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Common Randomness in Information Theory
and Cryptography—Part II: CR Capacity

Rudolf Ahlswede and Imre Csiszar, Fellow, IEEE

Abstract—The common randomness (CR) capacity of a two-
teminal model is defined as the maximum rate of common
randomness that the terminals can generate using resources spec-
ified by the given model. We determine CR capacity for several
models, including those whose statistics depend on unknown
parameters. The CR capacity is shown to be achievable robustly,
by common randomness of nearly uniform distribution no matter
what the unknown parameters are. Our CR capacity results are
relevant for the problem of identification capacity, and also yield
a new result on the regular (transmission) capacity of arbitrarily
varying channels with feedback.

Index Terms—Arbitrarily varying channel, common random-
ness, correlated sources, feedback, identification capacity, ran-
domization.

1. INTRODUCTION

UPPOSE two terminals, called Terminal X and Terminal

Y, have resources such as access to side information and
communication links that allow them to observe and (perhaps
cooperatively) generate certain random variables (RV’s). The
permissible rules for this are specified by the particular model,
but it is always assumed that the terminals have unrestricted
computational power, thus the RV’s that can be generated
and observed at a terminal at a given time include, as a
minimum, all functions of the RV’s previously observed there.
Common randomness (CR) of &’ and ) means, intuitively, an
RV generated by them and observable to both, perhaps with
a small probability of error.

An RV generated by a terminal is not necessarily observable
there, e.g., when Terminal &' inputs an RV X into a noisy
channel to Terminal ), he thereby generates an output Y
observable only at Y. If Terminal & suitably encodes the RV
X he wants to transmit, enabling ) to decode, then this X will
represent CR. If noiseless feedback from Y to A is available
then the output Y will always represent CR.

In Part I [7] we were interested in CR under an additional
secrecy constraint, with the motivation that the generated
CR will be used as an encryption key. In this paper we
do not require secrecy, and just study the maximum amount
of CR afforded by a given model, the amount measured by
entropy. The most convenient form of CR is uniform common
randomness (UCR), i.e., CR represented by a uniformly (or
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nearly uniformly) distributed RV. For the type of models we
will consider, the maximum attainable amount of CR and UCR
will be asymptotically the same.

As a very simple example, suppose that there is a discrete
memoryless channel (DMC) from Terminal A to Terminal
Y, Terminal & can randomize (i.e., can generate RV’s with
arbitrary distributions), and can input into the DMC any
random sequence X" he has generated (of given “large” length
n). Terminal ) can observe the output Y™ but the terminals
have no other resources. It is intuitively clear that in this
case A has to chose X™ to be uniformly distributed on the
~ exp(nC) codewords of an optimum code; then ) can
decode, and the achieved ~nC amount of CR is best possible.
If noiseless feedback is available, it is better for A’ to send
independent repetitions of an RV X that produces maximum
output entropy H(Y'). As now X can observe Y™, in this way
CR of amount nH(Y) results, clearly the largest possible.
Notice that here, too, the optimum could (almost) be attained
by a nearly uniform RV, obtained by applying a compression
code to Y™,

As a combinatorial example, let G be a bipartite graph
with vertex sets & and ) (we continue the practice of Part I
that the symbols of the terminals also denote sets assigned to
them). Nature selects an edge (x, y) € G at random, Terminal
X observes z, Terminal ) observes y. The terminals can
communicate over a noiseless channel, but at most b binary
digits may be transmitted, in any number of rounds. No other
resources are available (above the minimum described in the
first paragraph), in particular, neither terminal can randomize.
Then, clearly, log |G| is an upper bound to CR, which can
be attained it and only if (iff) the communication complexity
Coo(H, Py, Pg) does not exceed b (with the notation of [17]);
here H denotes the hypergraph with vertex set V = X and
edge set £ consisting of the sets {z: (z,y) € G}, y € ).
It may be an interesting study in communication complex-
ity to determine the maximum amount of CR when b <
Coo(H, Pg, Py),ie., the maximum entropy of a function on G
that may be computed at both terminals with communication
of at most b bits.

One obvious motivation of our interest in CR is that if
the two terminals have access to the outcome of the same
random experiment, this knowledge may be used to implement
correlated random protocols, perhaps leading to much faster
algorithms than deterministic ones or those using independent
randomization only. In information theory, in particular for
arbitrarily varying channels (AVC’s), correlated random codes
may greatly outperform deterministic (or randomized) codes;
indeed, they may be necessary to attain positive capacity [8].
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For example, for the additive Gaussian AVC with power con-
straints, (average error) capacity for deterministic codes equals
random code capacity only if the sender’s power exceeds the
jammer’s, otherwise, the deterministic code capacity is 0 [11].

An even more striking application of CR appears in the
theory of identification capacity [4]. It was shown in [5] that
for any kind of channel, if sender and receiver can build
up nR bits of UCR, this can be used to construct ID codes
for as22"" messages, with small probability of misidentifica-
tion and misrejection, provided that the channel capacity is
positive. The asymptotic optimality of this construction was
also established in [5], for DMC’s with no feedback and with
complete feedback. Similar results for multiuser channels were
obtained in [6].

One feature of this paper is that we also study ‘“‘robust
common randomness.” This concept refers to models whose
statistical properties are not completely specified but depend
on certain parameters (‘“‘state”™) out of control of the two
terminals and at least partially unknown to them. Then the
distribution of the RV representing CR will depend on the
actual state, and the minimum of its entropy (for all possible
states) may be called the amount of robust CR. Most desirable
is to have robust UCR, i.e., such RV representing CR whose
distribution is nearly uniform, no matter what the actual
state is. Again, for the type of models we will consider, the
maximum attainable amount of robust CR and robust UCR
will be asymptotically the same.

We will study robust UCR for AVC’s and the results
allow us to determine identification capacity for various AVC
models. Quite remarkably, we also obtain a new result on
regular (transmission) capacity, namely, that the average error
capacity of an AVC with complete feedback always equals the
random code capacity of this AVC.

The problem of robust uniform randomness is of interest
even if it is not required that distant terminals have access to
it. Then the problem is that, if several probability distributions
(PD’s) are given on a set V, how large can be the number
of values of a function f on V whose distribution is nearly
uniform under each of the given PD’s. Here we state a
simple combinatorial lemma, similar in spirit to the hypergraph
coloring lemmas of [3]. It says that if the given PD’s on V
are uniform distributions on the edges F € £ of a hypergraph
(V, €) then the maximum number of values of an f with the
required property is not much smaller than the smallest edge
size |E|. We believe that this lemma will help the reader to
develop intuition, as it helped us to arrive at the results on
robust VCR in Section III.

Throughout, logarithms and exponents are to the base 2.
Natural logarithms are denoted by In.

Lemma 1.1 Balanced Coloring: Let H = (V, £) be a hy-
pergraph with || = N edges, each of size |E| > d. Then
forany 0 < e < £ and k < de?/In(2N) there exists
an e-balanced vertex coloring with k£ colors, i.e., a function
f: vV — {1, ---, k}, such that

If@HnE 1
k

<
|E|

, forevery 1 <i <k

1 m

and F € £. (1.1)

Proof: Let {Z(v),v €V} be a family of independent and
identically distributed (i.i.d.) RV’s such that Pr {Z(v) =i} =
1k, i =1,k and let Zi(v) = 1 if Z(v) = i, and 0
otherwise. Then for the random coloring f(v) = Z(v) we

have
> Ziw

vEFE

lF—@nE|l=

and the standard large deviation bound for the binomial
distribution gives, for every fixed 1 <¢ < 1 and F € &, that

pr{lr @0 Bl < 25 81
<er {0 (5] 1))
pe{lr o0 e > 0 1B

1
Sexp{ |E|D< ;:E

where
D 1-p
D(pllq) = p log P (1-p)log =g

Calculus shows that
D 1+¢) Hl B 2
k k kln 2
is a convex function of ¢ in the interval —% <e< %, with
minimum equal to 0 attained at ¢ = 0. It follows that the
probability that (1.1) does not hold for the random coloring
f(v) = Z(v) is upper-bounded by N -2 exp (—de?/k In 2).

Under the hypothesis of Lemma 1.1, this bound is less than
1, and the assertion follows.

1I. PRELIMINARIES

A key concept studied in this paper for various models is
what we call CR capacity. In this section, we first formally
describe one model to be considered, and define achievable
CR rates and CR capacity for that model. Then we indicate
the changes needed for other models, including those where
the underlying statistics depend on unknown parameters. (For
all models considered, alternative definitions of capacities—or
capacity functions—lead to the same values.) As one of our
reasons for studying CR capacity is its relationship to ID
capacity, at the end of this section we sketch how the latter
concept can be defined for the type of models we are interested
in, as a straightforward extension of the definition of ID
capacity of a DMC without or with feedback, cf. [4] and [5].
A general definition of transmission capacity is also included.

In Section III we will establish some general results, in-
cluding the achievability of CR capacity with UCR, ie.,
with nearly uniformly distributed RV’s. For models where
the statistics depend on unknown parameters, this UCR result
holds in a robust sense. Then the result of Ahlswede and
Dueck [5] referred to in the Introduction affords the conclusion
that for the type of models considered in this paper, CR
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capacity is always a lower bound to ID capacity, whenever
the transmission capacity is positive.

Our results on the CR capacity of particular models will be
stated and proved in Sections IV and V.

As in Part I, we use the terminology of [16], and refer to
it for notations not defined here.

One of the stimuli for this investigation came from [18],
where first basic observations are made and first results are
established for the binary-symmetric case of the model we
now describe.

A. Model i): Two-Source with One-Way Communication

Given a discrete memoryless multiple source (DMMS) with
two components, with alphabets X', )V and generic variables
X, Y, the n-length source outputs are observable at Terminals
X and ), respectively. Moreover, A can send information
to ) over a noiseless channel of capacity R, namely, he can
noiselessly transmit any function f(X") of X™ to ), subject
to the rate constraint

1

~log ||f| < R 1)
Other resources are not available to the terminals. We will
say that a pair of RV’s (K, L) is permissible if K and L are
functions of the data available at X respectively J, i.e.,

K=K(X") L=L{Y" f(X")). 2.2)

A permissible pair (K, L) represents e-common randomness if

Pr{K #L} <e. (2.3)

As K and L represent the same CR, intuition dictates that the
entropy rates (1/n)H(K) and (1/n)H (L) be arbitrarily close
if € is small, independently of n. In order to ensure this, via
Fano’s inequality, we impose the technical condition that K
and L take values in the same set KC whose cardinality satisfies

K| < exp(cn) 2.4

for some c not depending on n.

For Model i), we adopt the following definition that, with
suitable interpretation, will be appropriate also for other mod-
els.

Definition 2.1: A number H is an achievable CR rate if
for some constant ¢ and every ¢ > 0, 6 > 0, for all
sufficiently large n there exists a permissible pair of RV’s
(K, L) satisfying (2.3) and (2.4), such that

% H(K)> H - §. 2.5)
The largest achievable CR rate is the CR capacity.

Remark: In Part I [7] we considered the related concept
of key capacity, where also a secrecy requirement was im-
posed on the CR. There, nearly uniform distribution was
also required in the sense that the entropy rate (1/n)H(K)
be close to (1/n) log |K|. As stated before, CR of nearly
uniform distribution or UCR is desirable also in the present
context. It turns out, however, that the CR capacity in the
sense of Definition 2.1 can always be attained with nearly

uniformly distributed RV’s, even in the stronger sense of
variation distance, i.e., with K satisfying

>

kEX

Pr{K =k} — —

< €.
K|

Actually, it will be seen in Theorem 3.2 that a still stronger
kind of near uniformity can be attained, with the variation
distance above going to 0 exponentially as n — oco. Of course,
then also H(K) will be exponentially close to log |K]|.

For orientation notice that the CR capacity for Model i)
never exceeds H(X). If H(X|Y) < R then an f satisfying
(2.1) can be chosen to let ) recover X™ from f(X™) and Y™
with small probability of error (Slepian and Wolf [15]). Thus
in this case the CR capacity equals H(X).

The question of how large CR rate can be attained in the
extreme case X = 0 of Model i), when no communication is
permitted between X and Y, was asked by the second author in
1970. It was answered by Géacs and Kérner [12] who showed
that it was equal to the largest entropy of a common function
of X and Y, hence always 0 if X and Y had indecomposable
joint distribution. This paper was one of the starting points
of multiuser information theory, at least for the Hungarian
research group. It will turn out that the (by now) standard
“multiuser” techniques permit to determine the CR capacity
both for Model i) and its extensions considered in Section IV.

In the model described above, randomization was not per-
mitted. As in Part I, we will always regard randomization (at
either terminal) as generating an RV at the very start, and let
further actions depend on this RV, but already in a determin-
istic way. Thus Model i) with randomization at X means that
an RV M = My (of arbitrary distribution, but independent of
X™ Y™) may be generated at A’; then the information sent to
Y may be f(X™, M) (still subject to (2.1)), and Definition
2.1 applies with the understanding of permissible pairs as
K = K(X™, M), L = L(Y™, f(X™, M)). Randomization
at ) might also be permitted, then ) could generate an RV
My (independent of X™, Y™, M), and let L be a function of
My, too. Notice that whereas randomization at X’ may increase
the CR capacity of Model i), randomization at )’ cannot.

A variant of Model i) is when the given channel from A to )
is not noiseless but a DMC, say with the same wordlength n as
the observed source output. The input is selected by Terminal
X as a function of X™ (or of X™ and M if randomization
is permitted) and Terminal ) observes the output, say Z".
Then the change required in the definition of permissible pairs
(K, L) is that now L = L(Y™, Z™).

A somewhat different model is Model ii).

B. Model ii): DMC with Active Feedback

Given a DMC {W: X — )Y}, Terminal X selects the
inputs, Terminal ) observes the outputs, and ) can send
back information to A over a noiseless channel of capacity
R. We assume that A" is permitted to randomize but ) is not.
Formally, the terminals’ permissible actions are as follows.
Initially, & generates a randomization RV My = M, then
he inputs X; = fi(M) into the DMC. The output Y7 is
observed by ) who then noiselessly sends & a message
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91(Y1). Then X sends Xy = fo(M, ¢g1(Y1)) over the DMC,
Y observes the output Y> and sends back go(Y7, Y2). Next
X sends X3 = f3(M, g1(Y1), g2(Y1, Y2)) and ) sends back
93(Y1, Y5, Y3), etc., through n rounds.

The individual feedback messages may be arbitrary, but
g = (g1,, gn) is supposed to satisfy the global rate
constraint

1

- log |lg]| < R. (2.6)
For example, g, ---, g, may be binary words of variable
length with prefix property, then (2.6) will mean that their
total length is < nR.

In this model, the permissible pairs (K, L) (which will
represent e-common randomness if they satisfy (2.3)) are of
the form

K=KWM, g1, -, gn) L=L(Y"). @7
With this understanding, Definition 2.1 of the achievable CR
rates and CR capacity applies to the present model. Notice that
some of the messages g; may be empty, indeed it is permissible
that Terminal ) sends only one message to A after having
received the whole Y™ (of course, then the input X™ must be
a function of M alone). We will show that the CR capacity
for Model ii) is always attainable that way.

In another version of Model ii) also Terminal ) is permitted
to randomize, which formally means that he, too, generates a
randomization RV My, at the start (independent of My), and
then g1, -+ -, g as well as L may depend also on M. Still
another version would be when neither terminal is allowed to
randomize, but that will not be considered here.

Just as Model i) could be modified replacing the noiseless
channel from )Y to & by a DMC, the same is possible also
for Model ii). Actually, several such variants of Model ii)
could be considered, one of them is when the 7th input of the
backward channel is a function g¢;(Y7, ---, Y;) of the first ¢
outputs of the forward channel, and Terminal X observes the
corresponding output Z; before selecting the input X;; to
the forward channel. Then the permissible pairs (K, L) are
defined by letting K = K(M, Z™), while L = L(Y™) as
before.

Remark: Our terminology “active feedback™ refers to the
freedom of Terminal ) to select the inputs of the backward
channel. It differs from the terminology of [16], where “active
feedback™ means that ) is allowed to randomize. By “passive
feedback” we mean that the inputs of the backward channel
are equal to the outputs of the forward channel. In particular,
noiseless passive feedback (also called complete feedback)
means that the outputs of the DMC {W: X — Y} are
observable not only to Terminal ) but also to Terminal X
The variant of Model ii) with complete feedback has been
hinted at in the Introduction as a simple example for which
the problem of CR capacity is trivial. The variant with noisy
passive feedback deserves interest, but will not be considered
in this paper.

A more complex version of the two-source model is Model
ii).

C. Model iii): Two-Source with Two-Way Noiseless
Communication

Given a DMMS as in Model i), suppose that after Terminal
Y received the message sent by X over a noiseless channel of
capacity R, he in turn can send X’ a message over a noiseless
channel of capacity R,. This can be any function g of Y™
and the received f(X") (or f(X™, My)), subject to the rate
constraint

~ 108 gl < Ro. @8
If Y is permitted to randomize, g may also depend on )’s
randomization RV Mjy;, chosen at the start, independently of
(My, X", Y™).

Now (K, L) is a permissible pair of RV’s if K = K(X", g)
or K = K(X*, My,g9) and L = L™, f) or L =
L(Y™, My, f), depending on whether randomization is per-
mitted or not. With this understanding of the permissible pairs,
Definition 2.1 applies as before.

It is obvious how to extend the model to permit several
rounds of communication between X’ and ), each transmission
subject to a rate constraint. Alternatively, the transmissions
may not be constrained individually only their total rate is. The
CR capacity can always be defined as in Definition 2.1, letting
the permissible (K, L) pairs be functions of the data that
become available at the corresponding terminals after having
executed a protocol allowable by the particular model.

D. Models with Robust CR

The simplest model of this kind is that when both terminals
can observe the output of an arbitrary varying source (AVS)
but have no other resources whatsoever. An AVS with alphabet
X and state set S (both finite) is determined by a family
{P(:|s), s € S} of PD’s on X. The distribution of the n-length
source output X™ depends on the state sequence 8 € S™, and
equals

P(-|8) =P(-|s1) x - - x P(:|sp), ifs=(s1, -, sn)-

(2.9)

In this model, any function X = K(X™") represents CR, thus
the largest CR, for any fixed blocklength n, is represented
by K = X". In the definition of achievable CR rates, the
condition (2.5) is now required to hold independently of
the underlying statistics, i.e., for all 8 € S™. Thus the CR
capacity for this model equals H,,;, = minscs H(P(:|s)).
It is nontrivial, but will be shown in Theorem 3.1 that this
CR capacity can be attained with robust UCR, i.e., that
K = K(X™) satisfying (2.6) for all possible 8 € S™ can
be given, such that

1
= log |K| > Huin — 6.
n

We will consider various AVC models in this paper. An AVC
with input alphabet X', output alphabet ), and state set S,
each finite, is determined by a family W = {W(-|, s),
s € S} of channels W (|-, s): X — ). Terminal X selects
the inputs, Terminal ) observes the outputs, and the state
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sequence 8 € S™ governing the n-length transmission may
be arbitrary. Several different models are possible according
to the availability of information to Terminal A" about the
states and the previous outputs when selecting the input X,
and whether or not randomization is allowed.

We now formally describe two models, both with random-
ization permitted at &X', thus Terminal & first generates a
randomization RV My = M. In the “no-feedback™ model,
Terminal X selects the input sequence X" as a function of M.
In the “complete-feedback™ model, the inputs X3, ---, X, are
selected successively as X; = f;(M, Y1, ---, Y;—1), where
Y1, -+, Y;_; are the previous outputs (“seen” by Terminal X’
through a noiseless feedback channel from Y to X). In both
models, the joint distribution of M and the output sequence
Y™, when the state sequence is 8 = (s1, - - -, S,), is given by

Pr{M =m,Y" =y}

=Pr{M =m} H W (yilzi, ;). (2.10)

=1

Here z; denotes the ith input symbol when M = m (in the no-
feedback model) or when M = m, Y1 =1, -+, Yic1 =41
(in the complete-feedback model). For both models, the CR
capacity is defined as in Definition 2.1, requiring (2.3) and
(2.5) to hold robustly, i.e., for every 8 € S™. The permissible
pairs K, L are of form K = K(M), L = L(Y™) in the
no-feedback case, and formally, K should be replaced by
K = K(M, Y™) in the complete-feedback case; for the latter
model, however, K = L = L(Y™) may be taken, without
restricting generality.

Both the “no-feedback” and “‘complete-feedback” AVC
models can be modified by letting Terminal A’ know the state
sequence 8. Then the inputs X, ---, X,, and the RV K may
depend also on 8. Also, the AVC analog of Model ii), i.e.,
AVC with active feedback could be considered.

We will not attempt to give a general formal definition of the
class of models we are interested in, but all our models involve
the blocklength n of observable source RV’s or permissible
channel transmissions (or both). For such models, Definition
2.1 always makes sense if we specify, for every n, the class
of permissible pairs of RV’s that may be generated by the
terminals as functions of the data available to them. We now
sketch how ID codes and ID capacity can be defined for
arbitrary models of this kind, as a straightforward extension
of the corresponding definitions for channels without or with
feedback [4], [5].

Suppose one of IV contingencies k € {1, ---, N} takes
place, Terminal A knows this k, and the goal is to let
Terminal ) reliably decide, for any 1 < 7 < NN he may
choose, whether or not & = j. To this end, the terminals
perform a protocol permissible by the given model, for some
blocklength n, with the understanding that the actions of
Terminal A’, but not those of Terminal )Y, may explicitly
depend on k. For example, for Model ii), the functions
filM, u(Y1), -+, gic1(Y1, -+ -, Yi_1)) specifying the chan-
nel inputs X;, will depend on k, whereas for the feedback
messages g;(Y1, ---,Y;) no such dependence is allowed,
except for implicit dependence through the Y;’s. Let U denote

all information available at Terminal ) after having performed
the protocol, e.g., for Model ii), U = Y™, Then, if ) wants to
decide whether or not k£ = j, he decides “yes” if U € D; and
“no” if U ¢ Dj, where D;, 1 < j < N are certain subsets
of U, the range of U.

Definition 2.2: A protocol as above together with a family
{Dj,1 < j < N} of subsets of U is called an (N, n, ¢)
ID code for the given model if for each distinct k, j in
{1,---, N}

Py(D;)<e Py(Dj) Le (2.11)

Here P denotes the distribution of I/ when contingency &
has taken place. The ID capacity of the given model is the
supremum of the numbers R such that for every € > 0 and
sufficiently large n there exists an (IV, n, ) ID code with
N > exp exp (nR).

For models whose statistics depend on unknown parameters
(“state™), Definition 2.2 applies with the obvious modification.
Namely, as then the distributions P also depend on the state,
we require (2.11) to hold robustly, i.e., for all possible states.
In particular, for an AVC without feedback (with A" permitted
to randomize) an (N, n, €) ID code is defined by a family
{Q;;1 < j £ N} of PD’s on &A™, @, representing the
distribution of the input sequence when contingency j takes
place, together with a family {D;, 1 < j < N} of subsets
of Y™, such that for each distinct k, j in {1, ---, N} and all
8 € S”

Y Qi@W(Djlz, 8) <e

zcX™

Z Qu(z)W™(Dj|z, 8) <e.

zCA"

(2.12)

It is important to emphasize that the sets D; in Definition 2.2
need not be disjoint. If they were, Terminal } could infer &
(as that j for which U € D;) with probability of error less
than &, thus the ID code would become a transmission code.
Whereas for ID codes /N can grow doubly exponentially with
the blocklength n, for transmission codes only exponential
growth is possible.

As a straightforward generalization of the concept of chan-
nel capacity, we can define the transmission capacity of a
general model as the supremum of numbers R such that for
every ¢ > 0 and sufficiently large n there exists an (N, n, £)
transmission code. Notice that for transmission codes, i.e.,
when the sets D;, 1 < j < N, are disjoint, it suffices
to impose the first inequality in (2.11). More exactly, the
transmission capacity defined in this way is that for the
“maximum-error” criterion, whereas transmission capacity for
the “average-error” criterion is obtained if the transmission
codes are required to satisfy only

N
1 § : C
j=1

a weaker condition than (2.11). Just as for standard channel
capacity, these two concepts of transmission capacity coincide
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for models with uniquely determined statistics, but transmis-
sion capacity for average error can be larger than that for
maximum error when the statistics depend on unknown states.

Remark: For models with randomization allowed at Ter-
minal &, transmission capacity (for average error) is always
a lower bound to CR capacity. Indeed, a trivial way of
generating CR is that Terminal & generates an RV uniformly
distributed on {1, - - -, N} and then transmits it to Terminal )/
with probability of error less than . From the point of view of
CR capacity, the interesting models are those for which this
trivial scheme is not optimal.

III. SOME GENERAL RESULTS
Lemma 3.1: Let P be any family of N PD’s P =

{p(v),v € V} on a finite set V, let 0 < ¢ < % and let
d > 0 be such that for every P € P the set
1
B ) = {vp0) < 3} G.1)
has P-probability
P(E(P,d))>1—c¢. (3.2)

Then for k& < (£2/3log(2N))d, there exists f: V —
{1, ---, k} such that for every 1 < ¢ < kand P € P
the conditional P-probability of f(v) = ¢ on the condition
v € E(P, d) differs from 1/k by less than £/k, ie.,

P(fY)NEP ) 1| _ e .
- = < =, 1<i<k Pep.
P(E(P, d)) k<P == P
(3.3)
In particular, the variation distance of the distribution of f
from the uniform distribution on {1, ---, k} is less than 3¢,
ie.,
k 1
S |P(FE) - %‘ < 3e (3.4)

=1
for each of the PD’s P € P.
Proof: Similar to that of Lemma 1.1 but requires a little
more calculation. See the Appendix.

Consider now the problem of robust uniform randomness
obtainable by encoding the n-length output X™ of an AVS,
where the distribution of X™ depending on the state sequence
8 € 8™ is given by (2.9). We are interested in mappings
fi &™ — M of possibly large rate (1/n) log |M]| for
which f(X™) represents robust ¢-uniform randomness, i.e.,
the variation distance of the distribution of f(X™) from the
uniform distribution on M is less than ¢, no matter what is
the state sequence 8 € S™.

Theorem 3.1: Let an AVS be given by a set of PD’s
{P(:|s), s € S} on X, such that

Hyyin = min H(P(:|s)) > 0.
s€S
Then, forevery 0 < € < % and every n, there exists a mapping
f: &A™ — M of rate

1
-~ log |M| > Hupin — (g, n) 3.5)

such that f(X™) represents robust e-uniform randomness,

where
2In3 2log 1
8(e, n) :,/ni/6 log |X|+L/E
n n

N log log (2|S]) +0(10g n)
n n

if |X| > 3, and |X| should be replaced by 3 if |X| = 2;
the 0((log n)/n) term in (3.6) does not depend on ¢ and the
AVS, not even on A and S.

Remarks: One feature of Theorem 3.1 that will be used
in Theorem 3.2 below is that it brings out explicitly the
dependence of (e, n) on A and S. For a fixed AVS, Theorem
3.1 shows that robust e-uniform randomness for (arbitrarily
small but) constant £ can be attained by mappings of rate
approaching H,;, with speed O(n_(l/ 2)), and the rate will
approach H;, even if ¢ = ¢, — 0, providing it goes
to O slower than exponentially. Moreover, robust e-uniform
randomness with rate (1/n) log |M| > Hym — 6 with an
arbitrarily small but constant § > 0 is attainable even with ¢
going to 0 exponentially.

Proof: Apply Lemma 3.1 to the family of PD’s P(-|s),
8 € 8", on V = &A™, with ¢ replaced by £/3 (in order to get
e-uniform rather than 3e-uniform randomness, cf. (3.4)). Then
N = |S|"*, and we will choose the number d in (3.1) as

d= €Xp [n(Hmin - g)]

with £ > 0 such that (3.2) (with ¢ replaced by £/3) is fulfilled
for each P = P(-|8). As shown in the Appendix

21n 3/e )
£= 20 oy 1)

is an adequate choice, with the understanding (as also in the
remainder of the proof) that |X| should be replaced by 3 if
|X| = 2. Then Lemma 3.1 gives that for

21n 3/¢
_ v |0 Hon — ) 2L 10g X
o5 (2IST) [ ( V= st

(/3
M <
(3.9

(3.6)

3.7

(3.8)

there exists f: X™ — M such that f(X™) represents e-
uniform randomness, for each s € §™. Comparison of (3.5)
and (3.9) shows that both can be satisfied with 6(e, n) as in
(3.5).

Having available Theorem 3.1, we now prove that for the
type of models treated in this paper, CR capacity can be
attained with uniform CR. Although we did not give a formal
definition of this class of models, we recall from Section II
that all our models involve the specification of permissible
pairs of RV’s (K, L), for each blocklength n. The following
definition postulates a property common to all models we are
interested in.

Definition 3.1: A model permits independent concatena-
tions if for any pairs of RV’s (K1, L) and (K}, L)) permis-
sible for blocklengths n; and 7o, there exists a pair (K, L)
permissible for blocklength n; +n, such that K = (K1, K»),
L = (L, Ls), where (K1, L) and (K3, Lo) are independent
and have the same distribution as (K7, L)) and (K}, Lj).
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When the underlying statistics are not uniquely determined but
depend on some parameters (‘“‘state”), the last condition means
that under any permissible statistics for blocklength n; + no,
(K1, L1) and (K>, L) are independent, with distributions
equal to those of (K7{, L}) and (K3, L5) under one of
permissible statistics for blocklength n; respectively 7.

For models with statistics depending on “states,” let S(n)
denote the set of possible states for blocklength n. We will
assume that this set does not grow faster than doubly expo-
nentially, more exactly, that (1/n) log log |S(n)| is bounded
by a constant. This holds for all models we are aware of, e.g.,
for the standard AVS and AVC models |S(n)| = |S|™ grows
only exponentially. Even for the variant of the AVC where
the state sequence 8 may depend on the input sequence z, in
which case S(n) is the set of all mappings of X™ into S™, the
growth rate of |S(n)| is “only” doubly exponential.

Theorem 3.2: Let a model permitting independent concate-
nations be given. If the statistics are not uniquely determined,
we assume that (1/n) log log |S(n)| is bounded. Then for any
fixed € > 0, every H less than CR capacity, and sufficiently
large n, there exists a permissible pair of RV’s (K, L), both
distributed on a set M satisfying (1/n) log |M| > H, such
that

PriK#L}<e, 3 Pr{K:k}—i' <e

(3.10)
keM |M

for every possible choice of the underlying statistics.

Remark: 1t will be clear from the proof that the near
uniformity of K can be attained also in a stronger sense,
namely, in the second inequality in (3.10), instead of a
fixed € > 0 one could take a sequence ¢, going to 0
exponentially as n — oo (with a sufficiently small exponent).
A similar improvement of the first inequality in (3.10) is
possible providing that in the definition of CR capacity the
fixed ¢ > 0 in (2.3) can be replaced by ¢, going to 0
exponentially; this holds for all the models treated in this
paper.

Proof: As H is less than CR capacity, there exists H' >

H which is still an achievable CR rate. Applying Definition
2.1to H' inthe role of H, with §' = (H'— H)/2,and £’ > 0
specified later, it follows that for sufficiently large m there
exists a pair (K’, L') permissible for blocklength m such that
their common range K satisfies

|K] < exp(cm) (3.11)
and
Pr{Kk' £L'} <¢ (3.12)
L HK)>SH -8 =H+§ (3.13)
m

for every choice of the underlying statistics. Clearly, the case
of uniquely determined statistics (|S(m)| = 1) need not be
considered separately.

As the model permits independent concatenations, for every
7 there exists a pair (K", L") permissible for blocklength n =
rm, with K" = K; --- K,., L” = Ly --- L, such that for
every possible statistics for blocklength n the pairs (K, L;),

¢ = 1, ---, 7 are independent, with distributions equal to
that of (K’, L’) for some possible statistics for blocklength
m (possibly different for each ¢). In particular, K" may be
regarded as the r-length output of an AVS with alphabet X and
state set S(m). For this AVS, H,,;y, > m(H + ¢') by (3.13).
Thus by Theorem 3.1, there exists a mapping f: K™ — M
with

% log M| > m(H +8)—6(e,r)  (3.14)
such that the distribution of f(K™) is robustly e-close to the
uniform distribution on M, where

(e, 1) = /2 lnrl/s log || + 2 10‘3 1/e

log log |2 log 7
L Lo og [28(m)| +0( ogv) (3.15)
T T

Using (3.11) and the assumption on the growth rate of S(m),
it follows from (3.14) and (3.15) that (1/rm) log M| > H
if r is sufficiently large, depending on € but not on m.

With such an » we set K = f(K"), L = f(L") for
blocklength n = 7m. Then K and L are distributed on M
satisfying (1/n) log |[M| > H, and the second inequality
in (3.10) holds for every possible choice of the underlying
statistics. Finally, the first inequality in (3.10) follows from
(3.12), if we choose ¢/ = e/r. This completes the proof,
because it clearly suffices to restrict attention to blocklengths
n which are multiples of a constant .

Theorem 3.3: For all models as in Theorem 3.2, the CR
capacity is a lower bound to ID capacity, providing the
transmission capacity (for the maximum-error criterion) is
positive.

Proof: Immediate from Theorem 3.2 and the result of
Ahlswede and Dueck [5].

IV. COMMON RANDOMNESS IN MODELS i), ii), AND iii)

Theorem 4.1: For Model i) described in Section II, the CR
capacity equals

Ci(R) = max [(H(UAX)I(UANX)-I(UAY) < R] (4.1
if no randomization is permitted, and
5 my [ Cil(R), if R < H(X|Y)
Gi(R) = { R+I(XAY), itR>H(XY) &2

if Terminal X is allowed to randomize. Here the maximum is
for all RV’s U that satisfy the Markov condition U~ XY, and
the range constraint [I/| < |X|, and R is the capacity of the
noiseless channel in the model. Moreover, the CR capacity of
the variant of Model i), where the noiseless channel is replaced
by a DMC, is still given by (4.1) respectively (4.2), with R
replaced by the capacity of that DMC.

Remark: If &X' is permitted to randomize, a trivial way to
create CR is that X' generates n R random bits and transmits
them to ), disregarding the DMMS. Theorem 4.1 shows that
this is suboptimal, and for R > H(X|Y) the CR capacity
exceeds R (attained by the trivial scheme) by exactly /(X A
Y'). This means that although mutual information does not
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represent a “common information” (as shown in [12]), it does
represent a kind of hidden common randomness that can be
recovered if sufficient transmission capacity is available. It is
interesting to compare this interpretation of mutual information
with that obtained in Part I in the context involving secrecy.
Proof: A short proof is available using standard results

of multiuser information theory, cf. the proof of Theorem 4.2
below. Here we prefer an independent proof, which later will
be extended to the case of two-way communication.

We state, also for later reference, an identity also used in
Part I (Lemma 4.1; cf., also [16, p. 409]): For arbitrary RV’s
S, T and sequences of RV’s X", Y™

I(S AX™T) — I(S AY™|T)
= Z[I(S/\leXl, Tty Xi—l, Yi+1"'Yn)
=1

—I(SAY Xy X, 1Yig1 -+ Yy)]

= n[I(SAX V)= I(S AY;|V)] 43)

where J is an RV independent of all the previous ones,
uniformly distributed on {1, ---, n}, and

V=X Xy_1Yrps - Y, TJ. (4.4)

a) Converse Part: Consider first the “no-randomization”
case. Suppose (K, L) satisfy (2.1)—(2.4). Write

H(K|Y™) = I(KAf(XM)Y™) + H(K[Y", f(X7)). 4.5)

Here the first term is < nR, by (2.1), and the second term
is < H(K|L) < ecn+1 by (2.2) and Fano’s inequality, using
(2.3) and (2.4). Thus we have

H(K)—I(KAY™) = H(K|Y") <nR+ecn+1. (4.6)

Apply (4.3) to the present X™, Y™ with S = K, T = {.
Then V in (4.4) is independent of (X, Y;), hence the last
line in (4.3) can also be written as

IUAX))—I(UAY;),  withlU =KV.

Thus

H(K) - I(K AY™) =I(K AX"™) — I(K AY™)
=n[I(UAXy) - I(U AY7)] 47)

where U = KXy --- Xj_1Yy41 --- Y, satisfies the Markov
condition U e X ;7 eY. Notice also that

HEK)=IKAX")=> I(KAX;|X; - Xi_y)
i=1

=TLI(K/\X1|X1, Tty XJ_l) S TLI(U/\XJ) (48)

As X7,Y; may be identified with the generic variables
X, Y of our DMMS, (4.6)—(4.8) show that (1/n)H(K) is
upper-bounded by the maximum of I(U A X) subject to
I({UAX)—-I(UANY) £ R+ec+(1/n), for RV’s U satisfying
the Markov condition / ¢ X oY It is routine to show that
there exists U attaining the maximum that satisfies the range
constraint |I{| < |X| (direct application of the Support Lemma
of [16, p. 310] gives only |I/| < |X|+ 1, but for a U yielding
an extremal value, this bound can be improved by 1, cf. [19]).

This completes the proof for the “no-randomization” case.
Notice that in (4.1) necessarily /(U AY) < I(X AY') hence

Ci(R) SR+ I(X AY), equality holds if R = H(X|Y).

(4.9)
When A may randomize, we will conveniently regard his
randomization RV My as an i.i.d. sequence M™ (of course,
independent of X™, Y™). This reduces the present case to the
previous one, replacing X by XM, where M is independent

of X, Y. Thus we need to maximize I(U A X M) subject to

IUAXM)—I({UAY)<R, UsXMeY. (4.10)

It follows similarly to (4.9) that (4.10) implies J[(UAXM) <
R+ I(X AY), thus for the case R > H(X|Y) we are done.
For R < H(X]|Y'), notice that since

I(UAXM) =IUAX)+ (U AM|X)

and the Markov condition in (4.10) implies U & X oY, it
follows from (4.9) that

IUAXM) < CL(R—I[UAM|X))+I(UAM|X). (4.11)

It is easy to check that the function defined by (4.1) is concave,
hence, by (4.9), its slope is >1 if R < H(X|Y). Thus the
right-hand side of (4.11) is <C (R). This completes the proof
for the randomized case.

Finally, if the channel from A to ) is not noiseless but
a DMC, the only modification needed in the above proof
is to replace f(X™) in (4.5) by the output of that DMC.
Denote the input of this DMC by 7™ and the output by Z".
Whether or not Terminal A" randomizes, the Markov condition
Y"eX"K oT™ oZ™ must hold. Thus the first term in (4.5)
with f(X™) replaced by Z™ can be bounded as

I(KAZMY™) < I(X"KAZMY™) < I(T*AZMY™) < nC

establishing our claim.

b) Direct Part: Tt suffices to consider the case R <
H(X|Y), with no randomization. By continuity, it suffices to
show that C;(R’) is an achievable CR rate for every R’ < R.
We are going to show this by exhibiting for arbitrary U
satisfying

UeXeY, IUAX)-IUAY)<R  (4.12)

and for any ¢ > 0, 6 > 0, and sufficiently large n, a
permissible pair K, L as defined by (2.1) and (2.2), such that
K, L satisfy (2.3)~(2.5) with H = I(U A X).

Assuming without any loss of generality that the distribution
of U is a possible type for blocklength n, select at random
exp{n(I(UAX)+68)} sequences u € U™ of type Py, denoted
asu,;j,lsiSNl,lstNQ,with

Ny =exp{n({(UAX)—-I(UAY)+38)}

Ny = exp {n(I(U A Y) — 26)}. (4.13)

Then for every X -typical £ € A'™, the probability that neither
u;; is jointly U X -typical with 2 is doubly exponentially small.
Hence with probability close to 1, every typical z is jointly
typical with some u,;.
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Let K(x) be equal to an u,;; jointly typical with & (either
one if there are several), and let f(z) = i if K(z) = u;;; both
functions are set constant when 2 is not typical. Further, let
L(y, f(a:)) = Uy if f(a:) = ¢ and U;j, Y are jointly Uy -
typical. If there is no such u;; or there are several, L is
set equal to a constant. Then, by (4.12) and (4.13), the rate
constraint (2.1) on f is satisfied if § is sufficiently small, and
K = K(X™), L = L(Y™, f(X™)) obviously satisfy (2.4).
Also (2.5) is satisfied since

Pr{K =wu;;} < Px({2: (u;;, ) jointly typical})
=exp (—nIl(U A X) + o(n))

implies that H(K) > nI(U A X) + o(n).

It remains to check (2.3), i.e., Pr { K # L} < e. Notice that
for any jointly UX -typical pair (u, ), the set of gy’s jointly
typical with (u, ) has conditional probability arbitrarily close
to 1 on the condition U = u, X" = £, and hence by
Markovity, also on the condition X™ = 2. It follows that
the set A of those pairs (z, y) for which (K (x), z, ¥) are
jointly UXY -typical has P% arbitrarily close to 1. Let us
denote by A the set of those pairs (x, y) € A for which in
addition to u;; = K(x), some other u;; (with the same first
index <) is also jointly typical with y. To complete the proof,
it suffices to show that P%, (A) will be arbitrarily small, with
large probability, with respect to the random choice of {u;;}.

Now, for fixed (z, y), the probability that A determined by
the random {u,;} contains (z, y), is upper-bounded by

(4.14)

Ny Nz Ny

22>

i=1 j=1 £=1
Ay

= NiN3 exp [-nI(U A X) +
~exp [-nIl(U AY) + o(n)]
= exp[—né + o(n)].

Pr {(u;;, ) jointly typical,
(u;;, y) jointly typical}

o(n)]
(4.15)

Here we used (4.13) and that the u;; are independent, chosen
with uniform distribution from the sequences of type Py .
Hence the expectation of P%,(A), as an RV depending
on {u;;}, is also upper-bounded by exp[—nd + o(n)]. This
completes the proof.

Consider now the following generalization of Model i)
to generating CR at r + 1 (rather than 2) terminals. Given
a DMMS with » + 1 components, with generic variables
X, Y1, -+, Y., Terminal X can observe X™ and send mes-
sages f;(X™) to Terminals };, subject to rate constraints

%log Ifill < R,  d=1,--,m  (416)
Terminal }; can observe Y;*, and the message f;(X™) sent
him by Terminal A’. Achievable CR rates and CR capacity are
defined by the natural extension of Definition 2.1, namely, the
role of permissible pairs (K, L) is now played by permissible
(r + 1)-tuples (K, Ly, -, L;) defined in analogy to (2.2),
and the role of condition (2.3) is played by r similar conditions
Pr{K £L;} <e i=1,---,7

Theorem 4.2: For the above model, with no randomization
permitted, the CR capacity equals the maximum of I(U A X)
subject to the constraints

IUAX) - I(UAY;) < R;,

where U/ may be supposed to satisfy the range constraint
U] < |X| + r — 1. If Terminal X is permitted to randomize,
the CR capacity is still the same if R; < H(X|Y;) for some
i, and it equals

mln (R + (X AYY)],

X if R; > HX|Y;),i=1, -, k.

Proof: If H is an achievable CR rate and § > 0, take
(for large n) K = K(X™) that can be e-reproduced at each

terminal by L; = L, (Y™, f;(X™)), ¢ = 1, ---, 7, and such
that
1
—H(K)-H| <. (4.18)
n

Although the definition of achievable CR rates postulates
%H (K) > H — § only, it clearly does not restrict generality
to require 1 H(K) < H + §, as well. In order that K could
be e-reproduced at ); it is necessary that

%H(mym <R, +6 (4.19)
(formally, H(K|Y*)) can be written as a sum of two terms
as in (4.5), and bounded as there).

On the other hand, if to a number H for all § > 0 and
sufficiently large n there exists a function K = K(X™) that
satisfies (4.18) and (4.19), then H is an achievable entropy
rate. Indeed, from Y;*” and a suitable code f;(K") of rate
L log ||fill < R; of the r-fold repetition of K, Terminal
Y; can reproduce K" with arbitrarily small probability of
error, by Slepian—Wolf. Although the permissible rate is only
R;, this can be remedied by taking blocklength N = n'r
with n’ slightly larger than n, satisfying n'R; < n(R; + 6),
i=1, ---, r, and disregarding the last N —nr source outputs.
Thus for blocklength NV, the terminals can produce e-common
randomness of rate

1 1
NT‘H(K) = WH(K)
arbitrarily close to H.

Thus we have obtained a “product space characterization”
of achievable CR rates, namely, that H is achievable iff for
every 6 > 0 and sufficiently large n there exists a function
K = K(X") satisfying (4.18) and (4.19). This can be easily
single-letterized, using results available in the literature. To
this, notice that on account of (4.18), in our product space
characterization we may replace (4.19) by

1
—HX"K)— (HX)—-H)| <6
1
- H(Y" K)<R;—H+H(Y;)+6. (4.20)
Now, by [16, p. 352], an (r + 1)-tuple Ry, Ry, -- -, R, has

the property that for every § > 0 and sufficiently large n there
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exists a function f(X") satisfying

1 . 1 .
G HUX) = Rol <6 - H(S(X) < Rt 5
iff there exists a RV U with U e X oY], ---, Y, such that
H(X|U)y=Ry, HY;|U)<R,.

Substituting here Ry = H(X) — H, R; = R, — H + H(Y;),
we get

IUNX)=H IHUANX)-I(UAY) <R

and this completes the proof for the no-randomization case (up
to the routine range constraint).

If randomization is permitted, we replace X by XM and
proceed as in the proof of Theorem 4.1.

Theorem 4.3: For Model ii) described in Section II, the CR
capacity equals

Ca(R) = max H(XAY)+min(R, HX|Y))] 421
if randomization at X is not permitted, and
Cy(R) =C(W)+R (4.22)

if Terminal Y is allowed to randomize. In (4.21), the maximum
is taken for random inputs X to the DMC {I¥} given in the
model, Y denoting the corresponding output. R is the capacity
of the backward noiseless channel in the model, and C(W)
is the capacity of {W}. Moreover, the CR capacity of the
variant of Model ii), where the backward channel is replaced
by a DMC, is still given by (4.21) respectively (4.22), with R
replaced by the capacity of that DMC.

Remarks:

1) Comparing (4.21) and (4.22) shows that if R is no larger
than H(X|Y') for a capacity achieving X then Cy(R) =
C>(R). Thus similarly to Model i), randomization helps
only when R is “large.” For many DMC'’s, the maximum
of H(Y') is attained for a capacity achieving X . In those
cases Cr(R) = H(Y) for all R “large” in the above
sense.

2) One possible strategy of Terminal A’ in Model ii) is to
use an i.i.d. sequence X™ as channel input, which leads
to the situation of Model i), with the roles of A" and )
reversed. Comparing Theorems 4.1 and 4.3 shows that
this reduction to Model i) suffices to achieve CR capacity
for Model ii) when the max in (4.21) is attained for some
X with H(X|Y) < R, but not otherwise.

Proof:

a) Direct Part: If Terminal Y can randomize (recall that
Terminal X’ always can in this model), a CR rate as in (4.22)
can be attained in a trivial way: For large blocklength n,
Terminal A generates and transmits to ) an RV uniformly
distributed on a set of size exp [(C(W) — §)]; IV can decode it
with small probability of error. Terminal ), in turn, generates
an RV uniformly distributed on a set of size exp nR, and
transmits it to A

If Y cannot randomize, a CR rate as in (4.21) can be

attained as follows. For large n, take (X, Y) almost attaining
the maximum in (4.21) such that Px is a possible type for

blocklength n. Terminal X generates an RV M uniformly
distributed on a set of size exp [n(I(X AY)—§)] and transmits
it to Y using a code of fixed composition Px . ) sends nothing
back until he has received all n outputs. Then ) decodes M.
Terminal ) can decode with small probability of error, and he
gets access to additional randomness from the channel output.
Namely, he can enumerate the words in each of his decoding
sets from 1 to exp [nH (Y |X) + o(n)], then the RV Z equal to
the number assigned to the observed output sequence will be
almost independent of M and have entropy [nH (Y| X)+o(n)].
If R > H(Y|X), this Z can be transmitted back to X, and
if R < H(Y|X) then a suitable function of Z of entropy
nR + o(n) can be transmitted back.

b) Converse Part: Let (K, L) be a permissible pair for
blocklength n, thus K = K(M, g1, -+, gn), L = L(Y™),
with ¢ = (g1, -, gn) satisfying (2.6). Supposing that
(K, L) satisfies the condition in Definition 2.1 we decompose
H(L|M) in analogy to (4.5), replacing f(X™) there by
g = (g1, -+, gn). Bounding as there we obtain

H(LIM)=I(LANg|M)+ H(LIM, g) <nR+enc+1.
4.23)
Further, (2.7) and the memoryless character of the DMC {W}
imply
n
ILAM)<SI(MAY™) =" I(MAY;]Y'™)

i=1

< Z I(X; AY;|YY)

i=1

<Y IXAY) <nl(X;AYS)  (424)
i=1
where J is an auxiliary RV uniformly distributed on
{1, ---, n}, independent of (M, Y™). On the other hand,

H(L) < H(™) < 3 H(Y) < H(Y)).
i=1

Combining this with (4.23) and (4.24) we get that
1 1
HH(L) <min[I(X;AY;)+R+ec+ - H(Y;)]

1
SI(X_] A YJ) + min [R, H(YJ|XJ)] + ec+ E

As Y7 is the channel output for input X 7, this completes the
converse proof also for the no-randomization case. When the
backward channel is not noiseless but a DMC, then denoting
its input and output by 7™ and Z%, the only difference will
be that g in (4.23) has to be replaced by Z™. Then the first
term will be bounded as

I(L A Z"|M) < I(T™ A Z"|M) < nC

where C is the capacity of the backward channel.
Theorem 4.4: For Model iii) described in Section II, the CR
capacity without randomization is equal to
C3(Ry, Rp) = max HUAX)+I(VAY|DI(UAX)
—I(UANY) < Ry, (VAY|U)

—I(V AX|U) < Ry (4.25)
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where the maximization is for RV’s U and V satisfying the
Markov conditions

UeXeY XeoYUseV. (4.26)

However, the range sizes of U and V can be bounded by
|X] + 2 and |Y|, respectively.

Remark: Tt is reassuring to check that (4.25) reduces to
the expected simple results when either R; > H(X|Y) or
R, > H(Y|X). In the first case, U = X is a permissible
choice, then the Markov condition for V' becomes void, and
it follows that

C3(Ry, Ry) = H(X) + min (Ry, H(Y|X)),

if Ry > H(X|Y). (4.27)

In the second case V = Y is a permissible choice, which
leads to

IUAX)+I(VAY|U) = I(UAX)+ HY|U)
=I(UAX)—I(UNY)+HEY).

Hence

Cs3(Ry, Ry) = H(Y) + min (Ry, H(X|Y)),

if Ry>H(Y|X). (428)

Proof:

a) Converse Part: Let (K, L) be a permissible pair for
Model iii) without randomization, i.e., K = K(X", g), L =
LY™ ), f=f(X™),g=9X™, f), where f and g satisfy
the rate constraints (2.1) and (2.8). Suppose that (K, L) satisfy
the conditions (2.3) and (2.4) of Definition 2.1.

Our key tool is the identity (4.3), which will be applied
twice. First we get

nRy >H(f)=I(fAX") 2 I(f AX™) = I(f AY™)

—n(I(UAX) - I({UAY)) (4.29)
with
X:XJ7 Y:YJ’ U:le"'XJleJ-{»l"'YnJ
(4.30)

(where we proceed as in the derivation of (4.7), the role of K
there now played by f).

Notice now that just as H(K|Y™) was bounded in (4.5),
we have the bound

H(L|X™) < nRy +ecn + 1. 4.31)

Applying the identity (4.3) again, we get
—H(L|X") = — H(L|X", )
=I(LAX"|f) - H(L|f)
=I(LAX"|f) ~ I(LAY"[)
=n(I(LAX|U)-I(LAY]|U)) (4.32)
where X, Y, U are (luckily) the same as in (4.30).

By (4.31) (with sufficiently small €) and (4.32) we have for
any fixed 6 > 0

Ry > I(LAY|U) — I(L AX|U) — 6. 4.33)

Finally, we can write

ILAX") =Y KLAX;|X;--X; 1)

=1
=Y I(LXy--Xio1 A X))
1=1

<nI(LU A X). (4.34)

Combining (4.32) and (4.34) gives

H(L) =I(LAX") + H(LIX")
<nll[(LU AX)+I(L AY|U) - I(L A X|U)|
=n[[(UAX)+I(LAY|D)]. 4.35)

Replacing L with V, we have thus proved that achievable
CR rates are bounded above by an expression as in (4.25) (the
Markov conditions (4.26) are easily verified), perhaps with Ko
replaced by R+ 6; the latter is inconsequential, by continuity.

b) Direct Part: As in the proof of Theorem 4.1, it suf-
fices to prove that [(X AU) + I(V AY|U) is an achievable
CR rate whenever U and V satisfy (in addition to (4.26)) the
inequalities in (4.25) with strict inequality. The form of (4.25)
suggests that in the first round, CR of rate I(I/ A X) ought
to be generated, and in the second round, additional CR of
rate I(V AY|U).

We use the same construction as in the proof of Theorem
4.1. First we generate {u,;;, 1 <4< Ny, 1 < j < Ny} and
associate with them functions Ki(z) and f(x) and L (y, ©)
as there (we write K7 and L rather than K and L, for now
these functions will represent only the first part of the CR).

Then, by the proof of Theorem 4.1, for every pair (, ¥)
not in the exceptional set A° U B of arbitrarily small Pg, -
probability, Ki(z) = Li(y, f(x)).

Next, for each u;; as above, we generate at random
exp[n(I(V AY|U) + 8)] sequences v € V™ of joint type
with %;; equal to Pyry, denoted as vgz ,1 <k < M,
1 < ¢ < M,, where

My = exp [n(I(V AY|U) = I(V A X|U) +36)]

My = exp [n(I(V A X|U) — 26)]. (4.36)

Then for every y € V" jointly UY -typical with u;;, the
probability that neither (/) is jointly U/Y'V-typical with
(u;5, ) is doubly exponentially small. Hence with probability
close to 1, for every jointly typical pair (u;;, ) there is a
vgg ) such that (Wi, ¥, v;;j[) is jointly typical; we denote by
L(y, u;;) such a vgg ) (either one if there are several). Then
for each yy and 1 < i < N; we take for w;; = L(y, ¢) the
unique u%;; with the given first index ¢ which is jointly typical
with ¥, or a constant if no or several such u;; exist, and define
Ly(y, ©) as the vgg) selected for this %,; and y

Lo(y, i) = L(y, L1(y, ©)) = v{?. 4.37)

Moreover, we define g(y, ¢) to equal the first index % of v&j)
in (4.37). Finally, for £ € &A™ and 1 < k < M; we define

Ky(x, k) as the unique vgij ) jointly typical with (u,;, x)
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where u;; = K1 (z), or set K»(z, k) = const if no or several
such v exist.

Then, by (4.36), g satisfies the rate constraint (2.8) if ¢ is
sufficiently small. It is also clear that

K =(K{(X™), Ko(X™, g(Y™, £(X™)))
L =(L(Y™, f(X™), L2(Y", f(X™)))

represent a permissible pair for Model iii), satisfying (2.4),
and one shows as in the proof of Theorem 4.1 that

% H(L)> IUAX)+I(VAYU) - 6.

It remains only to show that the condition (2.3), ie.,
Pr{K = L} > 1 — ¢ is also satisfied, at least with large
probability with respect to the random selections. Pr {K; =
L;} > 1 — € has already been demonstrated in the proof of
Theorem 3.1. The remaining part Pr{K, = Lo} > 1 — ¢ can
be proved similarly, though with a little more work.

V. COMMON RANDOMNESS, IDENTIFICATION, AND
TRANSMISSION FOR ARBITRARILY VARYING CHANNELS

Recall the definition of an AVC in Section II by a class
W = {W(|, s),s € S} of channels W(-|-, s): X — ).
There also CR capacities, ID capacities, and transmission
capacities have been defined for various models involving an
AVC. We present now our results.

A. Model A: AVC Without Feedback and Any Other
Side Information

First we recall some well-known results for transmission
capacities, cf. [16].

A random code (Cy, - -, Cpr, Q) is defined by deterministic
codes Cy, -- -, Cps of the same blocklength n» and a PD @ on
{1, ---, M}, with the understanding that C; will be used with
probability Q(7). The error criterion is that the maximum or
the average (for k) of Zgl Q(i)ex(i, 8) be small for every
8 € 8™, where e (1, 8) denotes the probability of not decoding
correctly the message &k when the code C; is used and the
state sequence is 8. Both criteria lead to the same random
code capacity Cr. Notice that random codes can be used for
transmission only if sender and receiver have access to CR,
the outcome of a random experiment with distribution ().

It was shown in [8] that
Cr =max min I(P, W) = min C(W). 5.1

P wew wew

Here I(P, W) denotes the mutual information of input and
output RV’s with joint distribution P(z)W (y|z), C(W) =
maxp I(P, W) is the Shannon capacity of the channel W,
and W denotes the convex hull of W.

By an elimination technique—based on an idea called “de-
randomization” in computer science—it was shown in [1] that
Cr can be attained by random codes (Cy, - -+, Cps, Q) with
M not larger than the square of the blocklength n and with
uniform (). As a consequence, the capacity for deterministic

codes and the average probability of error criterion, denoted
by C, satisfies

C = Cg, if C > 0. (5.2)

Random codes should be distinguished from codes with ran-
domized encoding, which do not need CR, the decoding being
deterministic. It was also shown in [1] that with randomized
encoding, both the maximum and average error criteria lead
to the same capacity, and

capacity under randomized encoding = C. (5.3)

We note for later reference that (5.2) and (5.3) remain valid
also for AVC’s with noiseless feedback, if C is replaced by
6f, the average error capacity for deterministic codes with
feedback.

A necessary and sufficient condition for C > 0, given in
[1], is that for some n there exist PD’s (1, (22 on X" and
disjoint subsets Dy, Do of Y™ such that

> Qi@mW™(Dilz, ) > 3,

zE X"

54

min
sesn

t=1, 2.
A single-letter necessary and sufficient condition for C >0
was given in [10]: C > O iff W is not symmetrizable, where
symmetrizability of 1/ means the existence of a channel
U:. & — S such that

Y UGl )W (ylz, s) =) Uls|ln)W (yla’, 5)

sCS sCS

(5.5)

for every z, 2’ in X’ and y in ).

With these results and Theorems 3.2 and 3.3, the following
theorem is readily obtained.

Theorem 5.1: For an AVC without feedback, both ID ca-
pacity and CR capacity with sender permitted to randomize are
equal to average error transmission capacity for deterministic
codes

C[D = CCR = 6 (56)

Their common value equals Cr given by (5.1) if W is not
symmetrizable, and O otherwise.
Proof:

i) Ccr = C: the nontrivial part Ccg > C follows from
Theorem 3.2 and (5.3). Indeed, a permissible pair (K, L)
that satisfies (3.10) for every choice of s € S™ gives rise
to a code with randomized encoder of rate < log | M|
and average probability of error < 2e.

i) Cip > Ccr = C: In the nontrivial case C > 0, this
is a consequence of Theorem 3.3 and of the fact that
C equals the maximum error capacity for randomized
encoding.

iii) C;p < C: Notice that C;p > 0 implies C > 0,

because Q1 and @2 as in (2.12) with D] = D; \ Do,
D, = Dy \ Dy satisfy (5.4) if £ < 1/4 in (2.12). Thus
on account of (5.2), it suffices to show that C;p < Cg.
It follows from (2.12) that an (N, n, €) ID code for
the AVC is, for each W € W, also an (N, n, €) code
for the DMC {W}. Since the ID capacity of a DMC
equals its transmission capacity, this and (5.1) imply
the claimed inequality.
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B. Model B: AVC with Noiseless (Passive) Feedback

Let Ccrr and Ccpy denote the CR capacity and Crpr
and Cypy the identification capacity of the AVC with noiseless
(passive) feedback, according as Terminal & is permitted to
randomize or not. As now X knows everything that J does,
Ccrr equals the limit as n — oo of the maximum, for all
protocols as described in the passage containing (2.10), of

1 min HY™). 6.7

n scS
Ccry is obtained similarly, with the maximum taken for the
deterministic protocols (formally, with M = const in (2.10)).
Theorem 5.2: For an AVC with noiseless feedback,

C RF = 1laX 1111. n H P [’ [/ 5 . 8

C a. EW ( ) ( )

C( N = max Hli I li [[ 1 lf C( N > 0 5. 9
Rf Pr]’ Wew ( | )’ Rf ( )

Ccry >0, iff v%mnw H(W(-|z)) > 0 for some z € X'.
/'e

(5.10)

Here H(PW) and H(W|P) denote the entropy H(Y') and
conditional entropy H(Y |X) for RV’s X, Y with joint distri-
bution P(z)W (y|z).
Remark: These single-letter characterizations have been
obtained independently also by Cai [9].
Proof:
1) For a protocol that disregards the feedback information
and selects ii.d. inputs X1, ---, X,, with distribution
P, the quantity (5.7) becomes minyy¢yy H(PW). This
proves that the right-hand side of (5.8) is an achievable
CR rate. For the converse, we prove by induction that
for any given protocol

min H(Y*) < k max min H(PW) (5.11)
sESk r wew
fork =1, ---, n.Indeed, (5.11) clearly holds for k = 1.
Now, if min,cgr H(Y") is attained for 8 = 31 --- 3,
let P denote the distribution of X k+1 When (the given
protocol is used and) s; = §;, ¢ = 1, ---, k. Then

min  H(Y*) < min (HY) + H(Yip1))
seSk+1 seS

< min H(Y*)+ min H(PW).
sESk Wew
(5.12)

Hence, (5.11) holds for (k + 1) if it does for k.
ii) For a deterministic protocol, when X; is a function of
Y=l we have

H(Y™) =Y H(Y;[y*!
=1

=D HY|X).

Using (5.13), an induction as above shows that the right-
hand side of (5.9) is an upper bound to (5.7) for any
deterministic protocol.

Now, let P* be the PD achieving the maximum in
(5.9). Supposing Ccry > 0, it follows from Theorem

)= Zn: H(Yi[Y'™' X))

(5.13)

3.2 that to any € > O there exists k = k(e), a protocol of
blocklength k, and a mapping f of J* into &', such that
the distribution of f(Y'*) differs by less than e from
P*, in variation distance, no matter what is the state
sequence 8 € S*. We extend this protocol to blocklength
n, by letting X; = f(Y*) fori = k+1,---,n
Then, by (5.13), the limit of (5.7) as n — oo will be
arbitrarily close to the right-hand side of (5.9), if ¢ > 0
is sufficiently small.

iii) Obviously, the condition in (5.10) is sufficient for
Ccry > 0. To prove its necessity, suppose indirectly
that to each x € X there is an s = s(z) such that
W (-|z, s) is the point mass at some y = y(z). Given
any deterministic protocol, consider z € A", s € S™,
and y € V" defined recursively such that s; = s(x;),
y = y(z;), and z; 1 is the input symbol that the given
protocol specifies when the past output sequence is
y1 --- y;. For this particular state sequence s, the given
protocol leads to a unique output sequence g, proving
that quantity (5.7) is equal to O for every deterministic
protocol, hence Ccry = 0.

Our result on the CR capacity leads to a noticeable conclu-

sion for the classical transmission problem.

Theorem 5.3: The average error capacity 6f of an AVC
with noiseless feedback, for deterministic coding, is always
equal to Cr given by (5.1). Further,
ifCpr>0
if Cp =0.

(5.14)
(5.15)

Cipr =Ccrr, Cipf = Ccry,
Cipr =Crpy =0,
Proof:

i) The random code (Ci, ---, Cas, Q) in the paragraph
containing (5.2) can be used for transmission if A’ and
Y have access to 2 log n bits of robust UCR, ie., to
RV’s K, L satisfying (3.10) for every s € S™ with
M| = n2. Since Cr > 0 implies Ccrr > 0, cf.
(5.1) and (5.8), such UCR may be generated using a
protocol of blocklength »’ = ¢ log n, by Theorem 3.2.
This proves that C'r is an achievable transmission rate, at
least if randomization is permitted (randomization may
be needed in the CR-generating protocol of negligible
blocklength n’ = ¢ log n, whose outcome will identify
the C; actually used). The proof is completed by reference
to the feedback versions of (5.2) and (5.3).

i) If €f = Cgr > 0, the inequalities Crpr > Ccrr,
Crpy 2 Ccry are proved analogously to the proof of
Theorem 5.1, part ii). The reversed inequalities follow
by the method of [5], where the ID capacity of a DMC
with feedback has been determined. If Cr = 0 then
C(W) = 0 for some W € W. Then the feedback
ID capacity of the DMC {W} is O by [5], and (5.15)
follows.

C. Model C: Strongly Arbitrarily Varying Channel (SAVC)

It is assumed here that the jammer can make his choice of
8 € 8™ depend on the sent € A™. Formally, the parameter
determining the statistics is now an arbitrary mapping from
A" to S™.
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Since the number of such mappings is doubly exponential in
n, the hypothesis of Theorem 3.2 is still satisfied. The criterion
(2.11) for an (N, n, €) ID code becomes

D Qi) max W"(Djlz, s) <e

xCA™
Z Qu(z) max W™(Djl|z, 8) <e.

zeX™
The first inequalities here (with disjoint sets ;) represent the
maximum probability of error criterion for transmission codes

with randomized encoding.

Any (N, n, €) transmission code with randomized encoding
gives rise to a deterministic (/V, n, €) code, with codewords

(5.16)

z; = arg min (max W"(Dj|z, s)).
x 8

Hence the maximum error capacity of an SAVC for determin-
istic and randomized encoding is the same. It is also (well
known and) easy to see that this capacity coincides with the
average error capacity for deterministic codes, and it equals the
maximum error capacity for deterministic codes of the AVC
defined by the same . We shall denote this capacity by C.
As shown in [14], C > O iff there exists = and z’ in X with
T(x)NT(z') = ¢ where 7 (x) denotes the convex hull of the
set of PD’s W(-|z, s), s € S.

The row-convex hull W of W is the set of all channels
W: X — Y such that W(-|z) € 7(x), x € X. Write

D = min C(W).
WeWw

Theorem 5.4: For an SAVC, the CR capacity C&p and ID

capacity C7p (with &’ permitted to randomize) satisfy

C<Cir<Cip<D
Cip >0, iffC>0.

(5.17)

(5.18)
(5.19)

Remark: Under not too restrictive hypotheses, C = D, cf.
[2] for W satisfying 7 () N7 (¢") = O whenever z # z’, and
[13] under a weaker hypothesis; there are, however, examples
of 0 < C < D. For W with C = D, Theorem 5.4 gives a
conclusive result, but we do not know whether C}, = C&pr
and/or C2. = C hold for every SAVC. C%., always equals
the average error capacity for randomized encoding, but it
appears unknown whether the latter can ever be larger than C.
__ Proof: The first inequality of (5.18) is obvious, and if
C > 0, the second inequality follows from Theorem 3.3. It
remains to prove that C3, < D and that C = 0 implies
Cér =Cip =0.

Consider an auxiliary model where at each instant ¢ the state
s; may depend on z; but not on the other z’Js Formally, this
is an AVC model, with state set S* consisting of all mappings
s*: X — &, defined by the set of channels

W*:{W*('|'a S*)a s* ES*} W*('|'Ta 8*)IW(-|JZ, S*(:’E))'

(5.20)

Clearly, the CR and ID capacities of this AVC are upper

bounds to C¢z and C%,,. Thus on account of Theorem 5.1,

it is suffices to show that i) the random code capacity of the

AVC defined by (5.20) equals D and ii) W* is symmetrizable
if C = 0.

i) is obvious from (5.1) and (5.17) since W* = SW,

To prove ii), use either the Strong Separation Lemma of [1]
or, alternatively, recall that C' = 0 iff 7(x) N 7 (x') is never
empty, i.e., for suitable PD’s U(-|z, z’) on S,

> Uslz, 2)W(ylz, s) = > Uslz’, 2)W(ylz’, s)

z€S sES
5.21)
for every z, =/, and y. Equation (5.21) means that W* satisfies
(5.5), with U*: X — S* defined by

U(s*lz) = [] U(s"(@)1, o).

zeX

(5.22)

Remark: Work relevant for problems concerning feedback
with noise can be found in [20].
APPENDIX

Proof of Lemma 3.1: Choosing f at random as in the proof
of Lemma 1.1, with Z;(v) as there, we have

p(v)Zi(v).  (AD)

P(fT @ NEP d)= >

veE(P, d)

Chernoff bounding gives that for any A C V
1+¢

Pr {Z p(v)Z;(v) > 3

vCA

=Pr {exp

< E(exp |:[3 Z p(v)Z;(v)

veA

= exp (—/3 ! ;:5 P(A)) 11

veA

P(A)}
> exp (/3 ! :5 P(A)) }

) exp (—/3 ! Jkrs P(A))

{1 + 7 (exp(Ap(v)) - 1>}

(A2)

B Y p(v)Zi(v)

vEA

where 3 > 0 is arbitrary, and similarly

Pr { S p(0)Zi(w) < = = < P(A))

vCA

1—¢

- P(A))
[1 + % (exp(—Bp(v)) — 1)}. (A.3)

con

vCA
Apply (A2) to A = E(P,d) with B = ed. Then for
v € A = E(P, d) we have 8p(v) < g, by (3.1), and, therefore,

exp (Bp(v) —1=3 w

<Pp)|1+3> (e 2| In2
j=1

=Pp(v)(14+¢€*)In 2
where
_ €ln2
S 21—eln?2)

*

€
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Using the inequality 1 + ¢ In 2 < exp ¢, it follows that the
last product in (A.2) is upper-bounded by

>

vEE(P, d)

exp %/Jp(v)(l +e%)

—exp [ - (L+ ") P(E(P, )]

Thus (A.2) gives, using the assumption (3.2) and recalling
that 8 = ed,

prd S p)Zi() > T PEP )
veEE(DP, d)

< exp [_ﬁlj (e — ) P(E(P, d))}

% _ 2
< exp (—W) < exp <—%d>. (A4)

Here, in the last step, we used that

In 2 €
_2(1—1n2)>(1_s)>§

if e < 3 —2loge, and that condition does hold by the
assumption £ < % It follows from (A.3) in a similar but
even simpler way (as exp(—/fp(v)) can be bounded by
Bp(v)(—1 + e ln 2) In 2) that the left-hand side of (A.3)
is also bounded by exp (—(g2/3k)d).

Recalling (A.1), we have thereby shown that the proba-
bility that (3.3) does not hold for a randomly chosen f is
< 2N exp (—(£2/3k)d). Hence this probability is less than 1
if k < (¢?/3 log (2N))d. This completes the proof of Lemma
3.1, because (3.4) is an immediate consequence of (3.3).

(e —e)(1—¢) :s(l

A. Completion of the Proof of Theorem 3.1

We have to show that the P-probability of the set (3.1) with
P = P(-|8) defined by (2.9) is < € if d is as in (3.7), with £
given by (3.8). This probability can be written as

Pr{P(X"|s) > exp[-n(Hmin — &)|} (A.5)

where Pr denotes probability under P(-|s). Now, for every
t >0

Pr{P(X"|s) > exp [-n(Hmin — &)}
=Pr {Pf(Xﬂ|3) > exp [_nt<Hmin -
OIEP(X"|s))

Ol

< €Xp [nt(Hmin -

= exp [nt(Huwin — O] [[ D P (2lsi) (A6)

=1 reX

where £ denotes expectation under P(-|s). To bound the last

product in (A.6), notice that for any PD P = {p(z)} on X

Z p1+f($) Z (.’L’) Z (t In p(x))
<1+t p(x) In p()

zEX
2

+5 3 @)l po)P

=1—tH(P)In2
+5 3 @ )P,

zCA

(A7)

Calculus shows that the last sum in (A.7) is maximum when
P is the uniform distribution on X, providing |X’| > 3. Hence,

t2
> pMi(@) S1-tH(P) In 2+ o (In | X))?
zCX

2
< exp [~tH(P) + % (n|X)?1n2 (A8)

with the understanding (as also in the rest of the proof) that
|X| should be replaced by 3 if |X| = 2.
As H(P(:|s;)) > Hpin by definition, (A.6) and (A.8) give
that the probability (A.5) is upper-bounded by
exp [—nté +n(t*/2)(log |X|)? In 2]
for each ¢ > 0. Setting ¢ = £/(log |X|)? In 2, we get
Pr {P(X"|8) > exp[—n(Hmin — &)|}

52
N = -
2(log |X[)? In 2
For ¢ given by (3.8), the right-hand side of (A.9) is equal to

€/3, establishing our claim.

< exp (A.9)

Completion of the Proof of Theorem 4.4

Here we show that to any RV’s U, V satisfying the Markov
conditions (4.26) there exisﬁt Uuv satisfying the same con-
ditions, with range sizes |U/| < ||+ 2, |[V| < |Y| such
that

IUAX)=I{UAY)=I(UAX)-I({UAY)
IVAY|U) - I(VAX|U) <I(VAY|U)

(A.10)
- I(VAX|U)

(A.11)

IUAX)+I(VAY|U) > I(UAX)+I(V AY|U).

(A.12)

1) Given U,V satisfying (4.26), introduce an equivalence

relation on U by letting w; ~ wup iff Pxjp=y, =

Px|—y,. Our first claim is that U,V can be replaced

by U’, V' without changing the relevant mutual infor-

mations, such that no distinct elements of the range of

U’ are equivalent in the above sense.
Let f(u) denote the equivalence class of u. Then clearly

Pxy|v=u = Pxv|su)=f(u) (A.13)

hence

IUANX)=I(f(U)AX),I(UANY)=I(f(U)AY).



240

2)

3)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998

This, in turn, implies that
IVAX|IU)=I(UVAX)-I(UAX)
= I(UVf(U) /\X) —I(f(U) /\X)
= I(UV A X|f(V)
and similarly
I(VAY|U) =I(UV AY | f(U)).
Thus U/ = f(U), V' = UV satisfy our claim, since
U'eX Y is obvious from U-eX oY and (A.13), and
X oYU' oV’ follows as
PX|Y=y,f(U)=f(u),U:u,V:u = PX|Y=y,U=u,,V=u
= PX|Y=y,U=u.
= Px|y=y,f(U)=f(u)
where the second equality holds by X YU V and
the third by (A.13).
By 1), it suffices to consider I/, V' (satisfying (4.26)) such
that the PD’s P, = Px|y—y,u € U are all distinct. This
will enable us to use the Support Lemma (see [19] or
[16, p. 310]) to reduce the range size of U. To this end,
define the stochastic matrix valued function F'(P) for
P e {P,,u € U} by letting Pr{V =v|Y =y, U = u}
be the (y,v) entropy of F(P,). Then extend F(P)
continuously but otherwise arbitrarily to the set P(A")

of all PD’s on & . Now apply the Support Lemma to
the following continuous functions on P(&):

fHi(PY=H(X)—- H(Y)—- H(P)+ H(PW),
where W = Py x
f2(P) = H(X) — H(P) + I(PW, F(P))
f3(P) =I(PW,F(P)) — I(P,WF(P))
fi(P) = P(z;-3),4 < j < [X] +2,
where X' = {z, ..
It follows that there exist PD’s
P, e P(X), i=1,---,|X|+2
and a PD {ay, -+, x|42} on {1,---,|X| 4+ 2} such
that

.,.’17|X|}.

[X]+2
SOP{U =ulfi(P) = Y aifi(P),
ucU =1
J=1|X+2. (Al

The last |[X'| — 1 identities in (A.14) mean that an RV
U with range U = {1,---,|X| 4+ 2} and distribution
{au, -+, oqx|42} exists such that

Pypmi=Pe =1 |2 42

Letting this U satisfy U eX oY, the first identity
in (A.14) gives (A.10). Further, letting V be such that
XoYUoV, P~’|Y,l~}=i = F(F;), the second and third
identities in (A.14) mean that (A.11) and (A.12) hold
with equality.

Finally, it remains to show that V in 2) can be replaced
by some ‘:/’ with range size < |Y| and X ¢ YU o V'
such that V" still satisfies (A.11) and (A.12). Now, by the
range constraint result of Theorem 4.1, applied to RV’s

(11

[2]
[3]

[41
[51

[6]

[71

[8]

[9]
[10]

[11]
[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

with joint distribution Py y|7_, in the role of X,Y, for
each fixed @ € U there exists V; distributed on a set of

size < |V| and conditionally independent of X on the
conditions Y =y, U= 1, for every y € )V , such that
IVa AY|U =a) > I(VAY|U =)
IVa NY|U = @) — I(Va AX|U = @)
SI(VAYU =@)— I(VAX|U = a).
But then we can define an RV V'’ with X e YU =V’
such that
P€'|Y=y,12=a = vily=y,ti=a
for every y € V, @ € U. This V' of range size <V
will satisfy the last inequalities for every u € U, and
hence also (A.11) and (A.12), as required.
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