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Abstract—We solve the isoperimetric problem for subsets in the set X* of binary sequences of
finite length for two cases:

(1) the distance counting the minimal number of insertions and deletions transforming one se-
quence into another;
(2) the distance, where in addition also exchanges of letters are allowed.

In the earlier work, the range of the competing subsets was limited to the sequences X" of length n.
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1. THE PROBLEMS

The present note continues our paper {1]. We keep our earlier notation. Familiarity with [1} is
not necessary but certainly helpful for an understanding of this paper.

We recall some definitions. For X = {0,1} and n € N, X" denotes the space of binary sequences
of length n. The fundamental object in our investigation is

[ o]
xt =],
n=0

the space of binary sequences of finite length. Here the sequence of length 0 is understood as the
empty sequence ¢.

Basic operations are deletions V and insertions A. Here V (respectively, A) means the deletion
(respectively, insertion) of any letter.

We introduce again two distances, 8 and §, in X*. For 2™, y™ € &A™, 8(z™,y™) counts the
minimal number of insertions and deletions which transform one sequence into the other and
&(z™,y™) counts the minimal number of operations, if also exchanges of letters are allowed. For
T =20, §, we define for A C X*

I (A) = {z™ : there exists an a™ € A with 7 (z™,a™) < £}.
We abbreviate I'! =T',.
In [1], we showed that the initial segments of size u in Harper's order (introduced in [2}), or

in short “the u*® initial segments in H-order” minimizes |T§(4)|, [T§(A)|, |A?4|, and |A%A| for
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A C X" with |A| = u, where A’A is the subset of X™*¢ obtained by inserting £ letters to the
sequences in A and A’ is defined analogously.
We introduce now I'4 (4) = (UL, A*A) (I} =T4).
In this note, we change the range of A from subsets of X" to subsets of X*.
Clearly,
T4 (A) c T§(A4) c T4(A), for all A C A™. (1.1)

The role of the H-order for the former problems in [1] for the new isoperimetric problems is
played by what we call H*-order. Its definition follows next.

2. THE H*-ORDER

Recalling that z™ precedes y™ in the squashed order on {z" € X" : 31 | z; = k} exactly
if z; < u, if t is the largest number s with z, # y,, and that =™ precedes y™ in the H-order
on X", exactly if Y g Z¢ < Yo ¥t OF D op Tt = 2p ;Y and (1 — xy,...,1 — z,) precedes
(1=-w1,...,1—yy) in the squashed order, we introduce the following H*-order. For z", z™ € X*,
z™ precedes y™, exactly if m < m’ or m = m’ and ™ precedes y™ in the H-order.

Katona [3] has shown that for any integers n and u € [0,2"] there is a unique binomial

representation
= n o n ak o at
u_(n)+ +(k+1)+(k)+ +(t) @1)

(with n > g > --- > ay >t > 1). He introduced the function

G(n,u) = (:) + .ot (k:l—l) + (Z) + (k(ﬁcl) +---+ (t‘it1>, (2:2)

and proved that for 0 < u; < up and v < ug + ug,
G(n,u) < max (ug, G(n — 1,u1)) + G(n — 1, up). (2.3)

It immediately follows from the uniqueness of the representation (2.1) that every positive inte-
ger N can be uniquely represented as

—_ .o n_l n .« n ak e at
N=1+2+---42 +(n)+ +(k+1)+(k)+ +<t) 2.4)
=1+4+2+---+2"14+4(0<u<2"and u as in (2.1)).

We introduced in [1] (for « as in (2.1))
A _(n+1 n+1 ar+1 a+1
G(n,u)—(n+1)+ .+(k+1)+( k )+ +( ¢ ), (2.5)

N
and proved (in Lemma 6) that AS is the G(n, |S|)*" initial segment in the H-order on X™*1, if §
is an initial segment in the H-order on X™.
Consequently, by the definition of our H*-order,

La(8)=Te(S")=Ts(5) (2.6)
is the G*(N)*® initial segment in the H*-order on A*, for the N*! initial segment S’ in the
H*-order on X*, if we introduce

A A
G*(N)=1+4+2+---+2°1 42"+ G(n,u) = (2"*! - 1) + G(n,u) (for N in (2.4)). (2.7)
By (2.1), (2.4), and (2.5) (see, also, [1]),
A
G(n,u) + u = G(n,u), (2.8)

and therefore, (2.7) imply that
G*(N) =N +2™ + G(n,u). (2.9)
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3. THE RESULTS
THEOREM 1. For all A C X* with |A|=N

G*(N) < |Ta(4)] £ Te(A)] < [Ts(A)l, (3.1)

and all inequalities in (3.1) are equalities, if A is an initial segment in H*-order on X*.

If S is an initial segment in the H*-order, then so is I'a (S) = I'p(S) = Ls(S).
Therefore, Theorem 1 can be applied repeatedly and gives our general isoperimetric inequalities.

THEOREM 2. For every integer N € N, Sy, the N*! initial segment in H*-order has for every
¢ € N, the same £** boundaries in all three cases, that is,

TA(Sn) =T§(Sn) =T§(Sn),
and they are minimal among sets of cardinality N, that is,
ITA(SN)| =

T4 (4)| = Ir¢4)|, r=6,6 (3.2)

|A| N AC x~ |A| N

4. TWO AUXILIARY RESULTS

To prove Theorem 1, we need the following inequalities.

LEMMA 1. For 0 < N; < N,

G*(No + N1 +1) <max(No + N, + l,G*(Nl)) + G*(No) +1.

LEMMA 2. For 0 < N; € Ny,
G*(Np + N1) < max {Np + N1,G*(Ny)) + G*(Np).

In the proofs in Sections 5 and 6, we use simple properties of the function G.

PROPOSITION. For u € [0,27] and n € N, G is nondecreasing in u and

G(n,u) < 2™ (4.1)
Here, equality holds exactly if
u>2"-n-1, (4.2)
u < G(n,u), (for 2" > u > 0), (4.3)
and
G(n,u) L u+G(n—1,u). (4.4)

Proor. Here (4.4) follows from (2.3), for u1 = 0 and u = up. The other statements follow
readily with definition (2.2).

The reader, who believes Lemmas 1 and 2, can immediately continue with Section 7.
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5. PROOF OF LEMMA 1
Let O S NI S NO and

N=No+Ni+1=1+---4+2"14u=2"-144, (0<u<?2?), (5.1)

then 2! — 1 < Ny < 2+1 — 1,

CASE 1.
1< N SNy <2® - 1. (5.2)
Here we can write
No=142++2"24uy=2""-1+4up, (0<up<2"?), (5.3)
and
Ni=1+2+4 42" 24y =2""1 14w, (0<u <up). (5.4)

By (5.1), (5.3), and (5.4), we have that
u=1ug + u;. (5.5)

Thus, it follows from (5.3), (5.4), (2.9), (2.3), and (5.1) that the RHS in Lemma 1 equals
max(uo, G(n — 1,u1)) + (N1 +2"71) + No + 2771 + G(n — 1,u) + 1 (by (5.3), (5.4), and (2.9))
> G(n,uo +u1) + (No + Ny +1) + 2" (by (2.3)) = LHS in Lemma 1 (by (2.9) and (5.1)).

CASE 2.
Ny >2" - 1. (5.6)

Here we write
No=1+---+2"14uy  (0<u <2). (5.7

Thus by (5.1), (5.7), (2.9), (5.6), (4.1), and (5.1), RHS in Lemma 1 > N+ N, +2"+G(n,up) +1
(by (5.1), (5.7), and (2.9)) > N +2"*1 + G(n,u) (by (5.6)) > N +2"t1 > N 42" + G(n, u) (by
(4.1)) = LHS in Lemma 1 (by (5.1) and (2.9)).

CASE 3.
Ny <21 1< Ny<2"—1. (5.8)

Here (5.3) holds, and by (5.1), (5.3), and (5.8),
Ug=N-N-1-(2""'-1)>N-2.2"'-1) 1=+ (2" - 1)~ 1-2"+ 2= u. (5.9)
So, we have, by (5.1), (5.3), (2.9), (5.9), and (4.4) that RHS in Lemma 1 > N+Np+2"-14+G(n-1,
ug)+1 (by (5.1), (5.3), and (2.9)) = N+2"+uo+G(n—1,u) (by (5.3)) > N+2"+u+G(n—1,u)
(by (5.9)) = N +2" + G(n,u) (by (4.4)) = LHS in Lemma 1 (by (5.1) and (2.9)).

6. PROOF OF LEMMA 2
Let 0 < N; < Ny and

N=No+Ny =142+ +2" 1 4u/ =2" 144/ (0< v/ < 27), (6.1)

then 2"~ ! < Ny < 27+l — 1.
CASE 1. EQUATION (5.2) HoLps. Then, also (5.3),(5.4) hold, and

' +1=1up+u. (6-2)
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Similarly, as in the same case in the proof of Lemma 1, we have now by (5.3), (5.4), (2.9),
and (6.1), that the RHS in Lemma 2
=max(up — 1,G(n — 1,u1)) + N1 + 21+ No + 2" 1 + G(n — 1, up)

6.3
=max(up — 1,G(n — L,u1))+ N' + 2" + G(n — 1, up), €3)

which together with (6.2), (2.3), (2.9), and (6.1) implies Lemma 2 for u; < up — 1, since G(n —1,
up — 1) < G(n — 1, up).
Otherwise, u; = uo, and therefore, by (4.3)

up— 1 <ug <G(n-1,1). (6.4)

Thus, by (6.2), (2.3), and (6.1), again RHS of (6.3) = max (uo,G(n—1,43))+ N’ +2"+G(n—1,
up) > N+ 2" + G(n,up + u1) > N' + 2" + G(n,v'} = LHS in Lemma 2.

CASE 2. EQuATION (5.6) HOLDS. Hence, also (5.7) holds. By (6.1), (5.7), and (2.9),
RHS of Lemma 2 > N’ + Ny + 2" + G(n,ug) > N’ + 2" — 1 + uy 4+ G(n, up). (6.5)

By (6.1), (4.1), and (2.9), the RHS in (6.5) is not smaller than the LHS in Lemma 2 unless ug = 0
and G(n,u’) = 2",
Assume that ug = 0 and G(n,u’) = 2". Then by (4.1) and (4.2), v’ > 2" —n — 1. So, in this
case, by (5.7) and (6.1),
Ni=N -Ny=u-yy>2"-n-1. (6.6)

This implies that N; can be represented as
Ny=1424-+2"24yu >2" 1 —n(=2""1-(n-1)-1). (6.7)

Then, by (6.7), (5.7), (6.1), (2.9), (4.1), and (4.2), we have RHS Lemma 2 > N, +2" "1+ G(n -1,
u1) + Np + 2" + G(n,up) = N’ + 2! = LHS in Lemma 2, again.

CasE 3. EQuATION (5.8) HOLDS. Here, similarly to (5.9), by (6.1) and (5.8), we have that
=N -N-(2"1-1)=2"-1)+u'-N -2 -1)>u' +1 (6.8)
Thus, since G(n — 1, ) is nonincreasing, by (2.9), (6.8), and (4.4), RHS in Lemma 2 > N’ 4 N +

2714+ G(n-1,u0) = N'+(2" 1 —1)4+uo+2" "1 +G(n—1,up) = N'+2"+(ug—1)+G(n—1,u9—1) >
LHS in Lemma 2.

7. PROOF OF THEOREM 1
By (1.1) and (2.6), it is sufficient to show that for all A C X* with |A| = N,

G*(N) < |Fa(4)]- (7.1)

We show it by induction on N. For N =1, (7.1) obviously holds.
For B C X* and i = 0,1, we define

B; = {(b]_,...,bg) : (bl,...,bg,'i) (3 B}, (7.2)
Bri={(bs,... bms3): (b, ...,bm) € B}, (7.3)

and
B; ={(b,...,b;) : Bj =i and (by,...,b;) € B}. (7.4)
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Now fix A C X* and assume w.l.o.g. that |A;| < |Ag|. Write |4;] = N; for i = 0,1. With these
notions, if Ny # N, then

I(m),-l > max (N,G*(N;)),  fori=0,1, (7.5)

because A*i C (TaA)i, Fadi)*iC (I{ATfl),~ and by the induction hypothesis |['a 4;| > G*(N;).
CASE 1. ¢ € A. Then,

N=|A4|=No+N +1 (7.6)
and o o
Ta(4) = (FA(A))O U (rAA)1 U {e}. (7.7)

Thus by (7.5),
ITa(4)] > max (N + N1 +1,G*(N1)) + G*(No) + 1.

Therefore, Theorem 1 follows from Lemma 1 in this case.

CASE 2. ¢ ¢ A. Then

N =Ny + Ny, (7.8)

/

and we can assume that Ny # Nj, because otherwise we can replace A by Ay without changing
the size of the set, and this change does not increase the size of “I'a”. We are now able to
use (7.5) to obtain that

ITa(A)| 2 max (No + N1, G*(N1)) + G*(No),

because in this case I'a(A4) = (m)o U (m)l. Finally, Theorem 1 follows from Lemma 2.

REMARK. Inspection of the proof of the theorem shows that initial segments in H*-order may
not be the only minimal sets (of course in the isomorphic sense) for which we have equality in
Lemma 2 in our “extremal problems of I'a”. Indeed, when |A| = N = 4, G*(4) = 11, the 4t®
initial segment in the H*-order is S = {¢,0,1,00} and ['A(S) contains 11 sequences, namely,
¢,0,1,00,01, 10, 11,000,001, 010, and 100. If Ny = 3 and Ny = 1, then both sides in Lemma 2
equal 11. If A = {0,00,01,10}, then I'a(A) contains 0, 00,01, 10,000, 001,010, 100,011,101,
and 110, that is also 11 sequences. This example shows that Lemma 2 is really necessary.
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