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A b s t r a c t - - W e  solve the  isoperimetric problem for subsets in the set PC* of binary sequences of 
finite length for two cases: 

(1) the  distance counting the minimal number  of insertions and deletions transforming one se- 
quence into another; 

(2) the  distance, where in addition also exchanges of letters are allowed. 

In the  earlier work, the  range of the  competing subsets was limited to the  sequences 2d n of length n. 
© 1998 Elsevier Science Ltd. All rights reserved. 
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1. T H E  P R O B L E M S  

The present note continues our paper [1]. We keep our earlier notation. Familiarity with [1] is 
not necessary but  certainly helpful for an understanding of this paper. 

We recall some definitions. For X = {0, 1} and n • N, X n denotes the space of binary sequences 
of length n. The fundamental object in our investigation is 

o o  

2¢* = U X~, 
n=0 

the space of binary sequences of finite length. Here the sequence of length 0 is understood as the 
empty sequence ¢. 

Basic operations are deletions V and insertions A. Here V (respectively, A) means the deletion 
(respectively, insertion) of any letter. 

We introduce again two distances, 8 and 6, in X*. For x m, ym, E X*, O(xm,y m') counts the 
minimal number of insertions and deletions which transform one sequence into the other and 
5(x m, ym~) counts the minimal number of operations, if also exchanges of letters are allowed. For 
r = ~, 6, we define for A c X* 

F~(A) -- {x ~n' : there exists an a m e A with r (x m', a m) < ~}. 

We abbreviate F~ = Ft .  
In [1], we showed that  the initial segments of size u in Harper 's order (introduced in [2]), or 

in short '%he u th initial segments in H-order" minimizes Ir$(A)], ]r~(A)l, lAnAI, and IAtAI for 
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A C X n with ]A] = u, where AeA is the subset of X n+e obtained by inserting g letters to the 
sequences in A and At  is defined analogously. 

We introduce now F~ (A) t i = (U,=o A A) ( r k  = 
In this note,  we change the range of  A from subsets  o f  ,~,n to subsets  o f  A'*. 
Clearly, 

F~(A) C F~(A) C F~(A), for all A c ):'*. (1.1) 

The role of the H-order for the former problems in [1] for the new isoperimetric problems is 
played by what we call H*-order. Its definition follows next. 

2. T H E  H*-ORDER 
n Recalling that  x n precedes yn in the squashed order on {x  n E X n : E i_- I  xi  = k }  exactly 

i f  x t  < Yt, ff t is the largest number s with x,  ~ y,, and that  x n precedes yn in the H-order 
n n 

on X n, exactly if E?=I Xt <~ E?=I  Yt or ~ t = l  Xt = E t = l  yt and (1 - X l , . . . ,  1 - xn) precedes 
(1 - y l , . . . ,  1-Yn) in the squashed order, we introduce the following H*-order. For x ~, x m~ E X*,  

x m precedes ymt, exactly if m < m ~ or m = m ~ and x m precedes ym~ in the H-order. 
Katona [3] has shown that  for any integers n and u E [0, 2 n] there is a unique binomial 

representation 

u =  + . . . 4 -  k4-1 4- 4- . . .4-  (2.1) 

(with n :> otk > . . .  >ot t  2> t > 1). He introduced the function 

(:) (o)  (;) (o.) .,. 
G ( n , u ) =  4 - ' " +  k + l  + 4- k - 1  4- .- .4-  t - 1  ' 

and proved tha t  for 0 < ux _< u0 and u _< u04- ul,  

G(n ,u )  <_ max(uo,  G(n  - 1, Ul)) + G(n - 1,u0). (2.3) 

It  immediately follows from the uniqueness of the representation (2.1) that  every positive inte- 
ger N can be uniquely represented as 

N = l + 2 4 - ' " 4 - 2 n - 1 4 -  4 - ' " 4 -  k + l  4- 4 - ' " 4 -  (2.4) 

= 14- 2 4 - ' "  4- 2 n-14- u (0 <_ u < 2 n and u as in (2.1)). 

We introduced in [1] (for u as in (2.1)) 

a l ~ ( n + ~ ) + ( a k : l )  . ( a t : l )  

and proved (in Lemma 6) that  AS is the G(n, IS]) th initial segment in the H-order on X n+x, if S 
is an initial segment in the H-order on ~,n. 

Consequently, by the definition of our H*-order, 

( s ' )  = r0 ( s ' )  = ( s ' )  

is the G*(N) th initial segment in the H*-order on X*, for the N th initial segment S ~ in the 
H*-order on X*, if we introduce 

,x A 
G * ( g ) = 1 4 - 2 4 - . . . 4 - 2 n - x 4 - 2 n + G ( n , u ) = ( 2 n + 1 - 1 ) 4 - G ( n , u ) ( f o r g i n ( 2 . 4 ) ) .  (2.7) 

By (2.1), (2.4), and (2.5) (see, also, [1]), 
A 

O(n, u) 4- u = O(n,  u), (2.8) 

and therefore, (2.7) imply that  

G*(N)  = N + 2 n + G(n,u) .  (2.9) 
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3. THE RESULTS 

For all A C X* with [A[ = N, 

Ir0(A)l < ]r6(A)l, 

THEOREM 1. 

G*(N) <_ [Fa(A)[ _< 

and all inequalities in (3.1) are equalities, if  A is 

If S is an initial segment in the H*-order, then 
Therefore, Theorem I can be applied repeatedly 

THEOREM 2. For every integer N E N, SN, the 
g E N, the same ~h boundaries in all three cases, 

r k ( S N  ) = F$(SN) = r~(Su),  

and they are minimal among sets of cardinality N,  that is, 

[F~(SN)[ = min [F~(A)[ = min [Ft~(A)[ 
AC2'*, IAI=N ACX*, IAI=N ' 
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(3.1) 

an initial segment in H*-order on X*. 

so is r ~ ( s )  = r e ( s )  = r~ ( s ) .  
and gives our general isoperimetric inequalities. 

N th initial segment in H*-order has for every 
that is, 

r = 0, 6. (3.2) 

4. T W O  AUXILIARY RESULTS 

To prove Theorem 1, we need the following inequalities. 

LEMMA 1. For 0 < N1 _< No, 

G*(No + N1 + 1) < max(N0 + N1 + 1,G*(N1)) + G*(N0) + 1. 

LEMMA 2. For 0 <_ Ni  <_ No, 

G*(No + N1) <_ max(N0 + N1, G*(Nt) ) + G*(No). 

In the proofs in Sections 5 and 6, we use simple properties of the function G. 

PROPOSITION. For u 6 [0, 2 n] and n 6 N, G is nondecreasing in u and 

G(n, u) <_ 2" 

Here, equality holds exactly i f  

and 

u > 2n - n - 1 ,  

u < G(n, u), (for 2 n > u > 0), 

(4.1) 

(4.2) 

(4.3) 

G(n, u) <_ u + G(n - 1, u). (4.4) 

PROOF. Here (4.4) follows from (2.3), for u,  = 0 and u = u0. The other statements follow 
readily with definition (2.2). 

The reader, who believes Lemmas 1 and 2, can immediately continue with Section 7. 
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Let 0 _< N1 _< No and 

. 

a. AHLSWEDE AND N. CAI 

PROOF OF LEMMA 1 

N =  No + NI + I = I + . . . +  2n-t + u = 2 n -  I +u, 

then 2 n - t  - 1 < No < 2 n+l - 1. 

CASE 1. 

Here we can write 

2 n - t  _ 1 < N1 _< No < 2 n - 1. 

(0 ~ u < 2n), (5.1) 

(5.2) 

and 

No = 1 + 2 + . . - +  2 n-2 +Uo = 2 n-1 - 1 +Uo, 

N1=l+2+...+2n-2+u 1 = 2  n - l  - l + u l ,  

By (5.1), (5.3), and (5.4), we have that 

(0 _~ UO < 2 n - l )  , (5.3) 

(0 < Ul _< Uo). (5.4) 

u = uo + ul .  (5.5) 

Thus, it follows from (5.3), (5.4), (2.9), (2.3), and (5.1) that  the RHS in Lemma 1 equals 
max(uo,G(n - 1,Ul)) + (N1 + 2 n - l )  + No + 2 n-1 + G(n - 1,uo) + 1 (by (5.3), (5.4), and (2.9)) 
>_ G(n, uo + ul) + (No + N1 + 1) + 2 n (by (2.3)) = LHS in Lemma 1 (by (2.9) and (5.1)). 

CASE 2. 

No _> 2 n - 1. (5.6) 

Here we write 

No = 1 + . . .  + 2 n-1 +uo ,  (0 _< uo < 2n). (5.7) 

Thus by (5.1), (5.7), (2.9), (5.6), (4.1), and (5.1), RHS in Lemma 1 > N+No+2'~+G(n,  uo)+l  
(by (5.1), (5.7), and (2.9)) _> N+2n+l+G(n ,  uo) (by (5.6)) _> N + 2  n+l _> N + 2 n + G ( n , u )  (by 
(4.1)) = LHS in Lemma 1 (by (5.1) and (2.9)). 

CASE 3. 

N1 < 2  n - l - l < N o < 2  n - 1 .  (5.8) 

Here (5.3) holds, and by (5.1), (5.3), and (5.8), 

u o = N - N I - I - ( 2 n - I - 1 )  > N - 2 . ( 2  n - t - 1 ) - l = u + ( 2 n - 1 ) - l - 2 n + 2 = u .  (5.9) 

So, we have, by (5.1), (5.3), (2.9), (5.9), and (4.4)that  RHS in Lemma 1 > N+No+2n-I+G(n-1 ,  
u o ) + l  (by (5.1), (5.3), and (2.9)) = N+2n+uo+G(n-1,  uo) (by (5.3)) > N+2"~+u+G(n-l ,u)  
(by (5.9)) > N + 2 n + G(n, u) (by (4.4)) = LHS in Lemma 1 (by (5.1) and (2.9)). 

Let 0 < N1 _< No and 

6 .  P R O O F  O F  L E M M A  2 

N '  = No + N I  = 1 + 2 + . . .  + 2 n-1 + u '  = 2 ~ -  1 + u ' ( 0  < u' < 2n), 

then 2 n-1 < No < 2 n+l - 1. 

CASE 1. EQUATION (5.2) HOLDS. Then, also (5.3),(5.4) hold, and 

(6.1) 

u t + 1 = uo + ul.  (6.2) 
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Similarly, as in the same case in the proof of Lemma 1, we have now by (5.3), (5.4), (2.9), 
and (6.1), tha t  the RHS in Lemma 2 

= max (Uo - 1 , G ( n  - 1, ul)) 4- NI + 2 n-1 4- No + 2 n-1 4- G(n  - 1,Uo) 
(6.3) 

= max (Uo - 1 , G i n  - 1, Ul)) + N '  4- 2" 4- Gin  - 1, uo), 

which together with (6.2), (2.3), (2.9), and (6.1) implies Lemma 2 for ul  < uo - 1, since G ( n  - 1, 

uo - 1) < O ( n  - 1, uo). 
Otherwise, Ul = Uo, and therefore, by (4.3) 

uo - 1 < uo <_ G(n  - 1, u l ) .  (6.4) 

Thus, by (6.2), (2.3), and (6.1), again RHS of (6.3) = max (uo, G(n  - 1, u l )  ) 4- N '  + 2 n + G ( n  - 1, 

uo) >_ N '  4- 2 '~ + G i n ,  uo + u l )  >_ N '  4- 2" + G i n ,  u' ) = LHS in Lemma 2. 

CASE 2. EQUATION (5.6) HOLDS. Hence, also (5.7) holds. By (6.1), (5.7), and (2.9), 

RHS of Lemma 2 >_ N ~ + No + 2 n + G(n,  Uo) >_ N ~ + 2 n+l - 1 + uo + G(n,  uo). (6.5) 

By (6.1), (4.1), and (2.9), the RHS in (6.5) is not smaller than the LHS in Lemma 2 unless Uo = 0 
and G(n ,  u')  = 2'L 

Assume tha t  Uo = 0 and Gin ,  u') = 2 n. Then by (4.1) and (4.2), u' > 2 n - n - 1. So, in this 
case, by (5.7) and (6.1), 

N1 = N '  - No = u' - uo > 2 n - n - 1. (6.6) 

This implies that  N1 can be represented as 

N1 = 1 + 2  + . . .  4- 2 "-2 +Ul ,Ul  > 2 n-1 - n ( =  2 " - I  - ( n -  1) - 1). (6.7) 

Then, by (6.7), (5.7), (6.1), (2.9), (4.1), and (4.2), we have RHS Lemma 2 ~_ N1 +2  n-1 + G ( n -  1, 
u l )  4- No 4- 2 n 4- Gin ,  uo) = N ~ 4- 2 n+l = LHS in Lemma 2, again. 

CASE 3. EQUATION (5.8) HOLDS. Here, similarly to (5.9), by (6.1) and (5.8), we have that  

u o = Y ' - N l - ( 2  n - 1 - 1 ) = ( 2  n - 1 ) + u ' - N l - ( 2  " - 1 - 1 )  > u ' + l .  (6.8) 

Thus, since G i n  - 1, .) is nonincreasing, by (2.9), (6.8), and (4.4), RHS in Lemma 2 > N '  4- No + 
2=-14-G(n-1,  uo) = N'4-(2 " - l - 1 ) 4 - u o + 2 " - 1 4 - G ( n - 1 '  uo) _> N'4-2 '~4- (uo-1 )4 -G(n-1 ,  uo-1)  _> 
LHS in Lemma 2. 

7.  P R O O F  O F  T H E O R E M  1 

By (1.1) and (2.6), it is sufficient to show that  for all A CAf* with IAI = N, 

G ' i N )  < Ira(A)l.  (7.1) 

We show it by induction on N. For N = 1, (7.1) obviously holds. 
For B C X* and i -- 0, 1, we define 

Bi = { (b l , . . . ,  b~) : ( b l , . . . ,  bt, i) e B } ,  (7.2) 

B * i -- {(bl . . . .  , bin, i ) :  ( b l , . . . ,  bin) • B} ,  (7.3) 

and 
/~ = { ( b l , . . . , b j ) :  Bj = i and (b l , . . . , b j )  E B}.  (7.4) 



126 R. AHLSWEDE AND N. CAI 

Now fix A C A'* and assume w.l.o.g, that  IAll _< ]-4o]. Write ].4il -- Ni for i = 0, 1. With these 
notions, if No ~ N, then 

I _> (N, for* = 0,1, (7.5) 

because A * i C (FaA)i ,  (FaA~) * i C (F~A)i and by the induction hypothesis IFaAil _> G *(N , ) .  

CASE 1. ~b E A. Then, 

and 

Thus by (7.5), 

N =  IAI = No + NI + I (7.6) 

(7.7) 

Ira(A)l  _> max(N0 +N1 + 1,G*(N1)) + G*(N0) + 1. 

Therefore, Theorem 1 follows from Lemma 1 in this case. 

CASE 2. ~ ~ A. Then 
N : No + N1, j (7.8) 

and we can assume that  No # N1, because otherwise we can replace A by .4o without changing 
the size of the set, and this change does not increase the size of "FA". We are now able to 
use (7.5) to obtain that  

[r (A)l > max (No + N,, G*(N1)) + a*(N0), 

because in this case Fa(A)  = (FaA)0 U (FaA)I .  Finally, Theorem 1 follows from Lemma 2. 

REMARK. Inspection of the proof of the theorem shows that  initial segments in H*-order may 
not be the only minimal sets (of course in the isomorphic sense) for which we have equality in 
Lemma 2 in our "extremal problems of F~".  Indeed, when [A[ -- N -- 4, G*(4) = 11, the 4 th 
initial segment in the H*-order is S = {¢,0, 1, 00} and Fa(S)  contains 11 sequences, namely, 
¢, 0,1, 00, 01,10,11, 000, 001, 010, and 100. If No = 3 and N1 = 1, then both sides in Lemma 2 
equal 11. If  A = {0,00,01, 10}, then Fa(A)  contains 0,00,01, 10,000,001,010, 100,011,101, 
and 110, that  is also 11 sequences. This example shows that  Lemma 2 is really necessary. 
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