1250

optimal estimator cannot be decomposed into projection followed by
nonlinear processing.

This phenomena can be explained by the tendency towards Gaus-
sianity of the sum of independent random variables. Projection, which
is a noninvertible linear transformation, makes the residual noise more
Gaussian and thus less favorable for estimation. A similar phenomena
causes increase of entropy after noninvertible filtering [9], [16].

In [14], we suggested another way to interpret (29), namely, as
an accuracy—quantity tradeoff relation. Notice that 1/a” represents
the accuracy (or the resolution) of the measurements. Thus without
prefiltering, keeping the quantity/accuracy product n/a® fixed keeps
the FI constant. The same is true for a Gaussian noise even after
(appropriate) prefiltering, but not true when the noise is not Gaussian,
Thus if prefiltering (projection) is used prior to estimation in the
presence of a non-Gaussian noise, it is better to take few accurate
measurements than many noisy ones.
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Zero-Error Capacity for Models with Memory
and the Enlightened Dictator Channel

Rudolf Ahlswede, Ning Cai, and Zhen Zhang, Senior Member, IEEE

Abstract—We present a general class of zero-error capacity problems
with memory covering known cases such as coding for error correction
and many new cases. This class can be incorporated into a model of
channels with memory, which thus are shown to give a unification
of a multitude of seemingly very different coding problems. In this
correspondence we analyze a seemingly basic channel in this class.

Index Terms—Finite-state channels, independence number, memory,
0-error capacity.

1. INTRODUCTION
A GENERAL 0-ERROR PROBLEM wWITH MEMORY

For the space Z™ of words of length n over alphabet Z, there are
several interesting graphs G = (2", &, ) with vertex set Z™ and an
edge set &, reflecting string properties.

Examples are, the strong graph product (Shannon’s product graph)
and the case Z = {0,1} with (z",z'™) € £ if and only if (iff) for
no two components s,t r, = 1 # z, and ; = 0 # x}.

The product space structure makes it particularly interesting to
investigate a(G» ), the maximal size of cocliques, as a function of n.
Then the coclique of the graph in the first example is Shannon’s well-
known zero-error code and the coclique of the graph in the second
example is the well-known Sperner system or antichain (c.f., e.g.,
[6, Ch. 1]). We propose here a quite general class of such problems,
which we term “0-error co-memory capacity problems,” because they
generalize Shannon’s well-known zero-error capacity problems and
concentrate on a new aspect, namely, memory. Those problems arose
for instance in [2].

Definition We call any pair of words from Z¢ a separator and any
set 8 C (2%)? of pairs of words of length £ a set of separators.

For any n > £ we consider the associated graph Gg =
(2",E(8)n), where (z",2™) € £(S), iff for no (s%,5) € S
there is an index set I = {i1,---,i¢} C {1,---,n} with z;, = s;,
i, =55 (01 < iz < -0 < de).

In the examples above 8 is symmetric, that is, (s¢, s") € S implies
(s'%,5%) € S. Here the graphs can be viewed as undirected graphs.
In the sequel we assume that S is symmetric. Thus S can be viewed
as a set of unordered pairs of subsequences.

This covers also t-error correcting codes for S = {(0%**1,12!+1)}

II. CONSECUTIVE SEPARATING PAIRS

Another associated graph Gs = (Z",£"(S)n) is obtained by
limiting I in the previous definition to intervals in {1,2,---,n}.
S plays here the role of a set of consecutive separating pairs of
words of length £. Here the problem is to find a maximal C C 2"
such that for all ¢*,¢™ € C there is an {a,3} € & and an
i € {1,2,---,n — £ + 1} such that

{(Ci, Citly" " " Cz’+e—1), (Ci, 0§+1, ) C:+¢—1)} = {047 ﬂ}-
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However, this seemingly different case is a special case of the
former: replace the pairs of S by all pairs of length n by adding a
total of n — ¢ letters at the beginning and/or the end.

Already by no means easy problems arise in the cases Z = {0, 1}
and |S| = 1. The case £ = 1 being trivial let us starr wirth
£ = 2. Here S contains one pair of 2-length binary sequences.
There are totally () = 6 such S’s. However, by interchanging 0"
and “1” and “reading” codewords backwards, there are only three
nonequivalent cases: S; = {(00),(11)}, S = {(01),(10)}, and
S; = {(00),(01)}.

Denote the maximal code sizes in Z™ by a,(S:), 1 <i < 3.

The codes

c {00,11}%, for n even
= n—1
17T {00,11}77 x {0}, forn odd
c {o1,10}%, for n even
= n—1
* 7 {01,10}"% x {0}, forn odd
show that
an(8) > 2%, fori=1,2. Q.1

On the other hand, we readily verify that this bound is tight. Indeed,
for a code C use the partition
c=cuc’ 22
where C’ contains exactly those words of C, which start with 00 or 10.
Now, if C is an n-length code for 8; (respectively, S2), then
the codes obtained by deleting the first two bits of C' and C" are
(n — 2)-length codes for $; (respectively, Sz). So |C| < 2an—2(S1)
(respectively, 2ay, _2(S2)) holds and thus

0 (8i) = 2131 fori=1,2. (2.3)

The case S3 is already a little bit more complicated. Here we
observe that for any code C those codewords, which start with 1, can
be modified by exchanging this 1 by a 0, because this 1 is useless
for the separation.

Therefore, we can assume that all words in C start with a 0. We call
such a code canonical. Let now C have length n and let us partition
it into the subcodes C’, with words starting with 00, and C", with
words starting with 01. Now Cj,_,, obtained from C' by omitting
the first 0 in all words, is an (n — 1)-length code for 83 and C;_,,
obtained from C"” by omitting the first two bits 01 in all words, is
an (n — 2)-length code for Ss.

Furthermore, {0} x C* U {01} x C** is a code for Ss, if C* is
an (n — 1)-length canonical code for Sz and C** is (n — 2)-length
code for S3. Thus

an(83) = an_1(8s) + an_2(Ss)
(2(83) = Las(Ss) = 2).

This equation describes the well-known Fibonacci numbers.
Finally, for £ > 3 we have no conclusive results. In the next section
we settle a seemingly interesting case with |S| > 1.

(2.4)

III. THE ENLIGHTENED DICTATOR CHANNEL
The problem discussed in Section II can also be viewed as a kind
of zero-error capacity problem of finite memory channels.
Indeed, with a set S of unordered pairs of words of X* we can
associate a stationary £-memory channel W, which satisfies

> Wiy | a)W(y | B) =0 exactly if {a, 8} € S
yEY

and is a finite-state channel in the sense of [3], which is discussed
also in [4, Secs. 3.5 and 3.6] and in [5, Sec. 4.6].
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Just let I' = A*~! be the state space with transition function
f: T'x X — T defined by

f(ml,"'azE—l,z) = (12,173,"‘,1271,1')-

This is the most straightforward generalization of Shannon’s zero-
error capacity problem for a memoryless channel. Here already for
binary alphabets interesting problems arise.

Our investigation has led to a very interesting type of finite memory
channel, which we call “enlightened dictator channel.” Clearly, a
dictator always follows his own opinion. However, we speak of an
enlightened dictator, if he responds to the unanimous vote of the
people against his opinion to the degree, that in this case he reaches
a decision by coin tossing.

M. (k > 3) is a binary input and binary output channel with
(k — 1)-memory with transmission probabilities

Pr(y | ze,2e 1, ,21)

=Pr(y: | xe, -, 2 p41)
_ {%, 1f(0£) Ty #Zt,1 = =Tt k41 fOI‘tZ k
= 1,

if y¢ = x4 and not ().
Fort < k— 1 (a) cannot occur, so we are in the second case.
Denote the zero-error capacity of the channel by Co(My).

3.1

Theorem
Co(My) = log A* (k) 3.2)
where A" (k) is the largest real root of the equation
k-2
AN N =0, (3.3)
=0

Proof:
Direct Part: By definition M} can transmit error-free at the first
k — 1 bits. Define code C,, recursively and start with Cx_1 =
{0,131,
Suppose we have an (rn — 1)-length code C,_1. For the definition
of the n-length code C,, we make use of the function

t: A" >N
where t(z™) equals the maximal number ¢ with
= Tm.

Tm—t41 = Tm—p42 = "

We call £(z™) the length of the tail of z™.
Consider the subcodes

Cnt,i ={2" ' €Cacy i t(z" 1) =i} (34)
and define
k—2
C. = {w"lwn A U Cn_1,i;@n = 0,1}
i=1
Ufe" a2 ' €Coorh-t;8n =1—2n_1}. (3.5
Clearly, this is a zero-error code for My with length n.
Moreover, by this recursive construction
C"‘:j=¢’ fijZk,"Zk—l
and
k—1
|Crt] = 3 [Caiil (3.6)
i=1
ICoil =Cac1ia], fori=1,2,---,k—1.  (37)
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In terms of the (k — 1) x (k — 1)-matrix

110 0
1010 0
1001 0
Dp=|. (3.8)
1000 - 1
1000 -~ 0
for T = (|Cm,1],-+*, |Con 1)
T, =T._, - Dy. (3.9
Therefore,
lim %log ICal = A" () (3.10)

the largest real eigenvalue of Dy.

Converse Part: We say a code has prefix =, if all its codewords
have the common prefix ¢, Denote by A, (z¢) any optimal (maximal
size) m-length zero-error code for M} with prefix . Obviously,
| A (z*)| only depends on j £ t(zf) and m £ n — €. Therefore, we
can write it as A(j,m). Any zero-error code with prefix z¢ can be
partitioned into two subcodes with prefix 20 or #¢1, respectively. On
the other hand, for all ¢ with #(z) < k — 2, A.(2°0) U A, (1)
is a zero-error code, because one can seperate any c”* € A, (:cEO)
and ¢ € A,,,(a:ll) at the £ 4 1st bit.

Therefore, for t(z%) < k — 2, we can write

A, (we) = .An,(av¢0) UA, (.’Eél)
A(j,m) = A(L,m — 1)+ A +1,m —1), forj<k—2.

(3.11)

By the definition of M} in (3.1), when we send a binary sequence
z" = (x1,---,Zn) over My, for ¢ > k the tth bit of the output
sequence is not uniquely determined. It may be 0 or 1, if =, agrees
with none of its & — 1 predecessors. One cannot separate ™ from
any m-length binary sequence at the fth bit, when this occurs, and
we say that the ¢th bit of ™ is ineffective. It is called effective, if
it is not ineffective.

We observe now that for all 2" € A, (0* ™) we can change z¢ to
1 — x; and get a new zero-error code, if

a) . is ineffective or, for all '™ € .A,,,(Ok_l) with ¢; = 1 — xy,

x} is ineffective

and

b) none of the k—1 succesive bits of z; turns from being effective

to being ineffective.

Notice now that the 1 at the kth bit of any codeword in A, (0¥~1)
is ineffective and one can change the kth bit of a codeword =™ from
0 to 1 without violating b), unless n > 2k — 1 and =™ has the
(2k — 1)-length prefix 0¥1¥~20. However, in the latter case, the 1
at the k + 1st bit is ineffective and b) is not violated, if we change
the prefix 01720 of z™ to 07110130 (here, when k = 3, 1° is
understood as an empty sequence as usual).

In this way we obtain from A,(0*~") a new zero-error code of
the same size, but only with a k-prefix 0¥~'1. Therefore,

Ak —Lin—k+1) = [A.(0")]

< A (05D = A(L,n — k).  (3.12)
The opposite inequality is obvious, because A, (0¥ ~11) is a code
with prefix 051 as well, and thus

Ak—-1,m)=A(1,m-1), form > 1. (3.13)
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Let now An = (A(1,m),-- -, A(k — 1,m)), then it immediately
follows from (3.8), (3.11), and (3.13) that in terms of the transpose
DL of Dy

An=A4,._1DL. (3.14)

Substituting the initial condition Ap=1"1in (3.14), we get

A, =11 (pp)™. (3.15)

Finally, since there are exactly |Cx—1,;| (defined in (3.4)) (k — 1)-
length sequences with tail length ¢, considering the decomposition
of an optimal code according to the (k — 1)-length prefices of its
codewords, (3.15) implies that the n-length optimal code has size

n—k+1,32r

N(n, M) =157(D}) 7.

(Actually we thus not only proved the converse, but also the direct
part again.) O
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