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For a Hamming space (7, d,,), the set of n-length words over the alphabet
Z,=1{0,1,..., a — 1} endowed with the distance d, which for two words x" =
(gpeeyx,), ' =(y,...,y,) €22 counts the number of different components,
we determine the maximal cardinality of subsets with a prescribed diameter d or,
in another language, anticodes with distance d. We refer to the result as the
diametric theorem.

In a sense anticodes are dual to codes, which have a prescribed lower bound on
the pairwise distance. It is a hopeless task to determine their maximal sizes exactly.

We find it remarkable that the diametric theorem (for arbitrary «) can be
derived from our recent complete intersection theorem, which can be viewed as a
diametric theorem (for o = 2) in the restricted case, where all n-length words
considered have exactly k ones.  © 1998 Academic Press

1. PREVIOUS RESULTS, CONJECTURES,
AND THE NEW THEOREM

This paper is another demonstration of the power of the methods of [3].
We stick to the earlier notation as far as possible and first repeat it. Then
we state the complete intersection theorem in its historical context, be-
cause this enables us to put the new result into proper perspective. Here
we need some more terminology for the formulation of known results and
conjectures for the diametric problem in Hamming space or related
intersection problems. Finally, we state the new diametric theorem.

N denotes the set of positive integers and for i,j € N, i <j, the set
{i,i +1,...,j}is abbreviated as [i, j]. Moreover, for [1, j] we also write [;].
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For k,n € N, k < n, we set
2 ={F:Fc[1,n]} and ([Z]) = {F € 2" |F| = k}.

A system of sets .oz c 2["! is called ¢-intersecting, if
A, N A, >t forall 4,, 4, €, (1.1)

and I(n, t) denotes the set of all such systems.

Moreover, we define I(n, k,t) = {& € I(n, t): & C (I21)}. The investiga-
tion of the function M(n, k,t) = max,, ¢ ;. . ¥l 1 <t <k < n, and the
structure of maximal systems was initiated by Erdds, Ko, and Rado [5].

THEOREM EKR [5]. For 1 <t < k and n > ny(k,t) (suitable),

M(n,k,t)=(z:;).

Clearly, the system
A(n,k,t) = {A € ([Z]) [1,¢] CA}

is t-intersecting, has cardinality (7 ~ ), and is therefore optimal for n > ny(k, t).

The smallest n,(k, ¢), for which this is the case, has been determined by
Frankl [6] for ¢t > 15 and subsequently by Wilson [12] for all ¢:

no(k,t) = (k—t+1)(t +1).

In the recent paper [3] we have settled all the remaining cases: n <
(k —t + D(t + 1). The following result plays a key role in the present

paper.

CoMmPLETE INTERSECTION THEOREM AK [3].  Define 7 = {F & (I#l):

l

IFN[Lt+2illzt+i} for 0<i<(n—1)/2. For1<t<k<nwith
(i)
r—1 t—1
(k—t+1)(2+—)<n<(k—t+1)(2+ )
r+1

r

for some r € N U {0}
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we have
M(n, k,t) =1Z|

and F, is—up to permutations—the unique optimum. By convention, (t —
1)/r = forr = 0.

(i) (k—t+1)(2+;+—l)=n forr € N U {0}

we have
M(n k1) =171 =17,
and an optimal system equals—up to permutations—either &, or ;.

Erdds, Ko, and Rado also initiated the study of optimal systems in
I(n, t) and of the function

M(n,t) = max |
Lel(n,t)

A complete description was given by Katona, who, in particular, obtained

THEOREM Ka [8].

n
Z (n)’ if n + tis even,
i=n+ny2 V!
M(n,t) = " n—1
) (n)+ n+t—11 ifn + tisodd.
i=(n+t+1)/2 ! 2

His proof proceeds by estimating “‘shadows” of sets in ([71). Actually, it
also can be proved by the method of the present paper.

Now we make a transition from 2] to 22" = {0,1}" and the more
general 2 ={0,1,..., a — 1}".

Clearly, any set 4 € 2!"! can be represented as word a" = (ay,...,a,)
€ 25, where

(1, ificA,
%= o, if i € [n]\A4,

and conversely. Furthermore, in 27" we have a second concept of intersec-
tion. We call &7 c 27" t — 2 -intersecting, if, for all a", b" €.,

int(a",b") 2|{j € [n]:q; = b}| = 1. (1.2)

Let J (n,t) denote the set of all such systems.
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Since dy(a", b") = ({j € [1,nl: a; # b} =n — int(a", b"), we can
equivalently say that .z has a diameter

diam(&) £ max dy(a",b") <d=n—t

a,b"ed

or that .« is d-diametric.

It is important to notice that the notions ¢ — 25-intersecting in 25’ and
t-intersecting in 21" are quite different!

We are concerned here with the function

N,(n,t) = max || (1.3)
Lel(n,t)

There is already a well-known result for @ = 2 due to Kleitman:
THEOREM K1 [9].

(n—1)/2
Z (7), ifn — tiseven,
i=0
Nz(ngt) = (nftfl)/z 1
2 (n—. ), ifn —tisodd.
i=0 L
This result and Theorem Ka imply
Ny(n,t) = M(n,t). (1.4)

Actually, it was shown in [2] that the two theorems can be easily derived
from each other by passing through upsets.

Finally, we report on the results known (to us), which were obtained
during the last three decades on N, (7, ) for a > 2.

Berge [4] proved that

Ny(n,1) =a" ' fora=>3. (1.5)

Livingston [10] showed that the & € J (n,1) satisfying (1.5) are of the
form

& ={a" = (ay,...,a,) €X' a; = a}

for some i € [r] and a € {0,1,..., @ — 1}. Frankl and Furedi [7] conjec-
tured that

N,(n,t)y=a"" iffn<t+lora>t+1, (1.6)

and they proved this for ¢ > 15. Ahlswede, et al. [1] remarked that, for
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n<t+1+logt/logla — 1),

(n—1)/2 )

Y (’Z)(a—l)’, if n — 1 is even,

i=0

No(nit) =1 (b ) | (1.7)

a Y (”l‘. )(a—l)l, if n — ¢ is odd.
i=0

Frankl and Furedi [7] (and in a diametric formulation also Ahlswede et al.
[1]D have made the

General Conjecture.

N,(n,t) = max |#| forall n,a,rt, (1.8)
O<i<(n—1)/2

where, with the convention B(a") = {j: a; = a — 1},

% ={a" €2 B(a") N[1,t + 2i]| >t +i}. (1.9)

4

Clearly, % € J,(n,t) for0 <i < (n — 1) /2.

We note that in this terminology the results (1.6) and (1.7) can be
summarized in the form

1%, ifn<t+lora>=t+1,t=>15,
N.(n,t) = ) log ¢
oz(n ) |'%[(nft)/2J|' IfﬂSt+l+|og(—l).
o —

This covers only very few values of the parameters n, «, t. We settle here
all cases by establishing the general conjecture.

DIAMETRIC THEOREM. For a > 2 let r € {0} U N be the largest integer
such that

t—1
t+2r<min{n+1,t+2 }
a—2

Then N (n,t) = |%|. (By convention, (t — 1) /(s — 2) = = for a = 2.)

Remark 1. Actually, we also can prove that, up to permutation of
{1,2,..., n} and permutations of the alphabet in the components, there is
exactly one optimal configuration, unless ¢ > 1, t + 2(t — 1) /(e — 2) < n
and (t — 1)/(a — 2) is integral, in which case we have two optimal
configurations, 7, _1 (-2 and Z,_1)/(a-2)-1-
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Remark 2. A generalization of Theorem Ka to every a > 2 can be
obtained with the intersection concept based on the quantity

int*(a", b") é|{j €[n]ia;=b =a- l}|

instead of the gquantity int(a”, b") defined in (1.2).

In analogy to N, (n,t) we get now M, (n,t), where M,(n,t) equals the
familiar M(n,t) and obviously -M_ (n,t) < N, (n,t). The structure of the
Z's and the diametric theorem imply now M (n,t) = N, (n,t). In particu-
lar, we have thus shown that Theorem Ka can also be proved by our
methods.

2. REDUCTION TO CANONICAL AND STABLE SETS

We give combinatorial characterizations of N_(n,t) of increasing preci-
sion. The first one is not new.

ProprosiTION FF [7].

n

Ny(n,t) = max Y I&(a—-1)"", (2.1)

Zelln,t) j—g

where &, = & N (I11),

We derive this result, because we want to start from first principles and
at the same time introduce some concepts. Here it is more convenient to
write A for a word a" = (ay,...,a,). It seems that the following transfor-
mation was first used by Kleitman [9].

Foranyw c2', any A = (aj,a,,...,a,) €, and1 <j<n,0<i < «
— 1, we define
(al,...,aj_l,a—1,aj+1,...,an),
T,(A) = if this is not element of . and a; = i,
A, otherwise
and

Ty() = {T(A): A e},

Repeated application of these transformations yields after finitely many
steps an &' 27, for which

T(«)=o foralll<j<nO0<i<a-1 (2.2)
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DerINITION 2.1. A set &/ C 27 is said to be canonical, if
T(¥)=« foralll<j<nO0<i<a-1

The transformation 7}, has the important properties to keep the cardinal-
ity and the ¢ — 2;-intersection property unchanged; that is, |7;,(%)| = ||
and .« € J,(n, t) implies T;,(«) € J,(n,t). Hence

N,(n,t) = max |¥|= max || (2.3)
el (n,t) AeCl,(n,1)

where CJ (n,t) € J (n,t) is the set of all canonical systems in J (7, ).
Now we make the transition to 20",

DEFINITION 2.2.  To a system & € CJ,(n, t) we associate the set-theoret-
ical image (/) = {B(A): A €}, where B(A) is defined in (1.8).

We have an immediate consequence
LemmA 1 (Frankl and Furedi [7]). For & € CJ (n,t),
B(&) €l(n,t).
DerINITION 2.3. For any D € 2"l we define the upset (D) = {D’ €

2"l: D c D'}. More generally (with slight abuse of notation) for # c 2",
we define the upset

#(2)= U #(D).
Deg
Again, we have a direct consequence of the definitions.

LEMMA 2. Let & € CJ (n,t) satisfy || = N (n,t), and let (/) be the
set-theoretical image of &. Then

() B(«) is an upset.

(ii) W= Y (a-1)E
B(A)eRB (L)
- Ye(a-1" (24)
where -
g =‘$(;a/) N [;’])‘.

This yields the proposition. We introduce another familiar concept.
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DEFINITION 2.4. A set of subsets & c 2["] is said to be left-compressed
or stable, if, for every D e andevery l <i<j<n withi & D, je D
necessarily, D' = (D \ {j}) U {i}) € 2.

We denote by LI(n,t) C I(n,t) the set of all stable systems in I(n, )
and by LCJ (n,t) € CJ (n,t) the set of all systems & € CJ (n,t) with
H() € LI(n,t). From (2.2) and the left-pushing technique of [5], it
readily follows that

Ny(n,t) = max l¥l= max |¥l= max |¥]. (2.5)
sel (n,t) LeCl,(n,t) L eLCl,(n,t)

Next, for an E € 2" we introduce
7(E)={A€2" B(A) € Z(E)}. (2.6)
Clearly,
|7 (E)| = a"1EL (2.7)
More generally, for & c 2["1 we introduce

7(&)= | 7(E).
Ee&

DErFINITION 2.5, Let & € CJ (n,t) and let () be the set-theoretical
image of 7. Then & is called a-upset, if

o =7 (B()).

DerINITION 2.6. For E ={e;, e,,...,ez} Clnl e <e, < - <ep,
write the biggest element e 5 as s*(E). Also for & c 2I"] set

sT(&) = ?géf(E).

The next important properties immediately follow from left-com-
pressedness arguments (similar to those in [3]).

LEMMA 3. Let &/ € LCJ (n,t), let &/ be an a-upset, and let FB(s/) be
the set-theoretical image of /. Further, let M(%/) be the set of minimal
elements of B(/) (in the sense of set-theoretical inclusion). Then & is a
disjoint union

¥= U D(E),
EeM()
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where
D(E) ={A=(ay,....a,) €2 B(A) N [1,s"(E)] = E

and (ag+ gyy 100 a,) E%”‘“(E)}. (2.8)

LeEMMA 4. For an a-upset & € LCJ (n,t), choose E € M(s7) such that
sY(E) = s™(M(%)) and consider the set of elements of &/, which are only
generated by E, that is,

4y = 7 (E)\ 7 (M() \ E).
Then
&y = D(E) (D(E) is defined in (2.8))
and

7] = (@ — 1) E T anm ), (2.9)

LEMMA 5. Let & € LCJ (n,t), let & be an a-upset, and let E|, E, €
M(s7) have the propertiesi & E; U E,, j € E; N E, forsome i, € [n] with
i <j. Then

|[E, NE,|=t+ 1.

3. THE TWO MAIN AUXILIARY RESULTS

LEMMA 6. For a > 2 let &/ € LCJ (n,t) with |&/| = N (n, t), let B(/)
be the set-theoretical image of &, and let M(%) be the set of all minimal
elements of B (). Then

2(t—1)

(M) =t+2r<t+ —
s*(M()) r p—

forsomer € {0} UN. (3.1)

Moreover, if (t —1)/(a — 2) is a positive integer, then there exists an
&' € LCT (n,t) with |&7'| = N (n, t) such that

2(t—1)

(M) =t+2r <t+
sT(M(")) r —

forsomer' € {0} UN. (3.2)

Remark 1. From this result easily follows the proof of conjecture (1.6),
stated in the Introduction. The proof goes as follows: For n <t + 1 or
a >t + 1, we have from (3.2) s*(M(A')) = ¢t and hence || = N, (n,t) =
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a""=|Kjland if n >t + 1land a <t + 1itis easily verified that

N,(n,t) = |Ky| > [Kl.

Remark 2. From this result the following observation is immediate:
The structure of the optimal families does not depend on n for n > ¢ +
20t =1 /(a = 2).

Remark 3. The proof of Lemma 6 is mainly based on the ideas and
methods used in our previous paper [3].

Proof. First we prove (3.1). Assume to the opposite of (3.1) that

2(t—1)
S+(M(J2/))=l>t+ﬁ (33)
or
2(t—1)
lSl“i‘ﬁ but 241 —1t. (34)

We shall show that under these assumptions there exists an &' € J (n,t)
with |o7'| > |&], which is a contradiction to || = N, (n,¢). For this we
start with the partition

M(&) = My(7) U My(),
where
My() ={E € M(%):s*(E) =s"(M(%)) =1}
and
My() = M(&) \ Mo().
Obviously, for every E; € M(«) and E, € M (%), we have

(E\\{1}) NE,|=1.

The elements in M,(%) have an important property, which follows imme-
diately from Lemma 5:

(P) For any E,, E, € My() with |E, N E,| = t necessarily,
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Now we partition M (&) according to the cardinalities of its members

My(#) = U % =My() N [’i’]).

Of course, some of the %;’s can be empty.
Next we omit the element {/}; that is, we consider

# ={Ec[1,l-1]: EU{l} €e%}.

So |#,| = |#!| and, for E' € %!, |E'| = i — 1. From property (P) we know
that, for £} € %], £, €% with i +j # [ + t necessarily,

|Ef N Ey| >t (3.5)

We shall prove that (under assumptions (3.3) or (3.4)) all %;’s are empty.
Suppose that, for some i, %, # & or, equivalently, % # J. We distin-
guish two cases: (@) i # ({+¢)/2and (b)) i = + 1) /2.

Case (a). We consider the sets
fi=M(&) U (M(Z)\(FZVR.,_;)) VR
and
fo=M() U (My(L)\(Z; VZyyi—1)) YL

We know already (see property (P) and (3.5)) that
fi,fo €1(n,t)

and hence

& =7(f) €l (n,t) fori=1,2.

The desired contradiction shall take the form
max 7| > |.«7]. (3.6)
i=1,2

We consider the set &/ \&,. From the construction of f, and %s, it

follows that

H\A, = U D(E),
Ee‘g?lﬂ—i

where the D(E)'s are defined in (2.8). Using Lemma 4, we have

N\ = 1%, ) (= 1) e (3.7)
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Now we consider ., \.&/. Let E, be any element of %/s, so |E | =i — 1.
We consider

D(E) ={A=(ay,...,a,) €2 B(A) n[1,1] =E,
and (a,,q,...,a,) €277} (3.8)

(recalling that B(A) € 2!"! is the set-theoretical image of A).
It can easily be seen that

D'(E,) e/ \A (3.9)
and
|D'(E;)| = (a—1)""" ot (3.10)

We also notice that, for E,, E, € %], E, # E,, one has

D'(E,) ND'(E,)) =@. (3.11)
Therefore
W\ = B (a— 1) el (3.12)
Analogously, we have
o\ = %] (a—1) " a"! (3.13)
and
N\ = |, (= 1) T T (3.14)

Actually, it is easy to show that there are equalities in (3.12) and (3.14).
However, that is not needed here.

Now (3.7) and (3.12)—(3.14) enable us to state the negation of (3.6) in the
form

|‘%i|(a - 1)1_i+1 ca" < |<%l+z—i| ’ (a - 1)i_t cal
|4 il = 1)i_t+1 ca" < |7 (o — 1)l_i' a" !

which is obviously false, because %, # & and a > 2.

Case (a), which we have just considered, shows that 2|z + 1), [ =
sT(M()). This shows that assumption (3.4) is false. Moreover, if 2|] + ¢,
then necessarily

[+t
[El=—— forall E € M(«) with s™(E) =" (M(2)) = .
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Case (b). Here necessarily 2|/ + ¢. We consider the set %, , and
recall that, for £ € %, )5,

t+1
|E|=T_l and Ec[1,/-1].

By the pigeon-hole principle there existan i € [1,/ — 1]and a 9 C %,
such that i ¢ E for all E €9 and

t
71> m : |9?(/1+/)/2|- (3.15)

By Lemma 5 we have |E;, N E,| > ¢ for all E,, E, €9 and since by Case
@ %, = fori+(t+1)/2, we get

= (ML) \Zys1)2) VT € 1(n,t)
and hence
7 (f) €l (n,t).
We are going to show (under condition (3.3)) that
|7 (f)] > |«l. (3.16)
Indeed, let us write

& =7 (M()) =D, UD,,

where
Dy = 7 (M(4)\F1)2).
Dy =7 (Rs12) \ 7 (M(F) \ Py 1112)
and
7(f') =D, U Dj,
where

D, = 7(9) \ %(M(M) \9?(141)/2)-
In this terminology, equivalent to (3.16) is

|D3l > |D,l. (3.17)
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We know by Lemma 4 that
U-1/2  a_
Dy =1Fyipyol (@ = 1) 20! (3.18)

and estimate |D,| from below.
Let E€g, Ecll—1], and |E|=(t +1)/2 — 1. We consider

¢(E) ={A=(ay,....a,) €2 B(A)N[l-1]=E
and (a,,...,a,) €21},

Clearly, #(E) € D, and |Z(E)| = (a — 1)""/2. o"~!*1 We also notice
that, for all £, E, €9, E, + E,, we have

Z(E,) NZ(E,) =J.
Therefore
Dyl 2 171+ (@ = )72 an i, (3.19)

Actually, as in the similar situation in Case (a), we have equality in (3.19),
but again it is not needed here.
In the light of (3.15) and (3.17)—(3.19) sufficient for (3.16) is

I —t
(I=0/2 n—I+1
2(1——1)|‘9?<t+1)/2| “(a—1) et
> |‘9?(t+l)/2| (a-— 1)(170/2 catl
According to (3.3) and %, ,,,, # I, this is true. Therefore (3.16) holds in
contradiction to the optimality of .«z. Hence the assumption (3.3) is false

and the first part of Lemma 6 is proved.
Now let (r — 1) /(a — 2) be a positive integer and let

t—1

sT(M()) =1=1+2 (3.20)

a—2°
We already know from Case (a) that

I+t
|E| = — forall E € M(&) with s*(E) = 1.

We repeat the steps described in Case (b) and observe that instead of
(3.16), under assumption (3.20), a slightly weaker inequality 7°(f’) > ||
holds. Lemma 6 is proved.

We need the following “comparison lemma,” which makes it possible to
link the theorem with Theorem AK via its corollary in Section 4.
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[m]

Let S ¢ 22", thatis, ¥ € § > % c 2",
Forgiven t € N, t <m, and B,, B,;1,.-., B, € R", we consider

h(S, Brseoes By) = max Y11 B, (3.21)
€5 =t
where .7, =2 n (),
Suppose there is an #* < S so that, for some r € N,
=g ift<i<t+rand|Z* > (%)

forallt+r<i<mandall < S.

LEMMAT7. Let < 2”" B, B,i1,.... B, € R* andleth(S, B,....,B,)
be assumed at Z* € S, which is described just above. Then for any vy,, ..., vy,
€ R* such that

Bi Yi
Z ]
Bii1 Yi+1
still h(S,y,,...,,) is assumed at £*, that is,
m m
RS, Yireoos W) = Max Y141y, = Y IZF
Zes i=t

i=t

i=t,...,m—1, (3.22)

Proof. Let v,,...,v, € R*, such that B,/B.., = v./v;., for i=
t,...,m — 1 and let us prove that
m m
Y1y 2 L1y, (3.23)
i=t i=t
for every € §.
From the condition on Z* in the lemma, we know that

m m
LI B = LIl B (3.24)
i=t i=t
Without loss of generality, we can assume B, = vy, = 1. We write the
numbers B,,..., Bus Yir- -1 VY, IN the form:
B, =1 Y =1
:Bmflzamfl ’melzgmfl
Bm—2=5m—l.8m—2 Yn-2= Em-1Em-2
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Then condition (3.22) is equivalent to the inequality

0 = g, i=t,...,m—1. (3.25)
Let /€N be the smallest integer for which 6, ,=¢,_,,6,_,=
8m—2""’5m—1+1 = 8m—l+1'bUt 6m—4 > €m—P
Now we consider B/,..., B, ,where B, =B, =1,...,B, 111 = Bn_1+1
and B/ =B;-¢,_1/6,_nt<i<m—1
Let us show that
m m
LILH B = Y1l B (3.26)
i=t i=t
If m — 1+ 1 < ¢+ r, then the condition () and (3.24) imply
m m m m
LIZH B = LIZ B = YLIZ]- B = LIZ|- B
i=t i=t i=t i=t
If m —1+1>1t+r, then (3.26) is equivalent to
n m ! Bigm—l
Y 1F g+ L F ——
i=m—I1+1 i=t+r amfl
o m- ! Biamfl
Z Z |=Z| : Bi + Z |=Z| : 1
i=m—1+1 i=t awfl
which, in turn, is equivalent to
m m
(amfl_gmfl)' Z |$*|.Bi+8m7[' Z |z*|ﬁz
i=m—I1+1 i=t+r
m m
= (Sm—l_gm—l). Z |"Z|'Bt’+8m—lz|z|'ﬁi
i=m—I1+1 i=t
and finally to
m
(Bmfl - gmfl) ' Z (|Z*| - |°Z|):31
i=m—I1+1

m m

+ e | LILH B - LIl | = 0.

i=t i=t

This is true because 8, ;> &,_;, | Z*I > |Zlfori=m -1 +1>t+r
(see condition () and (3.24)).
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It is easily seen that, continuing this transformation, we will arrive at the

coefficients v,, ..., v, and (3.23) holds.

Remark. Lemma 7 can be formulated for much more general struc-
tures. For instance, instead of 22”' one can take R” = {L = (I,,...,1,):
[; = 0}, choose suitable S c R?, L* € S, and the claim of Lemma 7 still
holds.

4. PROOF OF THE THEOREM
At first let us recall the sets
Z={Fe(%wﬂFﬁHJ+bﬂ2t+r
and
={dez|B(A)Nn[Lt+2r]| >t +7r},

where B(A4) € 2" is the set-theoretical image of A.
Let us also define the set

D(r,t) ={D 2" |D| >t +r}

and let

2,=7n
14

[t +.2r]).

We note that |Z;| =0if i <t +r,and |Z;| = ("*2) if i >t + r. Clearly,
2(r,t) € I(t + 2r,t). We can write the cardinalities of % and .7 as

r

follows:
d 2r +t n—2r—t
|’Z|=];(t+r+]) (k—t—r—j
t+2r
i=0
and
— d 27'+t . _ "_j. n—2r—t
|ﬁ/,|—j§)0(t+,+j) (a—1)" a

t+2r

= a"” 2r—t , Z |9| (a )2r+t—i.
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Now we present an easy but important consequence of Theorem AK
stated in the Introduction.

COROLLARY. Let

t—1 r—1
(k—t+1)(2+— <m<(k—t+1)(2+—), reN,
r+1 r

(4.1)
and let
m—2r —t .
v = ( P ) fori=t. (4.2)
Then
2r+t [2r+t]

max DI EARES where &7, = o/ N
AEIQr+t,t) j—y

l

l

is assumed at &/ =2 (r, t).
Now we are ready to prove our main result.

Proof of the theorem. Let r € {0} U N be the biggest integer so that

t—1
t+2r<min{n+1,t+2 2}. (4.3)

o —

From Lemma 6 it immediately follows that, for this r,

t+2r
Na(n,t) _ max Z |%| . (a _ 1)t+2r—l . an—t—Zr
FAEIQr+t,t) j_y
t+2r i
=c- max Y|l (a—1)TT (4.4)

Sel@Qr+t,t) j—;

where ¢ = a" '~% is a constant. We note that in the case n <t +
20t —1)/(a—2)wehave c =1or ¢ = a.

Now we are going to apply Lemma 7 with respect to m =t + 2r,
S =1I(t+2r,1) 22"y, = (m2r=0) i =1t,... t + 2r, where m, is an
integer from the interval in (4.1), 8, = (a — 1)'"?"7/ (see (4.4)). As a set
Z* in Lemma 7 we take Z* =9(r,t) € I(¢t + 2r,t), since 2(r, t) has the
properties (*) and, according to the corollary, satisfies the condition in
Lemma 7 on the set #*.
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To apply Lemma 7, it remains to show the existence of a suitable m,
from the interval in (4.1) for which the condition (3.22) in Lemma 7 holds:

Yi 5
>(a—-1) = , i=t,...,t+2r—1. (4.5)
Yi+1 Oip1
For this, necessarily we must have
k>t+2r (4.6)

and
my>oa(k—t)+2r+t-1 (this follows from (4.5)). (4.7)

Hence, to apply Lemma 7, it remains to show the existence of an integer
k € N for which the system of inequalities

r ) (4.8)

t—1 t
k—t+1)[2+ —— | <my<(k—t+1)|2+
(k=2 s ) <mo< (k- ra )
alk—t) +2r+t—-1<m,

is solvable for m, € N provided that the conditions

t—1

k>t+2r and r<
a— 2

(4.9)

hold (see (4.6) and (4.3)).
The system (4.8) is equivalent to

my mo(r + 1)
—_— - 1<k < ———= 4+t -1,
2r+t—1 2r+t+1
mg 2r+t—1
k< —— —— +1.
o o

(4.10)

To guarantee the existence of a k € N for the first inequality, it is
sufficient to take m, so big that

m my(r +1
—O+t—1<M+t—2,
2r+t—1 2r+t+1

which gives

@r+t+D(2r+t-1)

4.11
my -1 ( )
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Now we consider the inequality
mg m, 2r+t—1
—tt-1l<— - — +1t-1
2r+t—1 a a

or, equivalently,
(2r—|—t—1)2<m0(2r+t—1—ar).

Since r < (t — 1)/(a — 2) (see condition (4.9)) and, consequently, 2r + ¢
-1 - Br> 0, we have

(2r +t — 1)°
mg . (4.12)
2r+t—1—ar
Next we consider the inequality
rmi,
2r+t < — +1— 1,
2r+t—1
which gives
2r+ H)(2r+t—1
my ( ) ) . (4.13)

r

Finally, we take m, € N so big, that m, satisfies (4.11)—(4.13), and we take
as k € N the smallest integer such that k > rm,/Qr +¢t—1) +¢— 1

For these m,, k € N, (4.10) and (4.9) hold. Consequently, (4.8) also
holds. Hence v,/(y; + D > (e« — 1) = §,/(5;+ D forall i =¢,...,1 + 2r
— 1 and we can apply Lemma 7. This finishes the proof of the theorem
because

t+2r

No(mt) =17 = a2 Y 19 (@ = DT
i=0

where 9, =2(t,r) N (Ir+,271).
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