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Information and Control: Matching Channels

Rudolf Ahlswede and Ning Cai

(Dedicated to Mark Pinsker on his 70th birthday)

Abstract— The transmission problem for noisy channels is
usually studied under the condition that the decoding error prob-
ability A is small and is sometimes studied under the condition
that A\ = 0. Here we just require that A <1 and obtain a
problem which is equivalent to a coding problem with small A
for the “Deterministic Matching channel.” In this new model, a
cooperative person knows the codeword to be sent and can choose
(match) the state sequence of the channel. There are interesting
connections to combinatorial matching theory and extensions to
the theory of identification as well as to multi-way channels. In
particular, there is a surprising connection to Pinsker’s coding
theorem for the deterministic broadcast channel.

Index Terms— Combinatorial matching, detection, feedback,
identification, new channel models, zero-error problems;

I. NEw CONCEPTS AND RESULTS

A. The Matching Channel

ET & serve as input alphabet and let ) serve as output

alphabet. By adding dummy letters we can always assume
that X C Y. The transmission of letters is ruled by a class
W of stochastic matrices with |&’| rows and |)| columns
as follows. In addition to a sender and a receiver, there is
a third person (or device) called a controller who decides
which matrix W € W = {w(-| - |s): s € S} shall govern the
transmission of a letter by the sender. The controller knows
which codeword the sender wants to transmit. The receiver
has no knowledge about the actions of the controller. As
code concept appropriate for this situation we introduce a
matching code (MC). We call {(w;,D;): 1 < ¢ < M} an
(n, M, \)-MC-code for W, if

u; € X", D, C Y™, fore=1,2,---,M (1.1
u; Zujand D; N D; =, fori #7 (1.2)
and if for every ¢ there is a sequence
s™(i) = (s1(2),- -+, 8x(2)) € S =1IT S
with
W7 (Dilui|s™ (1)) 21— A (1.3)
if

n

Whi(y" 275" (1) = [ W (welalse(0))

t=1
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for

" = (21, ,x,) €A™
and
yn :(yla"'ayn) Gyn.

Let C(WV) be the capacity of the matching channel W.

As usual we denote by X, S, Y random variables (RV’s)
with values in X', S, and ), respectively. Let Pxg be the
joint distribution of (X, S) and

Pxsy(x, s, y) = Pxs(z, s)W(y|z, s)

forz e A, s € S,and y € ).

Theorem 1: The capacity of the matching channel is given

by
cow) = max min (H(X),I(XS A Y)).
XS

Notice that the quantity C = maxp,, I(XS A Y) is
the capacity of the corresponding discrete memoryless channel
(X x8,Y, W) (or for the model, where the controller knows
not only the codeword but even the message to be sent) and
that, therefore, C(W) < C.

The minimization with H(X) reflects the fact that
only pairs (z", s"), which are all different in the first
component are permitted in the encoding. Obviously, choosing
M ~ exp{nmin(H(X),I(XS A Y)} of such pairs, say,
{(z},sF): 1 <4 < M}, independently with distribution P% ¢
results with high probability in a code, for which most z}*’s
are different—and those we keep! This gives the direct part
of Theorem 1 and the converse part is also obvious.

Remarks:

1) In case the controller is restricted to choose only state
sequences (s,s,---,s),s € S, we are led to the “opti-
mistic” channel of [25].

2) Massey conveyed the following interpretation to us:
One can speak of “Coding with a Barrister” for the
following reason. In the British system of law there
are two kinds of lawyers, solicitors and barristers. The
solicitor is the lawyer who prepares the case, but only
the barrister is permitted to argue the case before the
court. In the American system of law, the same lawyer
usually performs both functions. Previously in coding
theory, the ‘“encoder” performed like an American
lawyer, both mapping the message into a codeword
then transmitting this codeword over the channel. The
new feature of the present model is that the “encoder”
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acts like a “solicitor,” only mapping the message into
a codeword. It is then the “barrister” who transmits the
codeword over the channel. Of course, if the barrister
knew the message, there would be nothing new.

B. The Deterministic Matching Channel

It is instructive to consider the case where W = W,
contains only 0-1 matrices.

Then Theorem 1 has the following specialization.

Theorem 2.:

C(Wp) = max min(H(X),H(Y)).
Pxs

Clearly, by the definition of an (n, M, A)-MC-code we can
assume now that |D;| = 1 and thus D; = {v;}. Also if A< 1,
then it can actually be chosen to equal 0. So the distinct u;’s
are matched with distinct v;’s. In determining the capacity
C(Wo) we are thus led to a new probabilistic coding theory,
whose mathematical structure is interesting and natural: a
novel combinatorial matching theory for products of bipartite
graphs.

It is convenient to work with an equivalent formulation of
coding problems for W, in terms of an associated DMC W

W () =Y Q(s)W(-|z|s)

s€ES

1.4

where () is any probability distribution on S with Q(s)>0
for s € S.
Since for the DMC
wh(y"e") = [T Wwelz)
t=1

one notices that for any (n, M, 0)-MC-code {(u;,D;): 1 < i <
M} for W, the condition (1.3) can equivalently be described
in the “dummy” formulation by

W™(Dilu;)) >0, fori=1,2---,M. (15

It is mathematically and esthetically quite appealing that by
weakening the requirements on the error performance we are
led from zero-error codes [15], where

W™(D;lw) =1, fori=1,---,M (1.6)
to the most familiar A-error codes (A >0) with
Wr(Dilu) >1— X,  fori=1,-+, M, (1.7)

to MC-codes for Wy in the “dummy” formulation.
The corresponding capacities Co(W), C(W), and C(Wp)
satisfy, of course,

Co(W) < (W) < C(W). (18)

There is a code concept between the first two, namely, that
of an erasure code, for which in addition to (1.7) we also have

W™(Dj|u;) = 0, for i # j. (1.9
The zero-error erasure capacity Ce; (V) has been studied in

several papers and recently quite intensively by several authors
(c.f. [9]). Until now, no “single-letter” formula exists.
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Quite analogously we can also require (1.9) in conjunction
with (1.5). This gives exactly the MDC-code defined in Section
I-D in terms of W.

It is interesting that coding for W, is equivalent with
matching in products of bipartite graphs (see Section IIT). This
connection leads to a combinatorial version of Theorem 2,
which is stated as Theorem 4 in Section IV. It has a nice direct
proof with Kénig’s Minimax Theorem. Beyond this result on
the asymptotic behavior of matching numbers under products,
we give an exact result for two factors in Theorem 5 (Section
V). This enables us to get also exact results for powers of
certain bipartite graphs (Theorem 6 in Section VI). Finally, in
Section VII we underline with two examples the significance
of Theorems 5 and 6.

C. Multi-Way Matching Channels

The concept of a matching DMC has straightforward ex-
tensions to several sender and receiver models. A highlight in
Section VIII is the solution of the general broadcast problem in
this matching theory. As a special case of Theorem 9 we obtain
Pinsker’s [19] capacity region for the deterministic broadcast
channel.

The corresponding Theorems 7 and 8 for compound and
multiple-access channels are stated without their (routine)
proofs.

D. The Controller Falls Asleep

It seems to us that the interplay between information transfer
and controlling certain channels deserves more and deeper
investigations. Channels with control aspects are the permuting
relay channels of [22] and [24], as well as the outputwise
varying channels of [18], which arose in the study of rewritable
storage media. We also draw attention to [23] for still another
philosophy: controlling by creating order.

Now we are more specific. In the model described in Section
I-A, the controller is not only assumed to be cooperative,
but he also acts perfectly. Next the communicators safeguard
against mistakes of the controller and even against malicious
operations (jamming) by using matching zero-error detection
codes (MDC) {(u;,D;): 1 < ¢ < M} which in addition to
(1.3) (automatically with A = 0) satisfy

W™(Djlu;|s™) =0, for i # j and all s" € S™. (1.10)

To determine its capacity, Cp,qe(VV), is a formidable task.
For the deterministic matching channel 1V, results and rela-
tions to other zero-error capacities are contained in Section IX.
Appendix I contains instructive examples and Theorem 1.1 as
the main contribution on the relation. For one genuine channel,
the (‘;) -uniform hypergraph channel W, g, we succeeded in
determing the capacity in Section X.

As in the classical AWAC system we assume here that there
is a noiseless feedback channel or just an active feedback
channel on which the receiver can ask for retransmission.
The frequency of such retransmissions depends on the error
frequency (the sleeping habits) of the controller.

We emphasize again that in Section I-A it makes a big
difference whether the controller knows the message (and thus
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the same word can be used in conjunction with different state
sequences to represent the different messages) or only the
codeword (and thus no word can represent different messages).

In the present situation it makes no sense to assume that the
controller knows in addition to the codeword the messages,
because the codewords have to be different, anyhow, to cope
with a sleeping controller.

E. Matching Zero-Error Detection Codes
with Feedback for Wy (MDCF)

We mention first that feedback or also randomization in the
encoding increases the capacity of the matching channel W
to the effect that the term H(X) has to be dropped in the
formula of Theorem 1. This is stated in (11.1) and proved in
Section XI.

We turn now to the MDCF.

The feedback is now really used in the design of the code.
There is given a finite set of messages M = {1,2,---,M}.
One of these messages is to be sent over the channel. Message
i € M is encoded by a (vector-valued) function

fzn = [fﬂ:fi?a"'afin]

where, for t € {2,---,n}, fi is defined on Y*~! and takes
values in A'. f;; is an element of A'. It is understood that
after the received elements Yj,---,Y;_; have been made
known to the sender by the feedback channel, the sender
transmits f;;(Y1,---,Y;_1). At £ = 1 the sender transmits f;;.
Again, we assume that the controller knows only the encoding
functions, but not the messages, and therefore fI* # f; if
¢ # j. The distribution of the RV’s Y; (¢ = 1,2,---,n) is
determined by f7* and W (| - |s™). We denote the probability
of receiving y™ = (y1,---,yn) € V™, if ¢ has been encoded
and the controller uses s", by

W™y f7]8™) = W (g1 fir|s1) W (yal fiz(w1)] s2)
o W(ynlfin(yr, -+ yn—1)|5n)-

In an (n, M, A) matching zero-error detection feedback
code {(fi,Di,s?): 1 < i < M} the D; are disjoint subsets
of V" and

W™(Dilfilsi) 21— A,

W™(Djlfi|s") =0,

fori=1,---,N
for all s" € 8™, j #4. (1.11)

We are interested in the capacity Cp,qer(Wo). Here we
can assume the D;’s to have one element, say the v;’s. Our
optimism for finding a nice formula was originally just specu-
lative: in case of feedback Shannon found also a nice formula
for his zero-error capacity! Indeed, we have a surprising result,
which is proved in Section XII.

Theorem 3:

maxp, ;. [(XS AY)
a) Cm de f(WO) = or

0
b) Cp, ge f(Wo) = 0 exactly if all columns

have positive or zero entries only.

The astute reader may notice that Shannon’s formula or the
alternate formula of [15] (asked for by Shannon in [8]) has
also a dichotomy relative to positivity. The formula in [15]
describes the capacity of a jamming problem, namely, that
of an arbitrarily varying channel with feedback. Our formula
for Cy, qe f(Wo) also settles a feedback problem involving
jamming.

Problem 1: Is there a common generalization of both jam-
ming problems?

F. Identification

We emphasize that a systematic analysis of code concepts is
still rewarding. By giving up the disjointness of the decoding
sets and by requiring in addition to (1.7)

W™(D;lu;) < A, forzs #j (1.12)
we get the concept of a (nonrandomized) identification code
[12]. Randomization means here that instead of u; € A™ we
allow Q; € P(A™), the set of PD’s on A™.

In [9] we assumed (1.12) in conjunction with (1.6), that
is, zero-error probability for misrejection and found that here
the second-order identification capacity equals the (first-order)
erasure capacity Ce;.

Now we combine for instance (1.5) and (1.9), that is,
identification with zero probability of misacceptance. Actually,
we analyze all possible capacity concepts in Theorems 11-13
in Section XIII.

G. Further Code Concepts Leading to New
Combinatorial Extremal Problems

Finally, we present and analyze in Definitions II.1-II.3 in
Appendix II pairwise zero-error detection codes, component-
pairwise zero-error detection codes, and pseudomatching zero-
error detection codes (Theorem II.1). We comment also on
other concepts. With the only exception of Section XI, we
consider from now on the deterministic Wy or an associated
DMC.

II. DEFINITIONS, KNOWN FACTS, AND ABBREVIATIONS

We use essentially the terminology of [12].

1) Sets, Channels, Types, Generated Sequences: Script cap-
itals X, Y, - - -, denote finite sets. The cardinality of a set
A is denoted by |A|. (%) is the family of all k-element
subsets of the set A. The letters P, () always stand for
probability distributions on finite sets. X, Y, --- denote
RV’s. The functions “log” and “exp” are understood to
be to the base 2. For a stochastic |X'| X |V|-matrix W
we have already defined the transmission probabilities
W™ of a DMC, and we have also introduced P(X™) as
the set of PD’s on A™. We abbreviate P(X) as P. V
denotes the set of all channels V' with input alphabet A’
and output alphabet ). For positive integers n we set

Pn={PeP: P(x)e{0,1/n,2/n,---,1} for all z€ X'}.
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For any P € P,, called type or n-type, we define the set

Va(P) = {VGV: V(ylz)e {0, nPl(x), Mf(x),.-q},

:veX,yey}.
For z™ € A™ we define for every z € X

Pou(z) = (number of occurrences of x in 2™).

P~ is a member of P,, by definition. F,~ is called type
of z". Similarly, we define the type P,n,» for pairs
(z"™,y") € &A™ x Y". For P € P the set T3 of all
P-typical sequences in &A™ is given by

T3 = {2": Pyn = P}.

For an RV Z with distribution Pz we abbreviate 17,
as 7, and when we emphasize that P is a distribution
on Z and that 7 C 2", then we write Z"(P) instead
of 77.

For V € V, a sequence y" € Y" is said to be
V -generated by z" if, for all z € X,y € Y

Pav”y” (xv y) = Pon (x) ) V(y|$)

The set of those sequences is denoted by 7. (™). Notice
that 7% # < if and only if P € P, and T*(z") # &
if and only if V € V,(P,). For the pair of RV’s
(X,Y) with Pr(Y = y|X = z) = V(y|z) we write
also T}Z'lX( ") instead of 7?(z"). For P € P,V € V
we write PV for the PD on ) given by

ZP

T3y is the set of PV-typical sequences in Y.
Entropy and Information Quantities: Let X be an RV
with values in A" and distribution P € P, and let Y be
an RV with values in Y such that the joint distribution
of (X,Y)on & x ) is given by

Pr(X =Y =y)=P)-V(ylz), Ve

We write H(P), H(V|P), and I(P,V) for the entropy
H(X), the conditional entropy H (Y| X), and the mutual
information /(X A Y), respectively. For P, P € P

P(z)

P(z)

denotes the I-divergence and for V, V eV the quantity
D(V|[V|P) = ZP V(Iz)VI[V(|z))

for the conditional I-divergence.

Elementary Properties of Typical Sequences and Gener-
ated Sequences:

V(y|z), ye .

2)

D(P|P) =Y P(x)log

3)

|Pal < (n+ 1)1
Va(P)| < (n+ )XW
(n+ 1)~ exp{nH(P)} < |T#| < exp{nH(P)}
@.1)
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for P € Py,
|73 (2")] 2 (n+ 1)~ exp{nH (V|P)}
|77 (2)| < exp{nH(V|P)}
for P € Pn,V € Voo (P),a™ € 7%, and
W (T2 (™) |s") < exp{-nD(VVIW|P)}
WR(TH )" 2 (0 -+ 1)
exp{-nD(VV|W|P)}
for

PePn,VeW,(P),a" € Tp,y" € T/ (z™)

and W € V.
Let
Ty s(z") = {y" € Ty (z Z W (ylz) — V(ylz)| <nd}.
For V € V,,(P,~) one can always find a sequence (6,)52
with lim,, ., &, = 0 and lim,, .o, /16, = co such that

as n — oo.

VT, (a")|=") — 1,

Moreover, for any pair of RV’s (X, Y) with 73y # O,
we always have

Ty = U &™) x Tx (™)
@ CTY

and, therefore,

TRy | = 1T Ty x ("),  forallz™ € Tx™.  (22)

This is used in Section VIIL
Table I provides a list of abbreviations and indicates where
they are used.

III. THE DETERMINISTIC MATCHING CHANNEL AND
MATCHING IN PRODUCTS OF BIPARTITE GRAPHS

We have shown in Section I that one can associate with the
deterministic matching channel W, a DMC W given by (1.4)
so that any (n, M,0)-MC-code {(u;,D;): 1 <i <1} for W,
satisfies (1.5) for W. This condition means that the (correct)
decoding probability is positive.

In codes with this property there are v; € D; for i
1,2,---, M with

W™ (v;|u;) > 0. (3.1)

So it suffices to study D) with one element or sets of
codewords U with an injective map f: ¢/ — Y™ such that
forw e U

W™(f(u)|u) >0. (3.2)

Such an f is called a matching and (I, f) is a matching
code. Their study obviously concerns only the support of
W™ (ie., the set of positive entries of W™). This set can
be viewed as the edge set £, = &,(W) in the bipartite
graph GW™) = (X", Y, &, (W), where (z™,y") € &, iff
W(y"|z™) > 0.
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TABLE I
Abbreviation Meaning Section
w a class of channels called matching channel I, I, XI
Wo deterministic matching channel I, I, 11, IX, XII, Appendix I
w DMC associated with W, I

w (), Zve(t) column supports of matrices

yW'('): ZV,T(')

row supports of matrices

IX, Appendix I, Appendix II
IX, XIII, Appendix I,

Appendix II
MC matching codes I, 11
MDC matching zero-error detection codes (for deterministic channels) I, IX, X, Appendix I
MDCF matching zero-error detection codes with feedback I, XOO
MZ(W) largest size of zero-error detection codes for W™ IX, Appendix I
Me L (W) largest size of MDC for W™ IX, X, Appendix I
cw) capacity of matching channel W I
C(Wo) capacity of deterministic matching channels W I-vIIl
Crae(Wo) or Cy,, 4. capacity of matching zero-error detection codes for Wy I, IX, X, Appendix I
Cr de f(Wo) capacity of matching zero-error detection codes with feedback for Wy I, XII
Cr(W) capacity of matching codes with feedback for W I, XTI, XII
c=- <) various second-order "identification capacities” for a DMC X1
M™ (W)
M (W) the largest sizes of four kinds of pseudomatching O-error detection Appendix IT
My _ (W) codes for channel W™
ML (W)
My(W) the largest size of zero-error codes for W™ Appendix II
G1 @G product of graphs G; and Go I-VII
gon nth power of graph G III-VII, Appendix II
dg(v) degree of vertex v in graph G III-vin
Lg(v) vertices connected with v Im-v
v(G) matching number of graph G II-vI
7(G) vertex covering number of G 11, I, IV, VI
(9) limy, 0o (1/n)log(G¥™) v, vV, vII
K(9) Konig-Hall pair of distributions v, Vv
T5,77,2™(P) the set of P-typical sequences I, IV, VI, XIII
T7s(2™) (V, 6)-generated sequences of z™ II, XIII

Clearly, for the f above {(u, f(u)): u € U} is exactly a set
of nonintersecting edges in G(WW™), that is, a matching in the
terminology of graph theory. Conversely, such a matching is
a matching in the corresponding matching code (U, f), where
U is the set of vertices in A", which are matched to vertices
in Y". So we have reduced the study of the matching channel
Wy via W to the study of maximal matchings in the bipartite
graph G(W™).

At first we notice that this graph is an nth power G®¥" =
G®G®---®G of the graph G(W) = (X, ), &), if the product
G1 ® Go of two bipartite graphs G; = (X;, V;, &)1 =1,2; is
defined as (II?_; X;,II2 | Y, &) with

€ = {(22,y%): (wi,y:) € & fori = 1,2}. (3.3)
So we can write

GW™) =G (W). (3.4)

Shannon looked at these graphs in his study of the zero-
error capacity problem (i.e., the problem of determining the
vertex-independence number).

For any graph G = (V, £) the size of a largest matching is
called the matching number of G and is denoted by »(G).
A matching of the bipartite graphs (V;,V»,€) is called a
matching of V; into Vs if every v € V) is an endpoint of
an edge in the matching. A matching is perfect, if it is both;
a matching of V) into Vs and of Vs into V;.

A vertex cover of G is a subset S C V such that each edge
from £ has an endpoint in S. The cardinality of a smallest
vertex cover of G is the vertex cover number 7(G).

We introduce for every v € V

Lg(v) = {v': (v,0) € &} (3.5)
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and for every S C V

Ig(S) = U g (v) (3.6)
vES
The degree of v is
dg(v) = |Tg(v)|. 3.7

Two of the first and most basic results in matching theory
(see [7]) are as follows.

Theorem H (Hall’'s Marriage Theorem, [6], [7]):

A bipartite graph G = (V1, V5, €) has a matching of V;
into V, iff

IT(S)| > 8, forallScCV, (3.8)

and
Theorem K (Kénig's Minimax Theorem [7], [10]):
For every bipartite graph G

7(G) = v(G).

These theorems can easily be derived from each other. We
need here a consequence of Theorem K.

Corollary 1: If G = (V1,V,, E) satisfies for two numbers
dy,,dy, and for ¢ = 1,2

dg(v) = dy,, for allv € V;

then

7(9) = ¥(G) = iy V.

Proof: Without loss of generality we can assume |V;| <
|V2|. By the hypothesis we have also |£| = dy, [V;| fori = 1,2
and thus dy, > dy,.

Hence, each vertex of G covers at most dy, edges and,
therefore,

T(G)dv, = €]
which gives the result.
Remark:
3) We draw attention to the fact that matching and covering

in G(W™) are different from packing and covering by
edges for Cartesian products of hypergraphs (c.f. [1]).

= dVl |V1|

IV. MAIN RESULTS ON MATHCING
IN PRODUCTS OF BIPARTITE GRAPHS
For any bipartite graph G = (X,),€) we study the
asymptotic behavior of the matching number v(G®™). A key
idea is to extend the Koénig—Hall condition (3.8), which is
in terms of cardinalities as measure of sets, to pairs of PD’s
associated with G. The matching capacity of G is

¥(G) = lim — 108V(9®") (4.1)
We define the set
K@) ={(P,Q): P e P(X),Q € P()), P(S)
<Qg(s)VY S C X} (42)

and call its members Koénig—Hall pairs of distributions.
Moreover, in the sequel we assume that all graphs have no
isolated vertices.

547

Theorem 4: For every bipartite graph G =
v(9) =

Proof: Recall the definitions of typical sequences and
types in Section II. We shall decompose G®™ into subgraphs

Gn(P, Q) = (X"(P), Y*(Q), & (P, Q)
where P € P,(&X), Q € P,(Y), and
En(P,Q) = & N (A7(P) x Y(Q)).
Clearly, since G, (P, Q) is a subgraph of G&™
T(Ga(P, Q) < T(G57).
On the other hand, if C,, (P, Q) is a cover of G,(P, () of

smallest size, then

(X, ,€)
o) min(H(P), H(Q)).

max

(P,Q)eK

4.3)

U Cn(P,Q)

(P,Q)EP,(X)XP,(I)

is a cover of G®" and thus

(G®) < >

(PRYEP, (X)X Py (V)

7CR(P,Q)). 44

Now, since |P,(&X")| and |P,.(})| grow only polynomially
in n, (4.3) and (4.4) imply

lim % log 7(G%™)

1
= lim —log “.5)

n—oo 1N,

ax Gn(P, .
(P,Q)CPIF(X)xPn(y) 7(Ga(F; Q)

Next observe that for (P,Q) € Pp(X) x P,(Y) with
EL(P.Q) £ D G, (P, Q) satisfies the hypothesis of Corollary
1, because for any z™, 2™ € A™(P) there is a permutation 7

on {1,2,---,n} with 72" = (Tr(1), -, Tr(n)) = 2" and by
the invariance of V" (QQ) under =
ITg, (o) (z" H () N yn(Q)‘

n

="

=1
:|r9n(1’,Q)($ )

(and, symmetrically this holds for y”,4'™ € Y™(Q)). We

conclude with Corollary 1 that for these P, Q)

¥(Gn(P, Q) = 7(Gn (P, Q)) = min(|A™ (P)|, [Y(Q)]).
(4.6)

(Trery) N yn(Q)‘

By Theorem K also
H(G") = (G5,
Now, from (4.5) we conclude with (4.6), (4.7), and (2.1)

4.7

lim — log V(Q®")
= lim max

min(H(P),H .
i omaxwin(H(P),H(Q)

4.3

The final step is based on a result of interest on its own.
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Lemma 1:
i) For all n

(P,Q) € K(G) N (Pu(X) X Pu(V)) & (P, Q) # O
(4.9)

ii) If P(z)>0 for all x € &', then for all e >0,(P,Q) €
K(G) and sufficiently large n, there exists

(P, Q) € K(G) N (Pu(X) x Pu(Y))

such that
3 |P(z) - P(2)], 3] 1Q) - @ (y)| <e.
zcX mEJ/‘

Proof of Lemma 1:
i) Fix 2™ € X™(P). By symmetry it will not matter which
one. Clearly,

E(P,Q) # D & dg, (pg)(z") > 0.

We give first another characterization for £,(P,Q) # <
in terms of a matching property of another bipartite graph
This graph has the vertex sets X,y = {21,22,---,2Z»} and
Yiny =A{y1,"**,Yn}, where X,y contains n P(z) “copies” of
each z € A" and )),,) contains n ((y) “copies” of each y € .
It has the edge set

(4.10)

Emy ={(z*,y"): 2" is copy of z € X,
y" is copy of y € V), and (z,y) € £}.

By definitions of G®*, G,(P,Q), and G(,,y(P,Q), z" =
(x1,---,Zn), is adjacent with at least one vertex in G, (P, Q)
iff G(ny(P, Q) has a perfect matching or by (4.10)

En(P,Q) # D & Gmy(P, Q) has a perfect matching.
4.11)

A fortiori (4.9) is equivalent to

(P,Q) € K(G) N Pu(X) x Pa(Y)
© Gn)(P, Q) has a perfect matching. (4.12)

To show this, let us start with a
(P,Q) € K(G) N Pn(X) X Pu(Y).

Now, every S* C X(n> is associated with a subset S of
X, where

z € S < z has a copy z; € S*. (4.13)

By the definitions of Gy, X" (P) and K(G) we have now

|5*] < > n P(z) =n P(S) < n QLg(S))

z€S
Z n Q(y) = |FG(11)(S*)|.
y€Tg(S)

This Hall condition and Theorem H imply that G, (P, Q)
has a perfect matching. Conversely, let us assume now that
G(n)(P, Q) has a perfect matching. For any S C A’ define

(4.15)

(4.14)

S** = {x;: z; is copy of some z € S}

a subset of X{,). Then

nP(S)=> nP(z)=|5"

€S

(4.16)

and since () has a perfect matching, by Theorem H

17| < [P, (S™)I- (4.17)

Also, by (4.15)

ICg, (S = > nQy) =nQg(S))

y€lg(S)

and finally, this and (4.16), (4.17) imply P(S) < Q(T'g(S))
and so (P,Q) € K(G).

ii) We proceed by induction on |X|. For |X| =
statement is trivial.

|X] > 1
_ We say that a distribution P* on Z is §-approximated by
P if

1 the

> |P*(2) - P(2)| <6.

z2EZ
Casel: Forall p # S C X
P(S) <Q(T'S). (4.18)
Let
1 _
O=7 ., (QTg(S)) — P(5))

and let § = min(¢’,e). Then by (4.18), & >0. When n
is sufficiently large, we always can choose P’ € P,(&X)
and Q' € P,(Z) é-approximating P and (), respectively.
Moreover, (P, Q') € K(G) because for all S C X, |P(S) —
P'(S)| <é and |Q(T'g(S)) — Q' (T'g(S))| < 6. This completes
the proof in this case.

Case 2: There exists an &y C A with 0 < |Ap| < |X]| (and
so, by assumption, 0 < P(&p) < 1), such that

P(&)) = Q(TgA).

Let yO = Fg(XO), Xl = X\XO; and yl — y\yoj and
introduce two subbipartite graphs Gy = (&b, o, &) and
g = (Xl’ylagl) of G, where

& ={(z,y):z € Xy,y € Vi, (z,y) € €}
for : = 1,2.
Then by (4.19)
P(X;) = Q(),
and, therefore, since (P, Q) € K(G),
(P(:|Xo), Q(-[0)) € K(Go)-
Since for any 6§ >0, P = (P(Xp),P(X1)), which equals

Q = (Q(),),Q()1)), can be 5-approximated by m-types for
sufficiently large m, ii) follows from the induction hypothesis,
if we can show that (P(-|&}),Q(-|)1)) € K(G1).

(4.19)

fori = 0,1 (4.20)
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Indeed, this must be true, since otherwise one could find
S C Ay such that P(S|&1) < Q(T'g, (S)|V1), and therefore
by (4.20), such that

P(5) <Q(l'g,(5)) = QI'g(S))
which contradicts (P, Q) € K(G).
Remark:

4) Lemma 1 shows that the definition of X(G) is symmet-
rical in the vertex sets, that is, we have also

(P,Qek(@G)evrcy Q(T) < P(T'g(T)).
Lemma 1 has an immediate consequence:
Corollary 2: For all P € Pp(X), Q € Ppo(V), W €V,
and z" € 75 W™(Z5(2")|z") >0 iff
P(S) < Q({y: w(y|z) >0 for some z € S}
forall S C &.

V. MATCHING IN PRODUCTS OF
NONIDENTICAL BIPARTITE GRAPHS

The result of this section answers a natural combinatorial
question, but its main motivation was to extend our cod-
ing theorems for the deterministic matching channel to the
nonstationary situation. In terms of the associated discrete
memoryless channel this means that we are given a sequence
(W1)§2, of |X| x |Y|-stochastic matrices and the transmission
for words of length n is governed by W™ = II7*_; W;. In this
situation an approach with typical sequences is very clumsy,
but our approach via Kénig—Hall pairs of distributions goes
rather smoothly.

The heart of the matter is the case of two factors: G; =
(X, V:,E) (i =1,2). For P, € P(Z;), where Z; is finite and
1 = 1,2, we define the product distribution P, x P» by
Pl XP2(21,22):P1(21)P2(22), for z; € Z; and i = 1,2.

5.1
We introduce a product of Koénig-Hall sets, namely,

K(G1) x K(G2) = {(PLx P2, Q1 X Q2): (P}, Q;) e K(Gs)

for i = 1,2}. (5.2)
Theorem 5 : For bipartite graphs G; =(X;,Y;,&;) (1=1,2)
YG1®Ga) = ax

(P % P2,Qn xgl)eIC(g])xIC(gz)
-min(H(P) + H(R),H(Q1) + H(Q?2))

= max
Q@)K
-min(H(P) + H(P),H(Q1) + H(Q2)).
(5.3)
Proof: Obviously, the second equation follows immedi-

ately from (5.2). We show now the first equation.
By Theorem 4 and Lemma 1 it suffices to prove that for

Kn(G:) = K(G,) N (Po(A) X Pr(Vi)), 1=1,2 (54
and
Kr(G1 @ G2)=K(G1 @ G2)N(Pr (X1 x X2) X P, (V1 X V2))
(5.5)
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we have for all n

max

in(H(P), H
(P,Q)CKn (G1®0G2) min(H(P), H(E))

< max
(PLxP2,Q1 XQ2)EK . (G1) %Ko, (G2)
~min(H(P) + H(P), H(Q1) + H(Q2))

< max min(H(P), H(Q)).

= a (5.6)
(PQ)EK, 2 (610G2)

We need

Kn(G1) X Kn(G2) C Ky2(G1 @ G2). (5.7

To verify this, by (4.9), we have to show that for all

(P x P2, Q1 x Q2) € Kp(G1) X Kn(G2)
En2(PL X Py, Q1 X Q) #D.

Actually, for all

(’Uiavg) € gn(})'ia Ql) # Q’ t = ]-a2

(vive,vivh) € Enz (P X Po, Q1 X (Q2).

Therefore, (5.7) holds and the second inequality in (5.6)
follows.

Finally, we have to prove the first inequality in (5.6).
Suppose that (]57 @) achieve the maximum in the left-hand
side of (5.6) and that Pl,Pg (respectively, Ql, @2) are the
marginal distributions of P (respectively, Q)

Since clearly

H(P) <H(P)+ H(Py)

and
H(Q) <H(Q1) + H(Q2) (5.8)
it suffices to prove that (P;,Q;) € K(G;) for i = 1,2.
Actually, one readily verifies that for all S C A}
Fgl ®92(S X ‘;V?) = Pgl (S) X Vo (59)

and, therefore, (P, Q) € K(G, ® Go) implies
Py(S5) = P(S x &) < Q(L'g,(S) x V2) = Q1 (', (S))

and hence (f’l,Ql) € K(Gi). By the same reasons also
(P2,Q2) € K(G2).

VI. AN EXACT FORMULA FOR THE MATCHING NUMBER
OF POWERS OF “STARRED” BIPARTITE GRAPHS

We consider here bipartite graphs G = (X, Y, £), which can
be presented in the following form.
There are sets of vertices J C & and K C Y such that

i) every vertex in J (respectively, X) is adjacent with at
least one vertex in Y \ K (respectively, X \ J);

ii) every vertex in X \ J (respectively, V \ K) is adjacent
with exactly one vertex in & (respectively, J), and there
is no edge between & \ J and U \ K.
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We speak of a starred bipartite graph. We also introduce
the abbreviation

Z=J UK (6.1)

and for every » € Z we define a star with center z as
S, = {{#},V., F.}, where

V,={ve(X~NT) U (Y\NK):(z,v) €&}
F. ={(z,v):veV,}.

6.2)
(6.3)

Of course, since G is bipartite, for z = j € J (respectively,
z = k € K) necessarily V; C Y \ K (respectively, V;, C
X\J). By conditions i) and ii), obviously {{z} U V.: z € Z}
is a partition of X U Y.

Now we associate with every 2™ € 2Z" = IIf Z the
complete bipartite graph

S0 =8,©85,®--®8,, (6.4)

where S,’s are stars defined by (6.2) and (6.3) for 2z, = z.
Denote its vertex set by V. and its edge set by F.. =
113, F.,. Notice that

Vi ot = I Vel
2T

(6.5)

This is the number of vertices of S, falling into X and
will be denoted by wy (2"). Similarly, we define

wy(z) = [T V.l

21 @K

(6.6)

We speak of the A'-weight and of the )-weight of 5.
Theorem 6: For every stared bipartite graph G the matching
number of its nth power is given by

p(G¥") = Y min(wr(2"),wy(2")).

2 CZE7

(6.7)

Proof: Since S.» is a complete bipartite graph with
vertex sets of sizes wx(2™) and wy(z"), it has obviously a
matching of size min (wx(2"),wy(2")). Furthermore, by our
definitions, for 2™ # 2™, an edge in F_.» and an edge in F,m
have never a common vertex.

Therefore, the matching corresponding to the different z™’s
can be taken together to form one matching. Thus

v(G¥") > Z min (wy(2"), wy(2")).

2" CZ"

(6.8)

To show the opposite inequality, by Theorem K it suffices
to find a vertex cover of G®" of size

> min(wr ("), wy(2")).
Z"’EZ”

Our candidate is the set of vertices

(Vi. n &™)

Z"‘EZ"‘ :w'v(zn)swy (Z”)

U U

zZn EZn Wy (Z")>w_y(2"’)

VY| 69

Clearly, it has the desired cardinality. It remains to be seen
that it is a vertex cover for G&".

Suppose that (z",y™) € &, is not covered. Then necessarily
T = {t: both, z; and v, are centers of a star} # &, because
all edges in F.»,2" € 2", are covered for our candidate.
Next we observe that for every ¢ € {1,2,---,n} \ T z; and
y; are in the same star. Therefore, if 2™ € V,n,y™ € Vo,
then z, = 2, for t € {1,2,---,n} \ T and thus

—1

wx(2") =wr(2™) (H V., |> (6.10)
tCT

wy (") =wy(z™) (H |Vzt|>. 6.11)
teT

(Since for all ¢ € T" x; and y; are centers of S., and SZ;,
respectively.)

Since by assymption (z™,y™) is not covered, neither 2™ nor
y™ is in our candidate subset. By the construction of this subset

wr(ZM)>wy(z") and wy (™) <wy(z™)  (6.12)

and (6.10)—(6.12) imply

wy(2") >war(2™) (H [V, |)

tCT

=wr(2") (g V., |> (g V., I>
>wy(z") (H |vz;|) (H |vzt|>.

teT teT

This contradicts the definition of the graph, in which

V.| > 1, foralve Z=J7 U K.

VII. TWO EXAMPLES ILLUSTRATING THE
SIGNIFICANCE OF THEOREMS 5 AND 6

Example 1: v(G1 @ G2) > v(G1) + v(G2).
Consider two complete bipartite graphs

Gi:(Xi,yiagi)a 1’:132
with parameters

X1 = V2| = a< B =|Xa| = |V

Obviously,
v(GE™) = o, fori=1,2 (7.1)
and, therefore,
¥(G;) = log v, fori =1,2. (7.2)
However, by Theorem 5 or by direct reasoning
v((G1® G2)") = (aff)” (7.3)

because G1 @ G is a complete bipartite graph.
Thus we have

¥(G1 ® G2) = loga + log B >2loga = v(G1 ) +7(G2).
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Example 2:

2
V(Q®(’"‘+’"2)) > H u(g®"“) and 2@ >1/(g®n)

=1

can occur infinitely often and for arbitrarily large m,,mo,
and n.

Consider the starred bipartite graph G = (X,),€) with
X = {.T, 1= 0,1,---,04},)} = {yj: J = 0,1,---,0&}, and
& = {(x;,y;): ¢ =0or j = 0}.

By Theorem 6
n/2
n i 1(n n/2
2 Z%(i)a +§<g>a/ n even
Xn — =
v(G=™) (n1)/2 N
2 Z_% (L>a n odd.
(7.4)

By Theorem 4 (P(z0) = Q(yo) = 3, and Q(y;) = P(z:) =
1/2a for i = 1,---, ) or directly by (7.4)

(@) =1+ }loga. (7.5)

Therefore, for all n
279 — gng/2 5 p(GEM),

Moreover, (7.4) also shows that

2
p(GEmtm)y s TT w(g®™).

i=1

VIIIL

We take first another look at the (one-way) deterministic
matching channel in order to get a certain understanding of its
structure, which helps us when dealing with more complex
channels such as compound, multiple-access and broadcast
deterministic matching channels.

MULTTI-WAY DETERMINISTIC MATCHING CHANNELS

A. Another Look at Theorem 2

A straightforward proof of its direct part by random coding
is sketched in Section I. Actually, this approach gives even a
more general Theorem 1. Here we deal only with deterministic
channels. Our first and detailed proof of Theorem 2 via an
extension of combinatorial matching theory is contained in
Sections IIT and IV. It arose in an analysis in the “control”
model of the “dummy” model (see (1.4) and (1.5)).
Actually, there is a very simple direct path to Theorem 2
using Kénig’s Theorem K in Section III. Indeed, just consider
the bipartite graph
On =0n(Pxs, W) = (I3, Iy, Ep, ) BD)
where Py = Pxg - W and (z",y") € €3, iff there exists
an (z",s") € T¢s with W(y*|z"™|s") = 1. We know (see
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Section II) that
72| = exp{H(X)n + o(n)}
|7y'| = exp{(H(Y)n + o(n)}
dg, (&) = exp{H(Y|X)n + o(n)}
dg,,(y") = exp{H(X|Y)n + o(n)}

and dg, (z™) (respectively, dg, (y™)) has the same value for
all " € T¢ (respectively, y" € T3).
The vertex covering number

7(Gn(Pxs, W))

obviously equals min (H(X), H(Y)) and the proof of Theo-
rem 2 follows with Theorem K.

Problem 2: Can one give explicit constructions of match-
ings achieving the capacity in Theorem 2? Can it be done as
an orbit of a group of permutations?

B. Compound Channels

We are given now c deterministic matching channels

WJ:XXS—PyJ (j:l’z’...’c>

and ask for a simultaneous code, that is, one set of codewords
U C X™ and decoding sets {D;;: 1 < ¢ < |U|} for
ji=12--- c.

Here the random choice described above works again.
Details are left to the reader.

Theorem 7: For the compound deterministic matching
channel the capacity equals

max min
nax.

X min(H(X), H(Y;)).

Here it was implicitly assumed that the encoder and the
controller do not know the individual (implicitly) channel, but
that the receiver does. However, it is easy to show that (as for
classical compound channels) the capacity is not affected by
the receiver’s knowledge.

More generally, one can also describe the capacity region of
the compound multiple-access deterministic matching channel

WX XXX XA XSV XXV,

where we consider codes U; C XJT" for j = 1,2,---,b and
decoding sets {D;3(¢): 1 < ¢ < |U;|} for 5 =1,2,---,b and
E=1,2--,c

C. Multiple-Access Channels (MAC’ s)
A matching MAC is given by a stochastic

W: (A x8)x (YxT)— Z.

It is understood that there are two controllers, Ks and
K 7. Observing the input word z™ controller K5 can choose
s" = s"(z™). Similarly, controller K7 responds to the input
y™. Ks does not observe y™ and K7 does not observe ™.

Combining the sketch of proof of Theorem 1 with standard
proofs for the MAC coding theorem gives the following result.
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Theorem 8: The capacity region of the matching MAC
contains conv{(Ry,Ry): 0 < Ry,Ry,3Pxs,Pyr with
Ry <min(I(XS A Z|YT),H(X)),Ry < min (I(YT A
Z|XS),HY)),Rx + Ry < I(XSYT A Z)}.

Adding a time-sharing parameter (if necessary) gives the
exact region.

Problem 3: In another model there is only one controller
Kyy who acts upon independent inputs z”, y™. The pair
(Rx, Ry) is achievable, if for some

Pxys =Psixy - Px - Py
Ry < min(I(XS A Z|Y),H(X))
Ry < min(I(YS A Z|X),H(Y))
Ry + Ry <I(XYS A Z).

Establish the capacity region!

Problem 4: What are the capacity regions for matching
zero-error detection codes for deterministic channels in both
models?

D. Broadcast Channels

It is surprising that we can also determine here the capacity
region! This means in the noisy channel terminology that under
the (not realistic) condition that the error probability is strictly
smaller than 1 we moved the rock!

Here is the result.

For the broadcast deterministic matching channel

W: XXxS—-YxZ
an (n, M, N) matching code is a family
{(uij, Di(V), Dj(2)): 1 <i < M,1<j < N}

where u,; € &A™, D, (V) c Y*, D;(2Z) Cc 2*, D;(Y) N
Du(Y) = @@ # ), Dj(2) N Dyp(2) = &G # J),
and for every pair of messages (¢,j) there is a sequence
s™(4,5) = (s1(4, ), -+, sn(d,4)) € S™ with

W (Di(X)|uij|s™ (¢, 7)) =1
and

W(D;(I)lusjls" (2, 5)) =1
for1<:<M1<j3<N,if

n

Wy, 2" a"s™) = [[ W zlzelse)-
t=1

Theorem 9: The broadcast deterministic matching channel
has the set of all achievable pairs of rates (Ry, Rz) defined
by the convex hull of the sets

0<Ry<H(Y) O0<Rz<H(Z)

0 <Ry + Rz < min(H(X), H(Y Z))

where all RV’s are induced by distributions Pxs and the
channel.

Remarks:

5) Actually, more generally we also have a solution for the
case with a common message set [21].

6) In case |S| = 1 this yields Pinsker’s characterization
[19] of the capacity region for deterministic broadcast
channels.

We use in our proof a certain bining idea, namely the

Color Carrier Lemma [26]: For each hypergraph H =

(V, €) there is a coloring ¢: V — £ = {1,---, L} such that
every color in £ appears in every edge from £ whenever

-1
L< (€n|€|min|E|> min |E|.
EcE EcE

Proof of Theorem 9: The converse follows by a standard
decomposition into subcodes corresponding to sets of typical
sequences. The issue is the direct part. We give its flavor first
in the case |S| = 1, which is Pinsker’s celebrated result.

1) Embedding of Ty, into T3 s: Every pair of typical se-
quences (y",z") € Ty, is the image of at least one pair
(z™,s™) € T¢s under W. We select any such pair (y;,vz”)

The matrix

Q = (yn, Zn)y”ET{,’ 727167271

shall have entries “0” in all positions (y", 2") ¢ 7:%,.

2) A Code Based on the Color Carrier Lemma: We  can
replace XS by X. Now we have (y*,2") € 77, and Q
has

~ exp{H (Y, Z)n} < exp{H(X)n}

nontrivial entries, r ~ exp{H(Y)n} rows and ¢ ~
exp{H(Z)n} columns. Consider the hypergraph

({1, e} {E1<p<r})

where E, is the set of nontrivial positions in row p, so
E, c {1,2,---,c}.

Now message p € {1,2,---,7} can be associated with
the row index p and message { € {1,2,---,L} can be
associated with any ¢~!(¢) € E,, where ¢: {1,2,---,c} —
{1,2,---, L} has by the Color Carrier Lemma the property
that {¢: ¢=1(¢) € E,} = {1,2,---, L}. Moreover,

L~ (HY)n) exp{H(Z|Y)n} ~ exp{H(Z|Y)n}. (8.2)

Thus with (r,L) we have achieved the rates (H(Y),
H(Z|Y')) and the direct part is completed by time-sharing.

E. General Case |S|>1

Now we have to cope with the fact that now 77?, has to be
an embedding in 7} such that every ™ € 7} is used only
at most once in conjunction with an s™ (the controller has
to choose always the same s™ for ™. Otherwise he illegally
transmits information.)

So let us consider any quadruple (X, S,Y, Z) of RV’s with
joint distribution

PXSYZ(xasayaz) IPX5($,8)W(y,Z|$|8) (83)

for (z,s,y,2) € X xS x Y x Z.
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Clearly, for (z™,y™,2") € X" x Y" x Z»
z™) implies W™ (y", 2™ |z™|s™)

> 0 for some s™ € S™”.

(¥, 2") € Ty' 7 x(
(8.4)

Moreover, by symmetry and time sharing it is sufficient to
show that

(Ry, Rz) = ((min(H(X), H(Y)), min(H(X), H(Y Z))

—min(H(X), H(Y)))

is achievable.

Case H(X) < H(Y) : Here Ry = H(X),Rz = 0. For
instance, by Corollary 1 in Section III one can match 7 into
7y in the bipartite graph (77,7, T3,) (where 77, serves
as the edge set). Thus we get

{(uig,vi) € Tgy: 1 < i < |7}

where for any i # j w;; # w;1 and v; # v;. With the
decoding sets D;(YV) = {v;} for ¢ = 1,2,---,|7¢| and
Di(Z) = T} we see from (8.4) that

{(ui1, Di(Y), D1(2)): 1 <i < |T¢|}

is a matching code. It has the pair of rates (H(.X),0).

Case H(Y) < H(X) : We proceed in two steps.

First, we find a subset X, C 7% and an injective mapping
g: X, — T;%, such that for all z” € A,

9(z™) € Ty 7 x(z7) (8.5)
and for all y* € 73* and any fixed 6 € (0, 1) the set
Ey» 2 {z"™: g(z™) = (y", 2") for some z" € X,} (8.6)
satisfies
|Ey| > exp{n(Rz — 0)}. (8.7)

This describes an embedding of a subset of 7.7, into 73.
Subcase HY)< H(YZ) < H(X) : Here Ry = H(Y)
and Rz = H(Z|Y"). Obviously, the matching of 73, into 7
for the bipartite graph (7¢,7y",,7%, ,) given by Corollary
1 provides a g with all desired properties.
We are left with the crucial
Subcase H(Y)< H(X)< H(Y Z) : Our concern are the
rates

Ry=HY) and Rz=H(X)-H(Y)>0. (8.8)

Originally we achieved them by a fairly lengthy (due to
complications caused by the exponential sizes of 737 and 7{%,,)
counting argument.

Now we use a large deviational argument based on Bern-
stein’s version of Chebyshev’s inequality. Its power lies in
double exponential bounds, which proved to be very useful in
Information Theory already in [27].

Let U(z™),z™ € 7%, be a family of independent RV’s and
for each z™ U(z™) have uniform distribution over 7y’ (™).
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For fixed y* € 73 and (y",2") € 7%,, we introduce the

events

B 2] Y s vy st EED e
T €TY Y

and

Ex((y",2"))

where
* n n m _ 0; lf yn # yln
6(ya(y 32 ))_{1’ ifyn:yln
and 6 is Kronecker’s delta, i.e.,
n n n n _ 07 if (yn, zn) # (yln’ Zln)
RN B S A Sl A

The definitions of U(z"), E1(y™), E2((y™, 2z")), and the
Bernstein version of Chebyshev’s inequality imply for all
yn € T]‘/rj
Pr(Ey(y"))

< e /DUTR /1T DE C—Emng;é‘(y",U(f‘))

- n " =2 e w8 (¥, U(z™
D /2= YTRITEDE o =" <Txy e WHUED)

[ Ee*(rve

D o /2) (L= YITZI/ITH)

€T IY(y )
= 6(1/2)(1—"_1)(|T;?|/|T?|) H
zn €Ty (y™)
| Z|XY( n’yn)| _1 | ley(xn,yn”
e 1 I
175 5 x (2™))] |75 5 5 (2™))]

D (/2 HTZI/ITE)

ey \ TG
'(1‘“‘6 1)||75||)
XY

<e(1 e DI/ DUTRI/ITE D=UTZ /1 TRy DITR )y (3™
4) { RNV
=Zexpq—5(l—e")=-loge
2 |73
gexp{—exp( (R.+0(1))} (8.11)

)
if n is big enough, and for all (y™
Pr(Es(y", 2))

< e—exp{(l/Z)nO}E CZJ_.,LE»I-;6(y",z"),U(z‘”))
=ny6((y",2"),U(2"))

) YZ

6:>ef exp[(1/2)ne]E
2:)6_ exp{(1/2)n6}

nern -
Ty 2™

II

E & (@™:2™).U (=)
R 1)

€Ty

\YZ(y
— efexp[(l/Z)nQ} H
zneT?

)’I(‘YZ(yn’Zn)

e 1
(| 137 x (z")] T |TYZ|X($H)|>
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72)6*6?(1)[(1/2)719} (1 + (e — 1) |T)7(L|
|T)7(LYZ|

< ¢~ Pl/2)no (e~ D(TRTY vy z (4" 2"/ TRy 2])

8) 1
<{ —exp §n0 loge

for n large enough, where the steps are justified as follows:
1) for all z™ ¢ ’T;ly(y")

(y™,2") € 7}7}2|X($n)v

2) U(z"),z™ € T3, are independent;
3) for all (z",y") € T¢,

|TZT'L|XY(mnayn)||T)?Y| = |TXy 4l
and for all z™ € T3
1Ty 21x @)TX| = TXy 2

(c.f. (2.2));
4) for all y* € Ty

TP 173y ()] = | TRy |

) |T;|yz(y117211)|

(8.12)

Yy E Y

(c.f. (2.2));
5) by (8.8);
6) for all 2" ¢ Ty y ,(y",2")
(¥, 2") € Tz x (2™),
7) for all 2" € TY
| )72|X(37n)||7)?| =TXyzl

(cf. (2.2));
8) by Section II and the inequalities characterizing this

subcase
T 7%y 2(y", 2"
=D,
=exp{n(H(X)+ HX|YZ)—- H(XYZ)+ o(1))}
=exp{n(H(X) - H(YZ) +0o(1))} < 1.

(yln)z/n) # (yn’ Zn);

Thus (8.11) and (8.12) imply for n large enough

el | U B v U B )<

ymETy (y",2")ETY,
(8.13)
So one can find a mapping U: 73 — 7y*,, such that
Uz") € Ty 7 x(z") (8.14)
and for all y* € 7
1—et |1}
{z™: U(z™) = (y"*, 2") for some 2" }|> | );|
2 [Ty
(8.15)

and for all (y*,2") € T3,

U= ((y", 2™)| = Ha™ U(z™) = (", 2™) Y < exp{ 316}
(8.16)

Now for each (y*,z") with U~i((y",2")) # O, we
take one z" € U~!((y",z")) into our X, and define
U(z™) = g(z™) for this ™. Then g is injective and by
(8.8), (8.14)—(8.16), the relations (8.5) and (8.7) are satisfied.

Next we move to the second step and apply the Color Carrier
Lemma to the hypergraph {7, {Ey},nc72}, to obtain a
coloring ¢: 77 — L = {1,---,L} for L = [exp{n(Rz —
260)}], and n big enough.

Label the elements of 737 as v;,1 < i < M = |7{?| (in any
order), and for each 1 < i < M and 1 < ¢ < L we choose a
z* € E,, with ¢(z™) = £ as v,.

Now the definition of E,. and injectivity of g allow us to
choose g~"((vi, v} ;)), the inverse image of (v;, v/, ;) under g
as our w; ¢. Finally, set D;(YV) = {v;} for 1 < i < M and
Di(Z) = {v;: 1 < i < M}. We get our matching code

with rate (Ry + o(1), Rz — 260) (by (8.8)).

IX. THE CONTROLLER FALLS ASLEEP—ON MATCHING
ZFRO-ERROR DETECTION CODES

‘We consider now again the one-way deterministic matching
channel W,;. Now the communicators, sender and receiver,
safeguard against mistakes of the controller and even against
malicious operations (jamming) by using matching zero-error
detection codes (MDC) {(u;,v;): 1 < i < M}, which satisfy
for some s™(7)(1 < ¢ < M)

W"(v,|uz|3”(z)) =1 (91)

and
W"(vj|ui|s"‘) = 0,

fori # j and all s € S™.  (9.2)

Cy, ae(Wo) denotes the capacity of this channel.

Let W(:|-) be as in (1.4) of Section I-B, associated with
Wy. Then (9.1) takes the form
W (v;|u;) > 0, fori=1,2,---.M 9.3)
and (9.2) takes the form
W (vjlu;) =0, for i # j. 9.4

These conditions are quite similar to those defining a zero-
error detection code {u;: 1 <i < M}

forl1<i< M
fori # j.

W('Uq; |u7) >0,
W (u;lu;) =0, 9.5)
In [9] its capacity was denoted by Cy.. In another termi-
nology this is called Sperner capacity [11].
Remark:

7) Just formally, one can skip the condition W™ (u;|u;) >0
and arrive at another mathematically meaningful notion:
zero-error pseudodetection codes. Related concepts can
be found in Appendix II.
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The connection is the following. Relevant for (9.5) are
rows and columns of W with indices z,y in X N Y and
W(ylz) >0, if x = y. This gives a square matrix W as
restriction of W to alphabets X = )Y C & n Y, for which
(9.5) can equivalently be stated. This matrix W corresponds
to a directed graph G = (V, € with

V=X=Yand (v,v') € £ & W(¥'|v)>0.
In the directed product graph G"”(V™, 5”) we have
(v, v"™) € E" & W (W™ v™) >0
and therefore (9.5) is equivalent to an independent set in V™.
The rate of the independence numbers equals C,.. Notice also

that all loops are included in G".
Remark:

(9.6)

8) In[11], zero-error detection codes are described in terms
of the dual graph (G™)* = (V*, (€")*), which contains
exactly the directed edges which are not in £™. Then for
any u;, u; in the code, there exists ¢ with (u;,, u;,) € Ex.

Now we discuss MDC (see (9.3) and (9.4)). For matrix W

consider support sets

yvv(.’L') = {y ey: W(:L/|$) > 0} 9.7)

and define an associated directed graph G(W) = (X,E(W))
by

(z,2") € EW) & Yw(x) D Iw(a'). 9.8

So all loops are included and the MDC {(u},v}*): 1 < <

M} have the property: {u?: 1 < i < M} is an independent set
in the directed product graph G*(W) = G(W™). The converse
is not true.

By (9.8), the associated graph has no directed cycles (if
Yw(z) # Yw(a') for x # z') and, therefore, the class of
these graphs is, again by (9.8), smaller than the class of graphs
associated via (9.6).

Denote by M7 , (W), M7 (W) and Mg(W) the largest
sizes of n-length MDC, zero-error detection codes, and zero-
error codes for W™, respectively. When n = 1 we write them
as Mm de(W); Mde(W), and Mo(W)

Example 3: For

0 1 2

0O/+ + O
Wi=1|10 + +
2\+ 0 +

we have the independence number I(G(W;)) 3, but
M,, q.(W1) = 2. (Here My (W) = 1 and for zero-error
codes My(W1) = 1). One can identify z’s with equal supports
without loss in code length.

Example 4. For

+ + 0 0 O
0O + + 0 0
We=]10 0 4+ + O
0 0 0 + +
+ 0 0 0 +
Mo(W3) = Mye =2

and

M, ge (WQ) = |{(1’ 1)’ (273)’ (4’ 4)}| =3.
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However, by considering all matrices, we can show that
the matching zero-error detection coding problem is a proper
special case of the zero-error detection coding problem.

We discuss it in Appendix I.

X. THE MATCHING ZERO-ERROR DETECTION
CAPACITY C,,, 4 IN A GENUINE EXAMPLE
We introduce the (g) -uniform complete hypergraph channel
W,,s as a channel with input alphabet A’ {1,2,---,a},
output alphabet = (;), that is, the letters of )V are the
[3-element subsets of X, and for z € X, E € Y
W, ps(Elz)>0& z € E. (10.1)
Therefore, an MDC is a system {(v*,E!):1<1¢< M}
with u? € X", E? € ( YY", and u? € E7 exactly if i = j. Its
maximal size is M, g(n) and its capacity is

1
Ca,p = lim —log M, (n) (10.2)
noo n

because MDC’s can be concatenated. We are going to deter-
mine M, g(n) with an elegant method used by Blokhuis in
[5]. Its main idea is that all polynomials in indeterminates

&1,-++,&, over any field, with degree (¢;) < d; for i =
1,--,n, form a linear space £(dy,---,d,) of a dimension
dim (£(dy, -+, dn)) = [J(di + 1) (10.3)
i=1
Theorem 10: For (‘;)—channels
Mo g(n) = (a - +1)"

and
Cyp=log(la—pB+1).

Proof: Since we can take products of codes, it suffices
to show that M, g(1) > a — [ + 1 in order to establish the

lower bound. Define for i = 1,2,.--,a — 8 +1
w,=1 and E,={i,a—-F3+2,---,a}. (10.4)
Then {(u;, E;): 1 < i < a— 3+ 1} is an MDC for the

(g) -channel. Conversely, let now {(u?, E*):1 < i < M} be
an MDC for the (g) -channel. Consider the polynomials in

X" = (Xla"'aXn)
=11 Il G -2, 1<i<m, (@105
t=12¢ F;;
where (E;1,---,E;y,) = EP.
Clearly, f; € L (¢ — 8,-- -, — 3) and for all 4,4’
fiup) Z0ul e EF o i=1. (10.6)

Therefore, f1,---
M <dim (L(a — 3, -
Remark 9

9) Comparison with [5] shows that our result is slightly
stronger, because the algebraic method is better ex-
ploited.

, [ are linearly independent and hence

Ja—B) = (a—B+1)".
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XI. FEEDBACK AND ALSO RANDOMIZATION INCREASE
THE CAPACITY OF THE MATCHING CHANNEL

We have already seen in Section I that in the formula for
C(W) in Theorem 1 H(X) enters only, because words from
A™ can be used at most once as a codeword (in conjunction
with an s™) and if we drop this restriction, then we achieve
the capacity of the DMC W": A x § — Y

C =max I(XS A Y).

Pxs

(11.1)

This leaves room to enlarge C'(W) in the following two
ways.

«) Suppose now that the controller knows in case of
feedback the encoding function for a message like earlier the
codeword for a message, then the C in (11.1) can still be
achieved and is the capacity!

Clearly, C' cannot be superceded, because feedback does not
increase the capacity of a DMC. For the direct part, let us start
with a set of codewords U = {uy,---,up } and decoding sets

{Dy,---, Dy} for W: X x S — Y, where
uw, = (z7,s}), 1<i<M. (11.2)
Let S(z™) be the s™’s appearing with z™. This set grows

at most exponentially in n. Its elements serve as “first names”
for z™.

Recalling that encoding with feedback is described by a
family of functions {fr}M, with f* = [fi1,---, fin] and
fir: VP71 — X, we use now a simple trick.

We add m positions before the word of length n. For these
positions there are

P P

many encoding functions ¢™, which can be used as the
beginnings of the encoding functions of length n + m. Since
there are double exponentially in m many ¢g™’s, they can be
used as “nicknames” for the first names.

The controller knows by assumption the nicknames and
therefore the first name s? in (z7, s?), which he then uses
in the set of positions {m + 1,---,m + n}. Obviously m’s
contribution to the loss in rate is negligible.

We summarize our findings for the matching capacity in
case of feedback.

Proposition 1: C¢(W) = maxp,, I(XS A Y).

) Now we have no feedback, but the encoder can use
randomization, that is, he encodes message 7 as Q); € P(A™).
(Q; is known to the controller before he chooses s!*. Then again
the capacity of the matching channel equals C. Again we use
the previous idea, which can now be realized even simpler. We
just use one additional position (m = 1). This gives infinitely
many nicknames, because [P(X)| = oc.

Formally, we choose an n-length code {(u;,D;): 1 <14 <
M} as in o) and M different distributions P; on P(&).
For message ¢ the sender chooses and sends an n + 1-length
codeword zzx, if this is the outcome of random experiment
(Qi, X1, where Q;(zz?) = P;(z). The controller, who
knows i, chooses s7. Finally, the sets {¥ X Dy, ---, X' X Dy}
are used as decoding sets.

XII. THE CAPACITY FOR MATCHING ZERO-ERROR
DETECTION CODES WITH FEEDBACK (MDCF) FOR W,

A matching code with feedback {(f,D;): 1 <i < M} for
Wy or its associated W (in the sense of (1.4)) is specified by

=i fnl fi Y o X (12.1)

and for all : € M = {1,2,-.., M} exists a v; € D; with

U'Ll|le H
t=2
(' 75 U,‘/(’L 75 LI)

This code is zero-error detecting, if for i # ¢/ exists a
t > 1 with W (v fyre(vin, - - ,vi(t_l))) = 0. Obviously, we
can assume that D; contains only one element.

We can assume again that W is nontrivial: not all row
supports are identical and for all y € Y W(y|z) >0 for
some x € A'. Further, a necessary condition for C,, 4. ¢ to
be positive is the existence of two input letters x;, 2 and an
output letter yo with

W (yolz1)>0 and W(yo|z2) =0.

sz|fn Vi1, - avi(i—l)))>0 (122)

(12.3)

(12.4)

Proposition 2:
Cn de f{ > C(Wo), if (124) holds

=0, otherwise.
Proof: We can assume that (12.4) holds. We start with a
matching code {(u?,v?): 1 < ¢ < M} and define a feedback
encoding fz-"+1(1 <t < M) as follows:

For U,IL = (uil, ey, uin)
(" D =uy, fort=1,2.. nandally™ (12.5)
ny @, iyt =
Fintr(y") = { z2, otherwise. (12.6)
Define now for all ¢
Uf“ =vYo 12.7)

and verify that
{(frrt vty 1<i < M}

where fi”"'l = (fit, -+, fin: fi n+1) is by (12.4) a matching
zero-error detection code with feedback.

Theroem 3:
Cm de f
Cy(Wp) = maxp,, I(XS AY), if (12.4) holds
=< or
0, otherwise.

Proof: Clearly, if (12.4) does not hold, then the nontrivial
matrix has only positive entries and therefore C,, 4o f = 0.
Now, if (12.4) holds, then we start with a matching feedback

code {(f,v}): 1 < 4 < M} and extend these encoding
functions as in the proof of Proposition 2
. ny __ Z1, if yn = 'U;l
finn1(y”) = {ZU[), otherwise.

Correspondingly, we set v7T' = (vPyo). Finally, we apply

Proposition 1.
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XIII. IDENTIFICATION FOR MATCHING CHANNELS

For our DMC W: X x & — ) there are several models
of identification with randomized encoding. Fix any code

{(Qi;D;): 1 <i < N}. The Q;’s and D;’s are assumed to be
different. One can consider the following performance criteria:
) ZQZ YW (Dy|z™) > 1 — A, for all ;

1) ZQ "YW (D;|z") = for all i
1) ZQZ YW™(D;)z™) > for all 4
a) ZQJ W™(Dslz™) < forj #1i
b) ZQJ W™(Ds|z") = for j #1i
) ZQJ "(Dila™) < for j #i.

The classical work [12] concerns the combination (I, a) and
in [9] the combination (II,a) was analyzed.

We settle (I, a), the matching identification problem, and
also (III,c¢), in Theorem 11. Furthermore, the capacities for
the cases (II,c) and (I,c) are characterized in Theorems
12 and 13, respectively. Finally, condition b). implies that
D; can be replaced by D, \ Uj #i D; and so we have
here disjoint decoding sets: Actually, identification is reduced
to transmission. (II,b) gives Shannon’s classical zero-error
capacity problem. (I,b) gives the erasure problem (see [9])
for transmission, and (IIL,b), reduces to the matching zero-
error detection problem discussed in Sections IX and X. The
discussion of all cases is complete.

Remark:

10) Some combinations are meaningful also in case of
feedback.
We consider first the cases (III, a) and (II, c). Their capac-
ities are denoted by C(> 0,< A) and C(> 0, < 1).
Theorem 11: We have for the second-order identification
capacities

C(>0,<\)=C(>0,<1)
_ [log|Y|, if W is nontrivial
o0, otherwise.

W is nontrivial, if not all rows are identical and no column
has only 0’s as entries.
Proof- LetY take values in ) according to the uniform
distribution and let X take values in A such that for some
small 6 € (0,1) and Py = PxW

Py — Pyl| > 6. (13.1)
This is possible, because W is nontrivial.
Let
-1 1
= Ty e ETR
n n
Q™) =14 1 X (13.2)
otherwise.

n X = Tg)’
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Then

> Q@n

z” CTy

YW (y"|z™) >0, for all y" € Y™

and for every D C T?", by (13.1) (and the properties of typical
and generated sequences stated in Section IT)

ZQ YW™(Dlz™) < e, (6)

and lim,, o ,(6) = 0.

Now just choose the 2%l _ 1 nonempty D’s as decoding
sets and choose the same number of arbitrary Qs on 73 as
corresponding encoding distributions. Since

log log ol TFl nlog|Y|

the proof of the direct parts is complete. The converses follow
from the fact that there are at most 21| decoding sets.
We are left with the case (II, ¢) and its capacity C(= 1, < 1).
Theorem 12: The second-order capacity C(= 1,< 1)
equals the first order C,, 4.
Proof of Direct Part: Start with an MDC {(u;,v;): 1 <
< M}

W™ (v;|u;) >0 and W™(v;|u;) = 0 for all ¢ # j.
Define the supports
YV (u) ={ve Y™ W(vu) >0},
and notice that for any

U={u:1<i<M}ca"

we X" (13.3)

{(us,v3): 1 <4 < M} is a set of codewords for some wv; if
and only if

ywe |J v (13.4)

w CUN{u}

Let M be even and consider the & _element subsets of I/

u M
M = A[: 1 S Z S M . (135)
2 2
Let (), be any distribution with support A, and define
D= J V(w (13.6)
u€ A
Then obviously
> Q@)W (Dele™) =1,  forl<f< |, | (13.7)
v 2
and, moreover, for all £ # ¢
A( A A[! # %]
and so by (13.4) and (13.6) for u; € A, \ Ay
Yiu) g | Vi) > | YM(w) =D (138)

i ueA!
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Since Qg(u;) >0, we have finally that
> Qe(u)W™(Diu) < 1.
u€Ag

Converse Part: Let {(Q;,D;): 1 < i < M} be a (IL,c)
identification code. Define the support set of @,

Si = {u € X™: Qi(u) >0}
Without loss of generality

D= ] Y'(w (13.9)
uES;
and by (II,c)
D; ¢ Dy, for ¢ # j. (13.10)
Let now S; C S; be minimal with the properties
U yw= Y@= (13.11)

uESi’ uES;

The minimality property implies that for all ¢ S; satisfies
(13.4) and therefore corresponds to an MDC. Consequently,

|S;| < exp{n Crac} (13.12)

Furthermore, the sets S’ are different, because the D;’s are
different and (13.11) holds. Therefore,

M S |X|n'exp[n Chr e}
and, finally,

1 1 1
- log logM < Cppge + — logn + = log log |X|.

Finally, we consider the combination (I,c) and determine
its second-order identification capacity C(> 1 — A, < 1). We
call W degenerate iff for some yo € YV

W(yolz) =1, forallz € X. (13.13)
Theorem 13:
C(>1-X<1)
_ [log|Y|, if W is nondegenerate and X'| >|1
10, if W is degenerate or |X| = 1.

Proof: For a degenerate W we have for all D C Y™ and
all z™ € A"

n ny __ 17 if(y07"'7y0)ep
W (D|m )_{03 if(yO)"'Jy0)¢D

and so cannot have two decoding sets with the required
conditions. For || = 1 there is only one input distribution.

For nondegenerate W and |X'| > 1 it is easy to see that there
are distinct z1,22 € X and yg € Y with

W(y0|$1)>0 and W(y0|$2)<1. (1314)

Indeed, if there is no yo satisfying (13.14), for all y,
W (y|z1) >0 implies that W (y|z2) = 1. However, because
there is at most one y € Y with W (y|z2) = 1, this means that
for some y W (y|z,) = W(ylz2) = 1.

Now define
ulz(ﬂil,"'axl)
= (372,"',.’]32) c A"
UO:(yoa"':yO) ey"

and let n be so large that

A
W"(U0|U2)<Z (13.15)

and

A
W™ (T35 o (u2) u2) > 1 = 5 (13.16)

(in the terminology of Section II). Set
{vo}, 7 =V"~ ({vo} U Tif 5(u2))-

Now, |73y s(uz)| is much smaller than |V|™ and F has the
same rate as ||, that is, for u € (0,1)

log | F| > n(log |V| — p)

g = TV?’,&(UZ) AN

(13.17)

for n large enough.
Now we choose as decoding sets the family

{(Dp:D,=€ U F,FlcF,1<i<2Vh.

It has cardinality 2| and loglog2¥!>n(log|V| — p).
Finally, define (2; with support {u,us} and

0 < Qz(ul) < é

5 (13.18)

Since W™ (vg|u1) >0 we get for all ¢, j
2 it

and (13.16) and (13.18) imply

2
ZQ, YW™(D;|z"™) > (1—%) >1-)\

for all .
The converse obviously holds.

MW (D;|z") <

APPENDIX I

Lemma ALl1: An MDC {(u;,v;): 1 < ¢ < M} for
Wm: X" — Y™(n > 1) can be viewed as zero-error detection
code for V™, where V' has input and output alphabet

Z={(z,y):ze X yeY W(ylz)>0} (AL1)
and

V(@' ¥z, 9))>0 & W(y|z) >0
Conversely, for every zero-error detection code

{((uir, vin), -+,
for V™, {(u?,v?): 1 <¢ < M} is an MDC for W™.

(AL2)

(uinavin)): 1 S 'L S M}
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Proof: These are immediate consequences of the defini-
tions.
Next we identify MDC problems as a certain class of zero-
error detection problems. For this we procede as follows:
a) We observe that, while considering MDC for W™, letters
z, ' € X with equal row support sets, that is,

Yw(z) = Vw(z') (defined in (9.7)) (AL3)

can be contracted to one letter.
b) We also observe that letters y, 3 € ) with equal
columns support sets
A
Xw(y) = {z € X: W(ylz) > 0} = X (v)

{z € X: W(y/|z) >0}

112

can be contracted to one.

We call a matrix W irreducible, if no contractions as
decribed in a) and b) are possible.
Tt is clear from the definitions of Z,V in (I.1) and (I.2) that

V(z|z) >0, forall z € Z. (AL4)
It is also clear that row supports
Zyr(2) ={Z:V(]2) >0} (ALS5)
and columns supports
Zyv.(z) ={7: V(2]) >0} (AL6)

being equal simultaneously means that the corresponding
letters can be contracted for zero-error detection codes for
V™. This leads to the notion of an irreducible V. Moreover,
one readily verifies the next fact.

Lemma AL2: For an irreducible W the corresponding V' is
also irreducible and conversely.

Next we characterize those matrices V' which can be ob-
tained via (AI.1), (AL.2) from some irreducible W and so for
the maximal code sizes

M:Lde(W) = M(?E(V)? n Z 1L (AI7)

Using this characterisation (Theorem AI.1 below) we then
show by Example Al.l, that matching zero-error detection
coding is indeed more special than zero-error detection coding.

A few more definitions are needed. Set

Ay ={z} x Yw(z) = {(z,y): y € YV, (z,y) € Z} (AL8)
B, =&w(y) x {y} ={(z,y):z € X, (z,y) € Z}. (AL9)

Clearly, (Az)zex and (By),cy are both partitions of Z and

a,d € Ay = Zy,(a) = Zy,.(d)
b, IS By = ZV,C(b) = ZV,c(bl)

(AL10)
(AL11)

On the other hand, every V: Z — Z (not necessary
generated by (AL1) and (AL.2)), whose row partition (A;)zc v
and column partition (B, ),cy satisfies (AI.10), and (AI.11)
(where X and )Y serve only as index sets) has the following
properties.
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It partitions for all z € A the set )V into V*(z) and
Y*<(z) = Y \ Y*(z) such that for all a € A,

U 5
yey (=)
Zyr(a) N B, =4,

Zvj,, (0,) =

ify e Y*(z).

Similarly, it partitions, for all y € Y, X into A*(y) and
X*¢(y) = & \ &*(y) such that for all b € B,

U

zCAX* (y)
Zye(b) N Ay =0,

(AL12)

Zy.c(b) =

ifzeAX*(y). (AL13)

Theorem Al.1: For W: X — ) and corresponding Z,V
(defined by (AI.1) and (AIL2))

i) the identity (AI7) holds;

ii) (AL.4) and the identities

[As| + [ (2)| = VI,
|By| + X7 (y)| = &1,

for all z € A (Al.14)
for all y € Y (AIL15)

hold, if A;, By, V*(z),V**(z), X*(y), and X*°(y) are
defined as in (ALS8), (AL9), (AL12), and (AL13)

iii) Conversely, any irreducible matrix V: Z — Z satis-
fying (AIL4) corresponds to an irreducible matrix W
so that (AL7) holds, if there are partitions (Ag)zcx
and (By),cy for some index sets & and V, such that
(AL.10), (AL11), and (AI14) hold for Y*¢(z) defined
by (AI.12). Symmetrically, here (Al.14) can be replaced
by (AL15)

Proof:
i) Here Lemma Al.1 is just restated.
ii) By (AL12) and (AI.13)
Y*(z) = {y: W(y|z) = 0}, forallz € X

and
X*(y) = {z: W(y|z) = 0},

Thus (Al.14) and (AI.15) follow from (AI.8) and (AL9),
respectively.
iii) Define W: X — Y as follows:

forally € V.

Forallz € X,y € V: W(y|z) >0, iff y € YV*(x).

(AL.16)
In order to see that Z is generated by W via (AlLl), we
have to show that there is a bijection from

{(z,1): w(ylz) >0} = U {z} x V*(z)

to Z. To achieve this goal, we first characterize V*(z) and
Y*¢(z). Indeed, we shall show that for all z € X and y € V

yeYV<(z), iffA, N B,=0 (AL17)
yeY(z), iff|A, N B,/=1.  (ALI1S)

We begin with the assumption y € Y*%(z). If now A, N
B, # D and z € A, N By, then by (AL4), (AI.10), (AL.11),
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and the definition of Zy ., we have for all a € A, B, C
2y ,(a) and therefore by (Al.12) y € V*(z), a contradiction.
Moreover, since V is irreducible, we also know that

A, N By| <1, forxe X,ye ). (AL.19)

So we know that
|[4z| < [ V*(2)| = [V] = [V*(z)].

The reverse implications in (AIL.17) and (AI.18) follow
immediately from our assumption (Al 14), which gives also
the direct implication in (AI.17).

Now, (AI18) gives rise to a mapping defined on
Uzex {2} x Y*(2) and sending (z,y) to the unique element
in A, N B,. Further, by (AL17), {4, N B,:y € V*(z)}
is a partition of Z and this guarantees the mapping to be
bijective. Thus we can rename the elements of Z by

{(z,9): W(ylz) >0} = Uscw {2} x V*(2)

and rewrite z € Z as (z,y), if z € A, N B,.
So only (AI.2) remains to be verified. For the new names

(z,y),(«",y) € Z

V(@ y)|(@, ) > 05 Ay N By C Zy.((z,9))

&y € V(a)
& W(ylk) >0,

that is, (AL2).

Here the equivalences are justified as follows.

1) Use definitions of (z',y’) and Zy..((z,y)).

2) Use (AL12) and that by definition of (z,y) necessarily

(z,y) € A

3) Use (AL16).

Example ALl: Consider Z = {0,1,2},V = W, defined
in Example 3.

The only partitions satisfying (AI.10) and (AI.11) are

{AO’ Ay, AQ} = {{0}’ {1}v {2}}

and
{BO; Bl; BZ} = {{O}v {1}7 {2}}

However, since 0 € Ag and Zy,.(0) = {0,1} = By U
B1,Y*¢(0) = {2} we have |Ag| + |V§°| = 2 # 3 = |V
Thus by Theorem AI.l no W can generate V.

Example AL2: W = Wi, defined in Example 3, generates
by (A.1) and (A.2),

zZ= {(07 0)’ (03 1)’ (1’ 1)’ (1’ 2)7 (2’ 0)7 (2, 2)}

(0,00 (0,1) (1,1) (L,2) (2,00 (2,2)
0oy/+ 4+ + 0 + 0
on| + 4+ + 0 4+ 0
v @po o+ o+ 4+ 0 4+
L2l o 4+ + + 0 4+
20 + 0 0 + + 4+
22\+ o0 0 + + +

and
Ao ={(0,0),(0,1)}
A ={(1,1),(1,2)}
A2 ={(2,0),(2,2)}
By = {(Ua 0)5 (2’ O)}
B ={(1,1),(1,2)}
and

B, = {(17 2)7 (27 2)}

APPENDIX II

At this moment our only motivitation for the code concepts
below is mathematical interest in searching for new com-
binatorial structures and their connections to the zero-error
detection and matching zero-error detection codes. We use the
abbreviations

V() =Vw (z) X(y) = Xw(v)
i) = [[Y@)  an@) =][X@w)- (AL
t=1 t=1

Definition AIl.1: A pairwise zero-error detection code for
W™ is aset {u;: 1 <4 < M} C A™ such that for all pairs
(t,7) there is a v;; € Y™ with

For two sets A, B we write
ADC B, iff ACB or BCA

and we write
ADC B,
In this terminology (AIL2) is equivalent to
Yr(ui) 3 V'(wy), foralli £ .
Hence, if we define U: & — & by
U(z|z') >0, iff Y(z) c Y(z')

we get the following characterization.

Lemma AILl: {u;: 1 <1< M} C X™ is a pairwise zero-
error detection code for W™ iff it is a zero-error detection
code for U".

Of course, every zero-error detection code is also a pairwise
zero-error detection code for the same channel.

Since by (AILS) every U generated by a W must have a
positive diagonal, we ask whether arbitrary U with positive
diagonal can be generated this way. This is not the case.

Example AIl.1: Choose again U = W, in Example 3.
Every W generating U/ must satisfy

Y(0)2>¥(1),Y(1) > Y(2) and Y(2) > Y(0)

and hence Y(0) = Y(1) = )(2). However, such a W
generates

iff A¢ B and B ¢ A. (AIL3)
(AIL4)

(AILS)

o+
++ 4
++ +

and not U.
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Definition AIl.2: A component-pairwise zero-error detec-
tion code for W™ is a set {u;: 1 < i < M} c A™ such
that for all pairs (u,;,u;) = (Uit - Uin, Uj1 -~ Ujn) (T F# F)
there is a component ¢ = ¢(¢, j) and there are letters y, 3’ with

W (ylui) >0, W (¥ |uje) >0 and
W (Y |uir) =W (yluje) =0

(or equivalently Y(u;;) DIC V(uje)).

For a suitable set )’ we define now 7: X — )’ by requiring
that for all 2,2’ € X
V() e Y('), iff for all y € V' T(y|z)T(y|z") = 0.

(AIL6)

One notices that {u;: 1 <+ < M} is a component-pairwise
zero-error detection code for W™ iff it is a zero-error code (in
Shannon’s sense) for 7.

Example AIL.2: That

ap
a1
a2
bo
by
b

T =

coo+ + +
+++ o000
co+ oo+
o+ co+ o
+ oo+ oo

cannot be generated by any W via (AIL.6) can be seen
as follows. Such a W would have to satisfy YV(ao) DOC
Y(bo), Y(ao) DC Y(ai), and Y(ag) DC Y(az). Since
Y(bo) Dlc Y(a1) and Y(bo) Dlc V(az), we get V(ag) D
Y(bo), Y(ao) D Y(a1), and Y(ao) D Y(az) or

Y(ao) C Y(bo),V(ao) C Y(a1) and Y(ap) C V(az).
(AIL7)

The corresponding relations for a; and ay are

Y(ay) D Y(b1),Y(a1) D V(az) and Y(a;) D V(az)

or

Y(ar) C Y(b1),VY(a1) C Y(az) and Y(a1) C Y(ao)

(AIL3B)

and

Y(az) D Y(b2),V(az2) D Y(ag) and Y(az2) D V(a1)

or

Y(az) C Y(b2),V(az) C Y(b2) and Y(az) C Y(a1)

(AIL9)

respectively.

However, for ¢ # j Y(a;) # Y(a;) because, for example,
fori = 0,5 =1, Y(ao) O V(b1) and Y(a1) OC V(by).

So there is no way to satisfy (AIL.7)-(AIL9) simultaneously
(with Y(a;) # Y(a;) for i # 7).
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Definition AIL3: {(u;,v;): 1 i < M} Cc X" xY*isa
pseudomatching zero-error detection code, if

W™ (v,|u;) =0, for i # j.

(We have given up (9.3)) in the definition of an MDC.

At first notice that for MDC necessarily u; # u; and v; # v;
for ¢ # j. For the new codes (without (9.3)) this no longer is
true. We can study the following four conditions (of increasing

strength)

(ug, v3) # (uj,v5), fori#j (AIL.10)
u; # Uy, fori # 3 (AIL11)

v; #j, fori # 7 (AIL.12)

u; #uy and v; # vy, fori # j. (AIL13)

We denote the corresponding maximal code sizes for W"
by M*(W), M} (W)M™ (W),and M} (W).

Our main, but simple, observations areas follows.

I) All these quantities are generally different from the
corresponding quantities for zero-error, zero-error de-
tection, and matching zero-error detection codes for
wm.

All these quantities can be estimated at least asymp-
toticalle rather accurately, so that the capacities are
known.

The bounds on the code sizes are almost trivial. How-
ever, an exact determination of the code sizes is perhaps
challenging for a combinatorialist.

10)

1)

For the formulation of our results we need a few definitions.
A X B with A C X, B C ) is a zero-rectangle for W if

W(y|z) =0, forallz € A, y € B. (AIL14)

Let R be the set of such rectangles, let A* x B* be a
maximal rectangle in the sense

|A*||B*| = max_|A| B (AIL15)
AXBER

and let A(™ x B(") be a maximal rectangle in the sense
: n—1 n—1
s (uinl] ¥4, [V |B])

= min[|X[*7TAM) | Y|"TtBM]. (AIL16)

Theorem AIl.l: For every memoryless channel W™ with
A" x B* £ O
) XY A BT < MR() < XY
i) " — (min @)D" < ME_(W) < |2
in |X 11
(min [X (y)])" +

i) V" = (g V@))" < ME(W) < "

(i [V (@)])" + 1

iv) min|X["~1AM | Y|"mtBM] < MR (W)
min(| ", [V]*).

Obviously, all quantities equal 1, if A* x B* = &.

IA
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Proof: The upper bounds in i) and iv) are trivial. The
lower bounds in 1) is achieved by the code

{(@" @0,y tyn): a0 € A",y € B*}

The lower bound in iv) is achieved by a maximal matching
of the complete bipartite graph with vertex sets

A:n—l % A(n), yn—l X B(n)

Finally, we have to prove only ii), because iii) is symmet-
rically the same. Suppose then that {(u;,v;) : 1 < ¢ < M}
is pseudomatching and satisfies (AIl.11). By Definition AIIL3
u; ¢ A™(vy) for ¢ > 1 and consequently we get the upper
bound.

In conclusion we define yy € )V by

X = min|X

| % (vo)| = min | (y)|

and observe that the lower bound in ii) is achieved by the code
1" yg): 2™ & X (y)}

where yg = o - - o

Remarks:

11} The notion of pseudomatching detection codes in the
sense of (AII.10) is paralled by the notion of a pseudo-
zero-error detection code, where in the definition of a
zero-error detection code the condition

W™(u;lu;) >0,1<i< M (AI1.17)
is dropped.

Also, Theorem Al.1 is then paralled by pseudocodes:
every pseudomatching detection code for W™ gener-
ates a pseudo-zero-error detection code for V™. Fur-
ther, a Z, V is generated this way by some W iff Z has
partitions {A;},cx, {By}yecy in the sense of (AI.10),
(AL11), and

Az N By| =1, forallz € X,y € Y. (AIL18)

12) In Theorem AII.1, ii) (similarly iii)) can be improved to

M} _(W) =max (Lyn, M}}, 4.(W)) (AIL.19)
where L, 1is the lower bound in ii). Indeed, let
{(ui,v;): 1 <4 < M} be a code achieving M} (W),
then in case W™ (v;|u;) > 0 for all ¢ we really have a
MDC and thus M < M , (W). Otherwise, we can
find an 7y with W”(v;, u;) = O for all 7 and therefore
M < L,.

Consequently, the lower bound I, is tight for
“most” channels, for example, for the (g)-unjform
complete hypergraph channels of Section X, but for
“some” channels like

W =

oo+
o+ o
+ o o
+ + +

the upper bound and not the lower bound is tight.

13) Pseudomatching zero-error detection codes for W™ can
be formulated also in graph-theoretic terminology. We
begin with the bipartite graph G¥" = (A, V™€)
associated with W™ as in Section III and finally, define
a graph G, = (&A™ x yn,én), where

U{{(=", "), (" y")}: 2™ € X",y y™ € Y7}
U{{(xn’yn)’ ('rm’ym)}: (xn’yn) €&t

Then a pseudomatching zero-error detection code for
W™ corresponds to an independent set of G,,.
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