , where (U™, V™)L, is a memoryless correlated
source (which is independent of the message) with generic pair of RV’s (U,V) having
mutual information I(UAV) > 0 . Then the capacity G(W, (U, V)) for determini-

stic codes and the average error criterion equals the random capacity Cr(W) .



2. CODE CONCEPTS AND AN AUXILIARY CHANNEL
An (n,M,}) code is a system { (g7 (u™), ’Dm(v"))le, u™ € YU, € V")

gm(u™) e X" for u" € U™, Dy (v™) C Y™ for v" € V",
D (v™) N Dpypy(v™) = @ for m #m/,

and
M

Z Z Py (u™,v™) - W (Dy (v™) g7 (u™), 8™) > 1 — A (2.1)

for s" € 8" ,if {W(|-,s):s €S8} =W . The corresponding capacity is denoted by
U(W, (U, V)) .

It turns out that it suffices to restrict the class of encoding functions g, as follows:
I (™) = (gm,1(w1), - -+ Gm,n(Un))- (2.2)

It is therefore natural to consider an associated AVC W = {W(, |-, 8) : s € S}
with input letters g :U — X and output letters (y,v) . Indeed, we set

W(y,vlg,s) = Py (v) ZPU|V(U|U)W(y|g(u),s) for ye Y,ve{0,1},s€ S. (2.3)
Using (2.2) and (2.3) we can rewrite the left hand side of (2.1) as

ST R S B W (D)l (7))

m=1 v" umn
1 & .
=7 Z W"( U (D (v™) xv")\g%,s")
m=1 yneyn
1 & .
=7 Z W”( lgn . s ), where
m=1
Dy = (D (v7) x v™) (2.4)
YReEY”n

We thus have shown (by going from (2.4) backwards) that
CW, (U, V)) =CW). (2.5)

Similarly one can show that actually equality holds here, but this is not used in the
sequel.



3. PROOF OF THEOREM

Clearly, if 6(W, (U, V)) is positive, then we can use in block length O(logn) a code
in the sense of (2.1) to get the common randomness needed to operate the correlated
code of rate ~ Cr(W) gained by the elimination technique.

On the other hand, if C(W, (U,V)) = 0, then by (2.5) also C(W) = 0. This
implies by [5] that W is symmetrisable in the sense of [4]. It remains to be seen
that this in turn implies the existence of a W € W with C(W) =0 and therefore
Cr(W)=0.

Let X = {0,1,...,a— 1}, let G be the set of functions from U to X , and let
G*={9*}U{gi:0<i<a—1} C G, where

g*(0) =¢*(1) =0 and g;(u) =i+u moda for ue {0,1}. (3.1)

Now by symmetrisability of W there is a stochastic matrix 7:G — & with

) > Poy (o) Y r(slg")W (y]gi(w), Z Pyv (ulv) Z (sg:)W (0, 5)
= ) (3.2)
forall v=0,1, ie X ,and ye).

Cancell Py (v) and consider (3.2) with v =0 and v=1. Then

> Py (ul0) Y 7(slg")W (ylgi(u), s Z Pyyv (u]0) Z (s]9:)W (9]0, 9),

(3.3)

> Puw 1) Y 7(slg™)W (ylgi(w). s Z Pyjv (ul1) Z (slgi)W (y10, 5).

(3.4)

Clearly the right hand sides of both, (3.3) and (3.4), equal > 7(s|g;)W (y|0,s) .

We evaluate these equations by inserting the values for the g¢; and get with the
convention ¢+ @ j =¢+ 7 mod a

Py v (0]0) ZT(SIg*)W(yM s)+Pyv(1]0) Z T(s|lg* )W (y|i®l,s) = Z 7(s|g:)W (90, s).
’ ’ ’ (3.5)

Pyjy (011) Y 7 (slg")W (yli, 8)+Pupv (111) Y 7(slg")W (yli®1,5) = Y m(slg:) W (4]0, ).
S S S (3.6)



With the abbreviations

o= 3" 7(slg) W (yl0, 5)

8

z0 = ZT(s|g*)W(y|f£, s), and 2z = ZT(s\g*)W(yH ®1,s)

S S
we get therefore the system of two equations

PU|V(0‘0)Z0 + PU|V(1‘O)Z1 =
PU|V(0‘1)Z0 + PU|V(1‘1)ZI = . (37)

Since I(UAV) >0 implies Pyy(-[0) # Pyyv(-[1) , we get

o (Po(00) Poy (10
(vl ran)

and (3.7) has a unique solution zy = z; = « . Hence, for all i € X and all y € Y
> T(slg" )W (yliys) = T(slg")W(yli®© 1, )
lg*)YW (-|-,5) € W has identical rows.

and W([-) =3, 7(
=0=Cr(W). QED.

s
Therefore C(W) =0

Remark:

Inspection of the proof shows that actually we proved the following.

If _UV_? forms a Markov chain and U and V are binary, then I(UAV) >0 and
IUAY)=0 imply I(VAY)=0.

Indeed, Pryv(U=uV =0Y =y) = Pg(uw) Py (v|u) Py (y[v) and IUAY) =
0 imply that for all y

Py (0[0) Py (y10) + Py (1]0) Py (y[1) = Py (y)

Py (011) Py (y[0) + Py (111) Py (y1) = Py (y)- (3.8)

Suppose that I(U A V) > 0, then Pyi(-10) # Py(-[1) and therefore (3.8) has
the unique solution

P?|V(y|0) — P7|V(y|1) = Py(y) for all v,

ie. IVAY)=0.
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