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1. INTRODUCTION

Before we state the intersection problem for direct products and our solution, we set up
our notation and give a sketch of some key steps in the extremal theory of set intersections.

N denotes the set of positive integers and fori, j e N,i < j,theset {i,i +1,...,]}is
abbreviated as [i, j].

For k,n e N,k < n, we set

2" = (F:F C [1,n]}, ([E]) ={Fe2":|F|=k).

k
A system of sets A ¢ 2" is called t-intersecting, if

Similarly, for a finite set © we use 22 and <Q>

[A1N Al >t fordl Ay, Ao e A,

and | (n, t) denotes the set of all such systems.
We denote by | (n, k, t) the set of all k-uniform t-intersecting systems, that is,

I(n,k,t):{Ae I(n.t): AcC (T)}

The investigation of the function

M(n,k,t) = max JAl,1<t<k<n,
Ael (n,k,t)

and the structure of maximal systems was initiated by Erdos, Ko, and Rado [6].

THEOREM 1.1 ([6]). For 1 <t <k and n > ng(k, t) (suitable)

M(n,k,t):(E::).

The smallest ng(k, t) has been determined by Frankl [8] for t > 15 and subsequently by
Wilson [15] for al t:
no(k,t) = (k —t + 1)(t + 1).

In the recent paper [1] al the remaining cases
k—t<n<k—-t+D(t+1
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have been settled by proving the General Conjecture of Frankl [8], which stated that for
l<t<k=<n
M(n,k,t) = max |Fl,
O<i<:t
where
n—t

]—"i={Fe<[E]>:|Fﬂ[1,t+2i]|zt+i},0§i5—- (11

THEOREM 1.2 ([1]). For 1 <t <k < nwith
(i) (k—t+1)(2+%) <n< (k—t+1)(2+‘;—1) for somer € N U {0}, we have

M(nakat)=|Fr|

and F, is—up to permutations—the unique optimum (by convention ‘;—1 = oo for
r =0).

(i) k—t+1) (2+ ﬁ;—i) =nforr € NU {0} we have
M(n, K, t) = |Fr| = [Fral
and an optimal system equals up to permutations—either 7, or 7y 41.

A very special case of Theorem 1.2 establishes the validity of the long-standing so-called
4m-conjecture (see [7, p. 56] and survey [5]).

In connection with Theorem 1.2 we note that, using the ideas of [1], in [2] maximal
nontrivial intersecting systems (see [12]) have been determined completely, and in [3] the
problem of optimal anticodes in Hamming spaces has been solved.

The following problem, initiated by Frankl, arose in connection with a result of Sali [14].
Letn=n1+---+nmk=ki+---+knand Q= Q1 U Qo U---U Qn with |Qi]| = n;.
Define

H:{Fe(f)ﬂFﬂQu:kifori:l,...,m}.

For given integers tj,1 < tj < ki,1 <i < m, wesay that A C H is (t1,...,tm)-
interesting, if for every A, B € A there existsan i, 1 <i < m, such that

[AN BN Q| >t holds.

Denote the set of all such systemsby | (H,t1,...,tm).
The problem is to determine

MH, t1,...,tm) = max |Al.
Ael (H,t1,....tm)

Later, instead of | (H, t1, ..., tm)(resp. M(H, 11, ..., tm)), we use the abbreviations | (H)
(resp. M(H)).

Thecaset; =tp = --- =ty = 1 has been solved by Frankl [10].
THEOREM 1.3 ([10]). Letr'j—’; <...< r‘% <fandti=tp=---=tm=1 then
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The proof is based on the eigenvalue method (the idea of which is due to A. J. Hoffman
(see [11]) and developed by Lovasz [13]). In the same paper [10] the following more
general result has been stated without proof.

THEOREM 1.4 ([10]). Let the integers n;, ki, tj satisfy nj > (ki — ti + 1)(t + 1) for
i =1,...,m,then

ni —t
ki —t
M (H) = max ——=|H|.
1 nj
< ki )
In the present paper we determine M () for all parameters. Our result is

THEOREM 1.5. Letn; >k >t >1fori =1,...,m, then

M(ni, ki, ti)

(%)
ki

We emphasize that the combination of this Theorem and Theorem 1.2 gives an explicit
value of M(H).

The proof of the Theorem is purely combinatorial and heavily (but not only!) based on
ideas and methods from [1]. An essential ingredient is a result from [4].

M(H) = max [H].

REMARKS. (1) We can dways assumethat nj > 2k; —t; forall i =1, ..., m, because
otherwise obviously M (H) = |H]|.
(2) With the set H, having parameters n; > k; > tj, nj > 2kj —t;, we consider any ‘twin’

;[ 1 Q2 Qm
= ()< (i) ()
where either k; = ki or ki = nj — ki and the ‘intersection numbers’ are t/ = t;, if

k{:ki,andti’:ni — 2k +t, if k{:ni —ki.

Clearly M(H) = M(H’) holds.

2. LEFT COMPRESSED SETS, GENERATING SETS AND THEIR PROPERTIES

We recdll first some well-known and also more recent concepts, which can be found in
[1]. Then we give extensions to direct products and basic properties of generating sets.

DEFINITION 2.1. Let By = {i1,...,ik} € (“l:]), i1 <i2 < -+ < ig, and By =

{jl,...,jk}egn] it <jo<- - < jk. Wewrite By < Bpiffis < jsforal 1<s <K,

k
that is, By can be obtained from B, by left-pushing. Denote by £(By) the set of all sets

obtained this way from By. Also set £(B) = gz £(B) for any B c 2.

DEFINITION 2.2. B ¢ 2"l is said to be left compressed or stable iff B = £(3). We aso
recall the well-known exchange operation S;, defined for any family B C 2,
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DEFINITION 2.3. Set

my _ [{IYUB\{j) ifi gB,jeB, {iju(B\{j}) ¢B8,
Sj(B) = i B otherwise

and §j(B) = {Sj(B) : B € B}.

DEFINITION 2.4. Denote by LI (n, k,t) the set of al stable systems from | (n, k, t). It
is known (from the shifting technique [8]) that

M(n,k,t) = max |B|= max |B
Bel (n,k,t) BelLl(nk,t)

DEFINITION 2.5. For any B € 2"l we define the upset #/(B) = {B’ € 2"l : B c B’}
and for B c 2" we define

uB) = um).
BeB
Furthermore, recall the concept of generating sets [1].

DEFINITION 2.6. For any B C ([E]> aset g(B) C Ui« <[?]> is called a generating

set of B, if
(n]) _
UumB) N K )= B.
Furthermore, G(B) is the set of all generating sets of B(G () # ¥, because B € G(B)).

DEFINITION 2.7. For B C [1, n] denote the greatest element of B by s™(B), and for
B c 2" set
s (B) = maxst(B).
BeBB

DEFINITION 2.8. Let B C [E] be left compressed, i.e., B = L(B3). For any generating

set g(B) € G(B) consider £(g(5)) and introduce its set of minimal (in the sense of set-
theoretical inclusion) elements £, (g(8)). Also define

G« (B) = {g(B) € G(B) : Li(g(B)) = g(B)}.
DEFINITION 2.9. For B € LI (n, k,t) we set

. _ ; +
Smin(G(B)) = g(Bf)T;Ig(B)S (9(B)).

X

Now we extend these definitions to a direct product of uniform sets H = (%)

m) in a natural way. To simplify notation we associate each block ©; =

{wh, wh, ..., wh } with [1,ni] fori =1,..., m.

DEFINITION 2.10. For an A = (A,..., Am) € [[[,2% with A = AN Qi =
1,..., m, we define

m
K(A): {A/:(Aél.’ A/Z»’A;n) EHZQ' : AI/ EE(A|),I :1,,m}
i=1

We set also L(A) = Jpc g L(A.
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DEFINITION 2.11. We say that A C H is left compressed or stable, if A = L£(A). In
other words A is stable, if it is stable under exchange operations §j withi < j inside each
block. The generating sets of an A C H and notions G(A), L(g(A)), L.(g(A)), G4(A)
one defines similarly.

DEFINITION 2.12. For A= (Aq, ..., Am) € [[", 2%, Al = ANQ;, denote the greatest
element of A (in Qi = [1,nj]) by sT(A), and for A C []{", 2% set

+ + ;
A =maxs (A),i=1...,m
s (A) AEAS (A
For A= (A1,...,An),B = (B1,....,Bm) e [[M12% A = AN, B =BNQi( =
1,...,m) wewrite A< Bif A < Bj (insidetheset Q) forali=1,...,m.
DEFINITION 2.13. For A € LI (H) we set
in(G(A)) = min st (g),i=1...,m.
S min(G(A)) g(A)eG(A)g (9(A)

We start with simple, but important properties of generating sets.

LEMMA 2.1. Let A € | (H). For any B,C € g(A) € G(A) thereexistsan1 <i <m
such that
IBNCNQ|>t.

LEMMA 2.2. Let A € L£.(g(A)). Then for any B € [[h,2% with B < A, either
B e £,(g(A)) or thereexistsaB’ € L.(g(.A)) such that B’ C B.

LEMMA 2.3. Let A C H, L(A) = A, and g(A) € G,(A). Choose E = (Eg, ..., Em) €
g(A) such that for some 1 < i < m, s1+(E) = §+(g(A)), and denote by Ag the set of
elements of A, which are only generated by E. Then

(i) for every A e Ag
AN[L s (g(A)] =E

. N _ (i —st(E)
(“) |{(AﬂQ|)A€AE}|—( k|—|E|| )

LEMMA 2.4, Let A € LI (H),9(A) € Gi(A) and let E = (E1, ..., Em), F = (F1,...,
Fm) € g(A) have the properties

(D IEENF|>tforsomel<i<m,and|EjNFj| <tjforall j #i and
(2 ugE UF,veE NF for someu, v e Q withu < v. Then

IEENF|>t + 1

LEmMMA 2.5. (Pigeon hole principle with weight function). For B C <[2]> Bl 2 (Be

B:j¢B}let
f:B—> RT.

Then there existsan i € [1, n], such that
n—k
Z_ f®=—— > ().
BeBi BeB
The proof is readily established by counting in two ways.



654 R. Ahlswede et al.
3. THE MAIN AUXILIARY RESULTS

LEMMA 3.1. Let A € L(H) with | 4] = M(H) and let

-1
ni > (ki —t +1) (2+ ri1+ 1) (3.1)

for somei € [1,m] andrj € NU {0}. Then
Smin(G(A) <t +2r, ifty =2 (32

and
Smin(G(A) <1, if =1 (3.3

PrRoOOF. We can assume that
n > 2k —t +2, (34

because for tj = 1 this is the condition (3.1) and in the case nj = 2kj — tj + 1(tj > 1)
we have from (3.1) r; > ki — tj + 1, and hence (3.2) holds. We are going to prove only
(3.2), because the proof of (3.3) isjust a step-by-step repetition. The proof is more complex
than its predecessor in [1]. However, being based to a large extent on the same ideas and
methods, we can omit some details. W.l.0.g. we prove the lemma for i = 1.

Let us have for some g(A) € G.(A)

S/ (9(A)) = simin(G(A))
and let us assume in the opposite to (3.2) that
sT(QA) = € >t +2ry. (35)

We shall show that under the assumptions (3.1) and (3.5) there exists an A’ € | (H) with
|A'| > | Al = M(H), which is a contradiction.
Towards this end we start with the partition

g(A) = go(A) U gi(A),

where
go(A) = {B € g(A) : s (B) = £} and g1(A) = g(A)\go(A).

Obvioudly, for every B € gp(A) and C € g1(A)
[(B\{£hNCNQi| >t

holds for somei, 1 <i < m (see Lemma 2.1).

As G(A) € G,(A), we observe that omission of ¢ from any E € go(A) destroys the
intersection property, that is, there exists an F € go(A), such that [(E\{¢}) NF N Q| < §
forali,1<i <m.

The elements in go(A) have an important property, which follows immediately from
Lemma 2.4.

(Py) Forany E = (E1,...,Em), F = (F1,..., Fm) € go(A) with |[E; N F1| = t3, and
|[EiNF| <t fori =2,..., mnecessarily

|[Eal + [F1] =€+ 11.
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Moreover, we have also the property
(P2) For any E, F € go(A) with |[Eq] + |F1] # £+ 11

I(EN{ED) N (FA\{E) N Qi| = ¢

holds for somei,1<i <m.
Partition now go(.A) in the form

oA = |J R

O<i<¢t
with Rj = {F € go(A) : |F1| =i} and consider the set
R ={F :F = F\{¢}; F e Ri}.

Thus |[Ri | = |Ri| and for any F' € R |F{| =i — 1.
We shall prove that (under conditions (3.1) and (3.5)) al R (and hence R}) are empty.
As ni > 2k; — t1, we notice that the equation |E1| + |F1| = t1 + ¢ for

E=(E1,...,Em), F =(F1,..., Fm) € go(A)

implies |E1| > k1 — (g — £), [F1| > kg — (N1 — £).
Suppose that Rj # @ (equivalently R{ # @) for some i. We distinguish two cases (a)
i £ W oand (b) i = Wit
2 2

Case (a): We consider generating sets
f1 = 91(A) U (Qo(A\(Ri URpyt,-i)) UR] (3.6)
and
f2 = 91(A) U (Go(A\(Ri U Rpt-i1)) URp iy, -
We know from properties (P1) and (P>) that f1 and f, satisfy Lemma 2.1. Hence, we have
Bi=UfH)NH) el (H) fori =1,2

The desired contradiction will take the form

Bi|. 3.7
Al < max || 37

The negation of (3.7) is
Al —|Bi|>0fori =1,2 (3.8)

Let z (resp. y) be the number of those elements of .4, which are generated only by R; (resp.
Riy+e—i), and let Z'(resp. y) be the number of those elements of Bi(resp. B2), which are
generated only by R} (resp. R; ).

t1+0—i
From Lemma 2.3 it follows %hat for some z3, y1 € N,
o ng—¢ . ng—¢
Z=2 <kl_i>andy_y1 (kl—e—t1+i) (3.9

and similarly we obtain

/ n—£+1 / ng—¢+1
Zzzl'(kl—wrl) anO'yzyl'<kl—z—t1+i+1>' (3.10)
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(Actually, equalities hold, but they are not needed here.) Hence (3.8) is equivalent to
z+y—-7Z>0z+y—-y >0. (3.11)
Using (3.9), (3.10) one obtains
(M4t —k —i)M—C—k+i) < (kg —i +1(kp —€—tg+i +1).

However, thisisfalse, because ny > 2kj —t;+2 and consequently ny+t; —kg —i > kg —i+1
aswellasng —¢—kyi+i>kg—¢—t1+1 + 1
Case (b): i = 4. Let

T:[Elc[1,z]c91:(E1,...,Em)eR#]

and consider the partition

Ry =[] QD).

TeT

where
Q(T):{E:(El,...,Em)eRﬂ : E1=T},
2

and the partition

Ry = [J QM.

2 TeT
where

Q/(T):{E:(El ..... Em)eT\’,’ll_H:Elu{Z}:T}
2

Let z(Q(T)) be the number of elements of A, which are generated only by elements from
Q(T). By Lemma 2.3 (ii) these numbers can be written in the form

ng—+¢
zZ(Q(T)) = (kl 1_ M) -21(Q(T)) for some z1(Q(T)) € N. (312
2
Further, let z(Ry+¢) be the number of elements of A, which are generated only by
elements from Rtl+62. Using Lemma 2.3 (i) and (3.12) we have
2

z(Ruye) = Y- 2Q(T) = (klnl_ ‘@) DRI (313)

TeT TeT

Now by Lemma 2.5 there existsa j € [1,£ —1]anda7’ c 7 suchthat j ¢ T for al
Te7 and

¢ —t
T;/(Q(T)) > W_ln : z(R#). (3.14)

Let
R = J QM) c Ry
TeT’ 2
and consider a new generating set

f= (g(A)\RL;() UR:.

By Lemma 2.4 we have
UF)NH)=B el (H).
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We show now that under condition (3.1)
IB| > | Al (3.15)

holds, which will lead to the contradiction.
Indeed, let z(R*) be the number of elements of B, which are generated only by the
elements from R*. Equivalent to (3.15) is

2(R*) > z(Rﬂ) . (3.16)
2
The following relation similar to (3.13) can easily be verified.
" nn—¢+1 ’
z(R") > (kl ugt 1) -T;/ z1(Q'(T)). (3.17)

(Actually, equality holds here.)
Now (3.16) and hence (3.15) easily follow from (3.13), (3.14), (3.17), and condition (3.1).
Inspection of the proof of Lemma 3.1 shows, that the following, slightly different statement
also holds.

LEMMA 3.2. LetZ ={i e [Lm]:t > 2} andletn; > (ki —t +1) (2+ :ﬁ) fori e Z

and nj > 2k; for i € [1, m]\Z. Then there exists an A € L(H) with maximal cardinality
| Al = M(H), such that
Smin(@(A) <t +2rjfori eZ

and
S min(g(A)) < 1fori e [1, m\Z.

We recall the exchange operation Sj (see Definition 2.3).
DEFINITION 3.1. We say that B ¢ 2"l isinvariant on T c [1, n], if
Sj(B)=Bforali,jeT.
LEMMA 3.3. Let A € LI (H), |A| = M(H), be an optimal set fromLemma 3.2,i € 7 =
{i e[l,m]:t > 2} and let

ti—1 ti—1
(ki—ti+1)<2+r'iT1>§ni<(ki—ti+1)<2+'T>. (3.18)
Then A isinvariant on [1,t + 2rj] C ;.
PROOF. It suffices to prove the lemma for the first block with t1 > 2. We know from

Lemma 3.2 that
Simin(G(A)) <ty + 2ry.

From the definition of generating sets we also know that A isinvariant on [t1 +2r1+ 1, ny].
Consider now the ‘twin’ to set H

(Il [nz] (]
= (o) < (5 ()

with intersection numbers t; = ny — 2kg + 1,1, =to, .. ., t/}, = tm and a new set

A = {(A1,..., Ap) € H (R1\A1, Ag, ..., Ap) € A}.
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Clearly, A" € | (H) and |A'| = |A] = M(H) = M(H’) (seethe Remark in the Introduction).
It is also clear that A’ is right-compressed in Q1.
The right side of condition (3.18) gives the relation

/ ’ ti -1
n>®-t+0n(2+ 1
for k/1= ng — kl,ti =nq — 2k +t1 and I’iz Ky —t1 —rq.
From the left—right symmetry and Lemma 3.1 we conclude that there exists a generating
set g(A") such that for every E = (Eq, ..., Em) € g(A’) necessarily E; C [t1+2r1+1, nq].
Consequently A’ is invariant on [1, t; + 2r;] and this means that A has the same property.

LEMMA 3.4. Let A € LI (H), |A| = M(H), be an optimal set from Lemma 3.3, and let
g(A) € G4(A). Then for every E = (Ey, ..., Em) € g(A) either |Ej| =t +r; or |[Ej| =0
forieZ={i e[l m]:ty > 2}, and

|Ei| <1fori e [1, m\Z.

PROOF. Again it suffices to show that the statement holds for the first block €.

Moreover, we assume that 1 € 7, that is, t1 > 2, because for t; = 1 the statement holds,
according to Lemma 3.1.

From Lemma 3.2 we know that, for every E = (E1,..., Em) € g(A), necessarily
E1 C [1,t1 + 2r1]. Moreover, it follows from the proof of case (a) in Lemma 3.1: if
t1 + 2r1 € Ej, then necessarily |E1| = t1 +r1.

Suppose now that there exists an F = (F1, ..., Fm) € g(A) with |F1] # 0 and |Fq| #
t1+r1. Wehavety +2r1 € F1. Two cases can occur; |Fq| >ty +rpand 0 < |F1| < ty+r1.
Here we treat only the first case, because the second can be done by similar arguments.

Let Ap C A be the set of those elements of A, which are generated only by F =
(F1, ..., Fm) € g(A). Asg(A) € G,(A), then clearly Ar # @.

Moreover, as k; — |F1] < np —t; — 2rq (this follows from |F1| > t1 4 r1) there exists
an A= (Ag,..., An) € Ag, such that A; N[1,t1 + 2r1] = F1. Recal now the exchange
operation and consider A} = Sjt,42r,(Ar) for j € Fy.

According to Lemma 3.3 we have A’ = (A}, Ap,...,An) € A aswdl. Let F' =
(F{. ..., Fy) € g(A) be an element, which generates A', that is, A’ € U(F’).

Clearly, t1 + 2r1 € F;, because otherwise A € U/(F’) as well, and this would contradict
the definition of the set .AF. On the other hand, if t; 4+ 2ry € Fj, then necessarily |F;| =
t1 +r1 < |F1| and this again leads to a contradiction with Lemma 2.2.

4. FURTHER PREPARATIONS

The following statement summarizes our findings in previous sections.

LEMMA 4.1. Letri,i € T = {j € [1,m] : tj = 2}, be integers uniquely determined
in (3.18) and let us set r; = O for i € [1, m\Z. Then there exists an A € | (H) with
Al = M(H), such that for any A = (A1,..., Am), B = (Bs1,..., By) € A thereis an
i € [1, m] for which both,

IAN[LG +2ri]] >t +rjand [B N[Lt +2ri]] >t +Tj

hold.
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PROOF. Let A C 'H be an optimal (i, ..., tm)-intersecting system for which the state-
ments of Lemma 3.3 and 3.4 hold. According to Lemma 3.2 the system A has a gen-
erating set g(A) € G(A), such that for each E = (E1,..., Em) € g(A) one has E; C
[t +2r] C Q@ =1,...,m). On the other hand, Lemma 3.5 says that the cardinality
of Ei(i = 1,...,m) isether t +r; or 0. Therefore, for any E = (E1, ..., Em), F =

(Fq, ..., Fm) € g(A), to guarantee (1, ..., tm)-intersection (see Lemma 2.1), there must
exist ani € [1, m] such that |Ej| = |F| =t +ri.
Let now ri,i = 1,..., m, be integers defined in Lemma 4.1. For aC C H we consider

the following mappings. ¢ = (¢1, ..., ¢m) : C — {0, 1}, where for C = (Cy,...,Cp) €
C,.Ci=9nC
ey L RGN +2r] >t T
@ (Ci) = { 0, otherwise,
(C) = (91(C1), ..., ¥m(Cm)) and we set &(C) = {¢(C) : C € C}.
For any C ¢ ‘H and B € {0, 1}™ we define the weight w(B, C):

w(B,C) = [{C € C: ¢(C) = B}|.

Clearly,
Z w(B,C) = |C|.

Be{0.1)™
It is also clear that for any B = (bs, ..., by) € {0, 1}™ one has

m
w(B.C) < [[wb). 4.2
i=1
where
|7, if bj =1
w(by) = { (E' > —|F,l, ifb=0 (4.2)
i v '

and the F;; s are defined in (1.1).

Now let C C H be a set such that ®(C) € | (m), where | (m) is the set of al intersecting
families in 2IM (to avoid an extra notation we identified 2(™ with {0, 1}™). Obviously
C el (H).

Let | (H, ®) be the set of all such systems from H and denote

M(H,®)= max |C|.
Cel (H,®)
Clearly,
M(H, ®) < M(H) 4.3)

and for any C € | (H, ®) with |C| = M(H, ®) necessarily

m

w(B.C) = [ [w(b) for al B e ®(C) c (0. 1)™.

i=1

It follows from Lemma 4.1 that the opposite to (4.3) aso holds.

Moreover, for any B € | (m) with arbitrary weights h : B — N satisfying h(B)
[T, w(bi) for B € B, one can find aC € | (H, ®) with ®(C) = B and w(B,C)
h(B), B € B. Therefore one has the following

1A
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LEMMA 4.2.

M = B
(H) = max B;Bw( ),

where for B = (by, ..., bm), w(B) = l_[im=1w(bi), and the w(b;) are defined in (4.2).

We need a specia case of aresult from Ahlswede and Cai [4]:
Let u ={u1 > up > --- > upy} be positive redls and let B € | (m) be an intersecting
family in 2i™ Define
u(B) = [Jui for B c[1,m]
ieB
and W(B) = Y gz u(B) for B c 2IM. We set

Mmméémmwwy

THEOREM 4.1 ([4]). (In a special case.) Let u; < 1, then
a(m, u) = W(B(u)),

where
Buy) ={Bc[lm]:1e B}

Finally we need the following statement, which can easily be proved.

ProPosITION 4.1. Forall ny >k >t > 1withnj > 2k —tjfori =1,...,m

M(H) < @holds

Moreover, if nj = 2k, tj = 1 for somei € [1, m], then

H
MGO:%L

5. PROOF OF THEOREM 1.5

We say that B c 2™ isa‘star, if B={B e 2™ : j e B} for some j € [1, m].

According to Lemma 4.2, the proof of Theorem 1.5 can be finished by showing that the
maximum in maxXge| m) > g w(B) is assumed for a ‘star’.

Of coursg, it is equivalent to show that maxgem) Y _ge B(B) is assumed for a ‘star’,
where for B = (by, ..., by) € {0, 1}™

i=1

m
B(B) =[]BM®)

and wib)
N |
pi) = 7ni ,
(k| - |fri|
that is
il if =1
‘B(b|) — (ni>v i =
ki
1, if by =0.
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Asforanyn>k>t>1n>2k—t

(1)
M(n, Kk, t) > ; (5.2)

holds, we conclude that

Bi) <1fordli e[l m]
Moreover, since equality in (5.1) is achieved iff n = 2k,t = 1, then, according to

Proposition 4.1, we can assume that

COi

10.
11.

12.
13.

14.
15.

Bi) < 1lfordli e[l m].

Now we apply Theorem 4.1 with respect to the reas uj = B(bj),i = 1,...,m, to
mplete the proof of Theorem 1.5.
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