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Code pairs with specified parity of the Hamming distances
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Abstract

For code pairs (4,B);, A,BC{0,1,...,a — 1}"; with mutually constant parity of the Hamming
distances a conjecture of the first author concerning the maximal value of |A||B| is established.
(© 1998 Elsevier Science B.V. All rights reserved
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1. Introduction and results

Constant distance codes have been investigated in [7, 9]. The study of pairs of
codes with mutually constant distances was initiated in [3] and is continued in Refs.
[4, 5]. Weakening of the constant distance property led via [4, 5] to the quite general
4-words inequality of [2]. In another direction, in [1] constant distance code pairs where
analysed for specified distances and also for non-binary alphabets. There, also extremal
problems with constant parity of the Hamming distance were considered. We quickly
report the results and conjectures.

Xy =1{0,1,...,a— 1} is a finite set or alphabet. The pair (4,B) with 4,BC " =
[T} %, is called an (n,8)-system (or constant distance code pair with parameters n,),
if for the Hamming distance function d

d(a,by=0 forallae 4, beB.

Let & ,(n,0) denote the set of those systems and set

My(n,0) = max{|4||B|: (4,B) € Fy(n, )}, (1.1)
My(n) =  max M,(n,9). (1.2)

The discovery of [3] was
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Theorem AGP.

|2 if nis even
Ma(n) = {2"_1, if nis odd.
Next, in [9] M,(n,d) has been related to the functions F,(n, o), where
Fy(n,d)= max (4)" (” N 25‘), 4=2.2 (13)
31+0,=0 03
F3(n,0)= max (18)” (” o 35‘)252, 18 =33t (1.4)
28, +6,=0 02
X a | ra\ {n — o P
= Bl i — 1) o>
Fyn,9) 5,31(?2);5 ([ZJ [21) ( 5, )(a 1) for a>=4. (L.5)

Theorem A,. For n€ N, 0<d<n
(i) My(n,8) = Fy(n,d).
(11) M/x(n’ 5) - Fq(n, 5)f()r o= 4’5

Conjecture A,.
(iii) Ms(n,0) = F3(n,d).
(iv) My(n,0) = Fy(n,d) for 0>6.
Finally we come to the subject of this paper, namely, code pairs with a parity
constraint. It is convenient to introduce the function ¥ : N U {0}—{0, 1}, where

0, if nis even,

1, if nisodd. (1.6)

¥Y(n) = {
We consider the parity function IT: |2 (27 x Z%) — {0, 1} defined by

o, y"y = P(dG", y")). (1.7)
The pair (4, B) with 4,8 € 27, is said to have p-parity, if

H(a,b)=p foralla€ 4,beB. (1.8)
For p=10,1 let P (#) denote the set of those p-parity pairs and define

P(n) = max{|4||B|: (4,B) € P} («)}, (1.9)
Q;t(n)zm%xI QP(n). (1.10)
p=0,

This last quantity is known for all 7 and « # 3, and QF(n) is almost known.

Theorem A, (Ahlswede [1]). For n€ N and a = |%] - [3]
(a) QF¥(m)=4a", if Y(n)=p (a=4,p=0,1),
@) @7 '<Qf(n) < &, if Y(n)# p (a=4;p=0,1),



R Ahiswede, Z. Zhang | Discrete Mathematics 188 (1998) 1-11 3
@") Qu(n) = &" (x> 4),
() Qa(n) = Q3(n) = O}(n) = 4"~
For « = 3 we have

Conjecture A;.
(©) Qf(nm) ="' + Y2"' + 1), if ¥(n) = p=0.
() Qf(n)y =2 + 12" if ¥(n) = p= 1.
(c") Of(n)=2"""-2""" if ¥(n) # p and n # 3.
In the exceptional case n = 3, p = 0 not covered, one readily verifies that

(4,B) = ({111,222,333}, {all permutations of 123})

is optimal and that therefore 09(3) = 18. A first insight can be gained from the
following key tool of [1]. For BC 2% and T C{1,2,...,n} we say that B has parity on
T, if the projection ProjrB on [],., > contains only sequences with an odd or only
sequences with an even number of ones.

Lemma (Blockwise parity property)

> 2Bl + 12" for every BC A%

TC{1.2,..n}
B has parity on T

The right-hand bound is assumed, for instance, if B equals the set of all sequences
with an even number of ones. The result of this paper is

Theorem. Conjecture A, is true.

Finally, we draw attention to an open problem. For single sets, A has p-parity, if
H(a,a’y=p for a,a’ € A with a # 4.

The quantity ¢f(n) = max{|4|: 4 C X" has p-parity} has been determined in [1] for
p = 0 (and all values for a and n). There are only bounds for g!(n). Determine g(n)!

2. Proof of Theorem: the direct part

Our alphabet is %3 = {0,1,2}. Let us define
(alx) = number of occurrences of letter x in word a. 2.1
We need the sets

E2(n) = {a € 2% : (a|1) is even}, Oy(n)={a e I%: (a|]l) is odd},
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and the word
2=(2,2,....,2) e 2%. (2.2)

We show first how the values for Q5 (n) specified in Conjecture 4> can be achieved.
For this choose

(¢) (4,B) = (&2(n) U {2}, 62(n) U {2})

(c") (4,B) = (&2(n) U {2}, 02(n)) or (4,B) = (&2(n), Oa(n) U {2})

(c") (4,B) = (&2(n), £2(n)) or (Ox(n), Oa(n)), if p =0, and (4, B) = (C(n), &>(n),
if p=1.

3. Proof of Theorem: the converse part

3.1. Basic concepts and their properties

For 4,BC 27 define

ij _ n—2 17
Asz_{x € H f}.(X|,...,X[_],S,xi+],...,Xi_|,t,.xj+],...,xn)EA}

I#i
I<i<n

and similarly define BY. For simplicity, we consider 4'2, B!2 and denote them by A
and By, respectively. Define

— Sih )
= {{ <S2t2 > } s N # (0}.
<S1t|>
a= s
Sath

define

For

F(a)y={(s,1) : (s5,¢) has the same parity with both (s1,#/) and (s2,%)},
FI) =[S a).
acl

Similarly define J, #(b), and & (J). Now, if (4,B) has p-parity these sets must have
the following properties

(D) {Gnt) (20 €1 = (s1,4),(s2,2) € F(J),
{Gs1,1),(s2,2)} € = (s1,4),(s2,12) € ),
2) (s,0) ¢ SU) = By =0,
(sat)$‘¢(j) = A_":@.
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A pair (1,J), which satisfies these properties, is called matching, and (F(1),#(J)) is
called proper. If (I1,J1), (I,J,) are two matching pairs, and £(1;) = (), L (1) =
S (J3), then (J; U Ip,J; UJy) is also a matching pair, and

LN UL)=L) =S (I), LN US) = L) = L ()

This means that given a proper pair (y (), )), there exists a maximal matching pair
(1,J) reaching this proper pair. Any other matching pair (//,J’) such that #(I') =
L), LI = F(J) satisfies

I'cl, J' cJ

Now we explain why we define these concepts. We are going to use induction to prove
the conjecture. We need to divide F(I) x ¥(J) into smaller rectangles such that for
each rectangle

{Gr.t11)s > S i)} X {(S21, 821 ), -, (525 B22) }

{(s1:,11;), (s2/,t27)} should have the same parity. Denote the number of such rectangles,
which have parity 0, by o, and the number of such rectangles, which have parity 1,
by f. These rectangles cover the whole £ (1) x % (J). Therefore we obtain

QP (n)<aQf(n —2) + BOI(n - 2), (3.1)

where p =1+ p mod 2. But these rectangles must have the property that
{1 1), (sujs 1)} €1 and {521, t2:), (52, 12)} € J,

because for the pairs (51,4 ),(s2,8) in [
Asy N Ay, # 0.

For the maximal matching pair we denote the corresponding « and § by oc(y(l ), L(J ))
and ﬂ(y(l ), LI )). Then any other matching pair (//,J’), which has the same proper
pair (SL(1),(J)), must satisfy

a<a(FU), D)), B<B(LU)FU)). (3.2)

This means that for the induction we need to consider only the maximal matching pairs.

3.2. Determination of all the proper pairs and their corresponding maximal
matching pairs

Lemma 1. We have the following maximal matching pairs:
(N I=0,J=0,FU)=FJ)=Q £ 23
(2) 1 ={(00,11),(01, 10),(02,20),(00,22),(00,12),(00,21),(11,21),(11,12),(12,21),
(22,12),(22,21),(11,22),(01,02),(01,20),(02,10),(10,20)},
J =0, S = {(00)}, S(J) = Q.
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(3) I = {(22,12),(00, 11),(00,21),(11,21),(01, 10),(01,20),(10,20)},
J =0, #(I)={(00),(01)}, ¥(J) = Q.
(4) J =0, $UJ)=Q, I ={(00,11),(00,22),(11,22),(01, 10),(02,20),(12,21)},
&) = {(00),(11),(22)}.
(5) 1 =J = {(00,11),(00,22),(11,22)}, L) = F(J) = {(00),(11),(22)}.
(6) J = {(00,11)}, I = {(00,11),(00,22),(11,22),(01,10)},
LIy = {(00),(11),(22),(01),(10)}, L(J) = {(00),(11),(22)}.
(7) 1 = {(00,01),(10,11),(20,21)}, J = 0,
L) ={(02),(12),(22)}, ¥(J) = Q.
(8) I ={(20,21)}, J = {(02),(12)},
F(1) = {(02).(12),22)}, #(J) = {(20).(21).(22)}.
9) J =0, I ={(00,11),(01,10)},%(J) = Q, L(I) = {(00),(11),(22),(01),(10)}.
(10) 1 =J = {(00,11),(01,10),}, L) = L(J) = {(00),(11),(22),(01),(10)}.

Proof. We search for the maximal matching pairs in the following procedure. First,
obviously (#,%) should be such a pair and it corresponds to the proper pair (£, Q2),
where

Q2 = {(00),(01),(10),(11),(02),(20),(12),(21),(22)}.

For other cases we assume [ # (). Without loss of generality we can assume that either
{(00),(11)} €1 or {(00),(01)} € I, because other cases are equivalent to one of these
two cases.

Now if {(00),(11)} € I, then ¥ (I)C{(00),(11),(22),(01),(10)}, and
if {(00),(01)} € I, then £(I')C{(02),(12),(22)}.

Subcase min{|F(1)|,|#(J)|} = 1. There is only one class, that is (1) = {(00)},
J =0, and

I = {(00,11),(01, 10),(02,20),(00,22),(00, 12),(00,21),(11,21),(11,12),
(12,21),(22,12),(22,21),(11,22),(01,02), (01,20), (02, 10),(10,20)}.

Subcase min{|¥(I1)],|#(J)|} = 2. There are two possibilities: (a) L (1) = {(00),(11)}
and (b) (1) = {(00),(01)}.

If J = 0, then in case (a) I = {(00,11),(00,22),(11,22),(01,10),(02,20),(12,21)}.
These are all the pairs a with

L(a) D{(00),(11)}  but L) = {(00),(11),(22)}.

Therefore (Q,{(OO),(II)}) is not a proper pair. There is no maximal matching pair
in case (a) even if J # 0. In case (b) I = {(22,12),(00,11),(00,21),(11,21),(01,12),
(01,20),(10,20)}. This is a maximal matching pair. If |J| = 1, then J = {(00,01)},
FJ) = {02,12,22}, I = {(22,12)}, but &(I) = {00,01,02} # {00,01}. This means
that there is no maximal matching pair in this case.
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Subcase min{|#(I)}|,|#(J)|} = 3 There are the following possibilities:
(a) £(J)={00,11,22},  (b) %)= {00,01,11},
() #(J)={01,11,22},  (d) L) = {02,12,22}.

It is easy to check that in cases (b) and (c) there is no maximal matching pair, so we
consider only (a) and (d).
In case (a) there are only 3 maximal matching pairs, namely

I = {(00,11),(00,22),(11,22),(01,10),(02,20),(12,21)},  J =0,
I=J=1{(00,11),(00,22),(11,22)}, 1= {(00,11),(00,22),(11,22),(01,10)}.
J = {(00,11)}.

In case (d), J = 0 and then 7 = {(00,01),(10,11),(20,21)}. This is a maximal
matching pair. If |J| = 1, let J = {(02,12)}. Then, #(J) = {20,21,22} and / =
{(20,21)}. This is a maximal matching pair. In case min{|/|,|J|} > 1, there is no
maximal matching pair.

Subcase min{|S(I)},|#(J)}|} = 4. There is no maximal matching pair, because for
any two pairs a and b, |F(a) N F(b)| =5, 3, or 2.

Subcase min{|L(I)|,| L)} = 5. LUT) = {(00),(11),(22),(01),(10)}, J = 0,
I = {(00,11),(01,10)} or J # @ and the maximal matching is / = J = {(00,11),
(01,10)}. These are all of the maximal matching pairs.

3.3. The coefficients a,f for each of the ten maximal matching pairs

1. We use the parity table, Table 1. From the parity table we take the following 6
squares

{(00), (121),(202) } x {(010), (111, (212)},

Table 1

[
<
(=3
=)
—
=
[N
[\
(=
o
28]
[\
[\

00
01
10
11
02
20
12
21
22

OO O == O == O
[ R e =
CO e, — — O O —
O OO D = =D
—_—0 e OO DO = =
—_—0 OO =D -
—_C D = O D -~ O
O —m—_—_—_— 0 O D

-0 00 == -0 0
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Table 2
00 01

00 . . 0 . 1 .
11 . 0 . 1 .
21 . . 0 . .
01 [ [ 1 . 0 .
10 . . 1 . 0 .
20 . . 1 . 0 .
12 0 . 0 °
22 0 . 0 .
02 1 . 1 .
Table 3

00 11 22
00 . . 0 0 0
11 . . 0 . 0 [ 0 .
22 . . 0 ] 0 . 0 .
01 . 1 . 1 . 0 .
10 . 1 . 1 . 0 .
02 . 1 . 0 . 1 .
20 . 1 . 0 . 1 .
12 . 0 . 1 . 1 .
21 . 0 ° 1 . 1 .

and additionally the hyperedge {(00,00),(00,11),(00,22)}

Table 4

00 11 22
00 e * 0 . 0 0
11 . 0 . 0 0
21 . . 0 . 0 0
01 . 1 . i . 0 .
10 e 1 . i . 0 .

and additionally the hyperedges
{(00,11),(00,22)}. {(11,11),(11,22)}, {(22. 11),(22,22)}
and (00,11) is a pair in J.

where (#g,1,,%;) is a permutation of (0, 1,2). All of them have parity 0 and they cover
all 0’s in the table. Further, the 9 rectangles {(£,s)} x {(i,j): (i,j) has parity 1 with
(t,8)} cover all 1’s. Thus a<6,5<9.

2. || =1 and thus o + f<9.
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Table 5

02 12 22

00
01
10
11
20
21
02
12
22

—_—_—_0 OO o = =
L]
—_—o — oo~ — 0O
.
O
O - — O OO S
°

Table 6

00 11 01 10 22

00
11
01
10
02
20
12
21
22

[ e R e == R ]
®
O —m—, OO == OO
e o
O - OO = OO = -
L ]
oo = =D = =
O m—_—— O O OO
[ ]

and additionally the hyperedges
{(00,11),(00,11),(00,22)},
{(00,01),(00, 10)}, {(01,00),(01,11)},
{(01,01),(01,10),(01,22)}.

3. For this we have to use Table 2. Two points in one of the first three columns
denote that the pair is in /. For example the first two points in the first column denote
that 00 and 11 is a pair in /. The points in the other columns denote the squares. Here
we have a<6,<6.

. For this case we have to use Table 3. Here we have a <7, f<6.
L) = L)) =3 0+ B<9.
. <8, <4. This case needs Table 4.
. a <6, <6. Needed points are given to Table 5.
NI = L) =3, a+ 9.
. a<7,B<7. Needed points are given in Table 6.

10. This is the most complicated case. For this maximal matching pair we got
o = f = 8, which is not good enough for our induction. We will discuss it later.

For the first 9 cases, we have a+ < 15 and therefore by Eq. (3.1) and the induction
hypothesis

\OOO\IO\()IL

Of(m)<15 2" + 1)~ (3.3)
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For n>8 we have
P(n) <22, (3.4)

The induction works.

3.4. The last case

If we cannot find two positions i,j such that AS,, BZ are in one of the first 9
situations, then we prove the conjecture directly. Define

“ —AOO—AHUAOO and A61 :AIIO :Al()UA()].

Then
A" = (2242) U (1147,) U (0044,) U (0145, ) U (1041,)

and the similarly defined B’ are still a parity pair. Without loss of generality we
assume for all i,j the existence of a permutatlon of (0,1,2), say sg,s1,57, such that
A =AY, AV =AY, and A}{)SO, AY,,, AL, are disjoint. The other sets are empty
The same is also true for the BY’s. For (i, ;) = (1,2), (3,4),...,2m — 1,2m),..., w
can assume without loss of generality so = 0, sy = 1, s = 2. We claim that for any
(,))=02m—1,2m)

either 4%, = {2} or 4%, =0. (3.5)

If n is even, an (i, ) exists, say (1,2), such that (22,...,0,a,...) € 4, where the 0 is
in position i. Then we have also (22,...,1,...) € A2;. Look at positions (2,i), where
A% 4 0 and 42 # 0.

If 417 is not empty (otherwise, we can use induction), an element

(11,....t,...,)

exists in 4| and also an element

(00,....1,...,)

exists in A, because Aj1 = Aoo. If £ = 0, then A% A% are not empty. This means that
for position (2,i) 4% is not in the case 10, because AIO, A%f), and A%f) are not empty.
If t =1 we got Aﬁ, A(z)’l, and 4% not empty, and thus we obtain the same conclusion.
If t = 2, we got A3, A%, A3, and A%, are not empty. This also contradicts the fact
that we should be in the situation 10. For n even we proved that no element which
has both 2 and non-2 entries appears in 4 or B. Then

A =A~A422,...,2)€{0,1}" and B =B~B(22,...,2) € {0,1}".
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Since they have the same parity, if the parity is 0, then
|<2m!, |B<2!, 4|2 +1and  |B|<2" 41

and if the parity is 1, then (22,...,22) ¢ AN B and |4|<2""!, |B|<2" .
In fact, we have proved that, even in the case » is odd, in the first n — 1 positions,
2 and 0, 1 never appear in the same element in 4. We prove

H{x"€ed:x" =(22,...,2,5)}| = 1.

Otherwise the same argument will lead to the fact that 42" is not in the situation
10.
After a permutation for position n we get the same result. However,

e N,
22,...,2)

can belong to only one of 4 and B in case n is odd and p = 1, and can belong to no
one in case n is odd and p = 0. This proves the conjecture.
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