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Construction of Uniquely Decodable Codes
for the Two-User Binary Adder Channel

Rudolf Ahlswede and Vladimir B. Balakirsky, Member, IEEE

Abstract—A construction of uniquely decodable codes for the two-user
binary adder channel is presented. The rates of the codes obtained by
this construction are greater than the rates guaranteed by the Coebergh
van den Braak and van Tilborg construction and these codes can be used
with simple encoding and decoding procedures.

Index Terms—Adder channel, coding, decoding, multiple-access chan-
nel.

I. INTRODUCTION

We address the problem of constructing uniquely decodable codes
for the two-user binary adder channel. Suppose that two independent
users transmit binary codewords of the same length over the channel
and the receiver gets a vector obtained by component-wise arithmetic
sum of these codewords. The decoder has to decide which codeword
was transmitted by each user with the error probability zero.

Systematic investigations of multiple-access channels were initi-
ated by the papers [1], [2] where the achievable rate region for
memoryless multiple-access channels under the criterion of arbitrarily
small average decoding error probability was found. The boundary
of this region for the two-user binary adder channel is defined by
the equations

R =1 R=1 Ri+Rx=15

where R; and R; are the code rates of the users. These equations
also give an outer bound on the code rates that can be realized under
the criterion of the decoding error probability zero, i.e., the rates of
the pair of codes that form a uniquely decodable code for the adder
channel. The best known lower bound on these rates was proved by
Kasami, Lin, Wei, and Yamamura [3] (this bound will be referred
to as the KLWY lower bound). The first constructions of specific
codes for this channel were obtained by Weldon [4]. Further results
in this direction were established by Khachatrian [5], Coebergh van
den Braak and van Tilborg [6], and other authors. Probably, the code
construction discovered in [6] gives the best known pairs (R, Rz)
such that there exist uniquely decodable codes with these rates. This
construction will be referred to as the CT-construction.

We will construct two binary codes, 4/ and V, of length ¢n, where
t and n are fixed integers, in such a way that (14, V) is a uniquely
decodable code for the two-user binary adder channel. Each codeword
will be represented as a sequence of binary =n-tuples having length
t; these n-tuples will be regarded as subblocks. The main point of
our considerations is that we do not only prove the statement of an
existence type concerning uniquely decodable codes, but build specific
codes for fixed t and n in a regular way. The rates of these codes are
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located above the KLWY lower bound and these codes can be used in
conjunction with simple encoding and decoding procedures.

The correspondence is organized as follows. We begin with the
description of codes I,V and illustrate the definitions for specific
data. Then we prove a theorem which claims that (/,V) is a
uniquely decodable code and gives expressions for /| and |V|. Some
numerical results and a discussion about the relationships between our
construction and the CT-construction are also presented. After that
we describe a simple decoding procedure. Finally, we point out to the
possibility of enumerative coding which follows from the regularity
of the construction.

II. Cope CONSTRUCTION (u)—(Vv)

Let us fix integers ¢,» > 1 in such a way that ¢ is even and
construct the codes ¢/ and V using the following rules.

(u) Let C denote the set consisting of all binary vectors of length
t and Hamming weight ¢/2, i.e.,

C={c=(c1,"--,c0) € {0, 1} wr(c) = t/2} (1
where wg denotes the Hamming weight. Construct a code

U= U {(Cila"',c?)} @

cel

of length ¢n repeating n times each component of every vector ¢ € C.
(v) Given an s € {0,---,t}, let

Js ={J C[t]: |J| = s}
denote the collection consisting of all s-element subsets of the set
(] = {1,---,t}, and let
A(s) — U {1in,0(s—i)n,} (3)
1=0

where 1°0°™ = 0™ and 1°"0° = 1°". Furthermore, let us introduce
an alphabet

B ={0,1}"\{0",1"}

consisting of 2™ —2 binary vectors which differ from 0" and 1".
Let j1 < -+ <js be the elements of the set J € J: and let
j1 < -+ <Jji_, be the elements of the set

J° = [t]\J.
For all (a,b) € A x B'™*, define a vector
v(a,b|J) = (v1,---,ve) € {0,1}"" @
in such a way that

if j = jx

ifj = i ®

v; =4 Tk
;=
bk,

where 5 = 1,---,¢, and construct a code

v=UU U U e

s=0 JETs ac.A(s) beBL—s
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Example 1: Lett = n = 2. Then C = B = {01, 10}. The code
U consists of two codewords

«M =00 11
v®@ =11 00
and the code V consists of all binary vectors of length 4, except 0011.
We construct V in the following way.
s=0. J. =0, A®) =0, B~ = {0101,0110,1001,1010}.
v =9(-,0101|0) = 01 01
v® =p(—,0110[9) =01 10
v® =y(-,10010) = 10 01
o™ =v(—,1010/9) = 10 10
s=1 7, = {{1},{2}}, A® = {00,11}, B~ = {01,10}.
+® =v(00,01|{1}) =00 01
v =v(00,10[{1}) = 00 10
o™ =9(11,01){1}) = 11 01
o® =p(11,10/{1}) = 11 10
»® =v(00,01|{2}) =01 00
+19 =4(00,10/{2}) = 10 00
oMY =y(11,01{2}) =01 11
o1 =y(11,10[{2}) =10 11

s=2. 7 = {{1,2}}, A® = {0000,1100,1111}, B*~* = 0.

v =v(0000, —|{1,2}) = 00 00
v = (1100, ~[{1,2}) = 11 00
o1 —y(1111,-[{L,2}) = 11 11

The pair (¢4, V) is optimal in the following sense: any codes ¢/ and
V such that (i, V) is a uniquely decodable code for the binary adder
channel may contain at most one common codeword; thus

4|+ V] < 2" + 1.
In our case,
U+ V| =17T=2" 4 1.

OI. PROPERTIES OF CODES CONSTRUCTED BY (u)—(v)

Theorem: The code (U, V) of length trn defined in (u)-—(v) is a
uniquely decodable code for the two-user binary adder channel and

(3

R

(©)

t
2 — 1

1 NN
)

n 1 t

+ 1:| . )
Hence

R, =

Ry =

Sl= 3=

327

Proof: Equation (6) directly follows from (1) and (2). Given an
s € {0,---,t}, the set J, consists of (;) elements. For each J € 7,
there are s + 1 possibilities for the vector ¢ € A®) and (2" — 2)**
possibilities for the vector b € B'~*. Therefore,

t

M=ZC)HDM—N#

s=0

It is easy to check that this equation can be expressed as (7).

The proof is complete if we show that (I/,V) is a uniquely
decodable code. Let us introduce an alphabet B* consisting of the
2™ — 2 elements of B and an element specified as “*,” i.e.,

B* = B| J{*}.

Let (B*)" denote the tth extension of B*. For all * € (B*)', we
introduce the set

®

V(b*) = {U = ('Ul,' .. ,'Ut) € {0’ 1}tn:
v; = b, if b} # %, and
v; € {0",1"}, ifb; = *;

forall j =1,---,t}. ©)

Note that {V(b*), b* € (B*)'} is a collection of pairwise disjoint
sets and get the following proposition.

Proposition 1: Suppose that, for all b* € (B*)*, there are subsets
V(b*) C V(b*) satisfying the following condition:

(U +v) ﬂ(u+v') =0, for all v,v' € V(b*).

Then (U, Ub~€(3«)tf)(b*)) is a uniquely decodable code.
Furthermore, using (1), (2) and (8), (9) we obtain

Proposition 2: Givenb* € (B*)! and v,v' € V(b*), the following
two statements are equivalent:
1) There exist u,u’ € U such that

u+v=u'+v'.

2) There exist ¢, ¢’ € C such that

,.
J

(UJ"U;) =(0%,1") = (CJ"C;) = (1,0)
(Uj’v,,i) = (ln’on) = (Cj’c;) = (071),

’
Vj =V; == Cj =C

forallj =1,---,t.

10
Let us fix b* € (B*)" and, for all v,v' € V(b*), define
¢
tor(v,0) = ) x{(vj,v5) = (0",1")}
=1
¢
to(v,0") = > x{(v;,v}) = (1*,0")}. (11)
=1

Hereafter, x stands for the indicator function: x{S} = 1 if the
statement S is true and x{S} = 0 otherwise.

Proposition 3: 1If v,v' € V(b*) and

to1 ('U»U,) 96 tlo('ua'u’) (12)

then there are no c,c¢’ € C such that statement (10) is true.
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TABLE 1
THE RATES (R1 y Rg) OF SOME UNIQUELY DECODABLE CODES DEFINED BY
(w)(v), THE SuM RaTs R} + R/, FOR THE CODES WHOSE EXISTENCE
Is GUARANTEED BY THE CT-CONSTRUCTION, AND THE DIFFERENCES
BETWEEN Ry AND THE VALUES Rs DEFINED BY THE KLWY LOWER
BoOuUND ON THE MAXIMAL RATE OF UNIQUELY DECODABLE CODES

tn| t R, R, Ri+Ry, | R\+R, | Ry— Ry
28 | 14 || 0.419458 0881856 1.301315 | 1.299426 | 0.008833
32| 16 | 0.426616 0.875699  1.302315 | 1.301048 | 0.009834
36 | 18 | 0432480 0.870463 1.302943 | 1.302071 | 0.010462
40 | 20 || 0.437382 0.865946  1.303328 | 1.302714 | 0.010847
441 22| 0441549 0.862002 1.303550 | 1.303109 | 0.011069
48 | 24 || 0.445141  0.858521 1.303662 | 1.303339 | 0.011181
52| 26 || 0.448272 0.855424 1.303696 | 1.303457 | 0.011215
56 | 28 | 0.451030 0.852646 1.303676 | 1.303497 | 0.011195
60 | 30 || 0.453480 0.850138  1.303618 | 1.303482 | 0.011137
64 | 32| 0.455672 0.847861  1.303533 | 1.303428 | 0.011052
68 | 34 || 0.457646 0.845783  1.303428 | 1.303347 | 0.010947
72 | 36 | 0.459434 0.843876  1.303311 | 1.303248 | 0.010829
76 | 38 | 0.461063 0.842121 1.303184 | 1.303134 | 0.010702
80 | 40 || 0.462553 0.840498  1.303051 | 1.303012 | 0.010570

Proof: Since all vectors ¢,/ € C have the same Hamming
weight, we obtain

t t
> xdlein ) = (0,1} =Y x{(ejp¢5) = (1,0)}-
j=1
If these vectors satisfy (10) given v, v’ € V(b*), then using (9), (11),
and (13), we conclude that o1 (v,v') = t10(v, '), but this equation
contradicts (12). O

(13)

j=1

Let us fix b* € (B*)!, denote
J ={j €[t]: b = =},

and suppose that j; < --- < j, and j; < - -+ < j;_, are the elements
of the sets J and J°. Assign

V(") = {v € VO"): (vjr, - +,vi,) € A}

where the set A() is defined in (3). Then, for all v,v’ € V(b),
v # v', either tp1(v,v') >0 and t10(v,v’) = 0, or to1(v,v') = 0
and tm(v,v') > 0. Therefore, based on Proposition 3, we conclude
that, for all v,v' € V(b*), there are no ¢,¢ € C such that
statement (10) is true, and using Proposition 2 obtain that the sets
U +v, v € V(b*), are pairwise disjoint. Finally, Proposition 1 says
that (U, Uy-¢ () V(b%)) is a uniquely decodable code and, as is
easy to see,

s =|Jl,

U vey=v
b e(B*)
where V is defined in (4) and (5). O

The rates (R1, Rz) of some uniquely decodable code are given in
Table I. For Ry € (1/3,1/2), the pair

(Ru Ry = 1056 - R1)

belongs to the KLWY lower bound. We show the difference R — ﬁz
and the values of the sum rates R + R} of the codes (I/',V') whose
existence is guaranteed if we use the CT-construction with given ¢
and n. The sum rates of all codes presented in Table I are greater
than R; + R5 and the points (R, Rp) are located above the curve
obtained using the KLWY lower bound.

Remark (on the CT-Construction): The authors of [6] described a
rather general construction which “almost” contains our construction
(u)~(v) when ¢ > 4, meaning that we fix the Hamming weight of
each element of the set C, while this weight should be divisible by
t/2 in the CT-construction (if we consider the case ¢ = 2,7 =0 [6,
p- 8]). Then the expressions for the cardinalities of the codes given
in Theorem 2 are reduced (in our notations) to

"_ t
Mi=2+ (t/2>
t/2—2

V=@ - |3- ¥

1=0

(:) (t/2—i—1)a'(1—m)' "

t/2—2

>

where 7 = 1/(2" — 1) and t is even. The difference in the code
rate between If and I/’ vanishes when ¢ is not very small. However,
our change makes it impossible to apply Lemma 5 one-to-one (the
statement: “(6) is equivalent to ...,” fails to be true), and we can
improve the result for |V'|. For example, consider the case ¢ = 4 and
set (in the notations of [6])

n=s=2 D©®={00} DM ={11} E={01,10}
y = (00,00,01,01) d = (00,00) d' = (11,11).
Then (see [6, p. 5]),
w'(d) =w*(d) = y(d,d) =0

(f) (t/2—i-1)a" 7 (1)

and the vectors (00, 00, 01, 01), (11, 11, 01, 01) cannot simul-
taneously belong to V'. Nevertheless, this is possible for the
code V.

IV. DECODING ALGORITHM

The codes derived in (u)—(v) can be used with a simple decoding
procedure. Let z = (z1,---,2:) € {0,1,2}" denote the received
vector, where z; € {0,1,2}" for all j = 1,---,¢. We will write
0 € z; and 2 € z; if the received subblock z; has 0 and 2 as one
of components, respectively.

Since u; € {0",1"} for all j = 1,-- -, ¢, each received subblock
cannot contain both 0 and 2 symbols. Thus the decoder knows u if z;
contains either 0 or 2. The number of subbocks 1™ in u corresponding
to the received subblocks 1™ can be found using the fact that the total
Hamming weight of u is fixed to be ¢n/2. These remaining subblocks
can be discovered based on the structure of the sets A, ---, A®),
A formal description of the decoding algorithm is given below.

1) Set

Ji={j€ltl:z=1"}, Jr=[\J..
2) For all j € JT, set
0", if0€z
"f:{ln, if 2 € zj,
and
w' = |{j € J{: 2 € z;}|.
3) Set

w=t/2—w
and represent the elements of J; in the increasing order, i.e.,

|J1| zk’jls"'ajk GJI =>j1< <]k
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Set

if j € {1, dk—w}
lf] € {jk—w+1,"',jk}'

0",
u] = 1n,

v= (21,'“,2,5) —(u1,~-~,u¢).

4) Set

Example 2: lLett = n = 2 (see Example 1). If the first received
subblock contains O then the codeword u(*) was sent by the first
sender, and if it contains 2 then this codeword was u®, Similarly,
if the second received subblock contains 0 or 2 then the decoder
makes a decision u® or (1), The codeword v € V is discovered
in these cases after the decoder subtracts u from the received vector.
At last, if the received vector consists of all 1’s then there are
two possibilities: (u,v) = («¥,1100) and (u,v) = («(?,0011).
However, 0011 ¢ V, and the decoder selects the first possibility,

V. ENUMERATIVE CODING

Enumerative procedures were developed in source coding to make
the storage of a code book unnecessary at both sides of the com-
munication link and essentially reduce computational efforts [7]-{9].
In this case, the encoder having received a message calculates the
corresponding codeword, and the decoder calculates the inverse func-
tion. Our decoder does not use the code book to decode transmitted
codewords, and an enumerative algorithm for messages completely
escapes the storage of code books. We present this algorithm below.

First, we construct one-to-one mappings

f(m) —U
) (ms) = T,
157 (ma) — A®
és) (mb) N Bt—a
where m,mj,m,, and mp are integers taking values in the
corresponding sets: m € {1,---,|U4|}, ms € {l,---,|Ts|},
me € {1,---,|A®?|}, my € {1,---,|B"°|}, and s = 0,---,t.
The structure of the possible mappings £{*(ma.) and £$*(ms)
is evident; the mappings f(m) and £\ (mj) are based on the
enumeration procedures for binary vectors having a fixed Hamming
weight [7]-[9].
Let (m, m") be the message to be transmitted over the binary adder

channel, where m € {1,---,|U|} and m' € {1,---,|V|}. Encoding
and decoding of the message m are obvious: we assign

fm)=w @) =m.
Let us consider encoding and decoding of the message m'. Denote

Ko =0

Ks+1=Ks+(2)(54'1)(2"‘—2)':—8, S=0,,t—]_

and
M® =s4+1 M®=(2"-2)""

for all s =0,---,¢. Furthermore, for all integers ¢ > 0 and @ > 1,
introduce the function

Ag,Q)=q—-Qle/Q].

The enumerative encoding procedure is given below.

1) Find the maximal value of s € {0,---,£ — 1} such that
m' > K,, denote m, = m' — K, — 1, and set
my = [ma/(M{ M) +1
ma = | A(mg, MO M) /M | + 1
my = A(A(mg, MO M), M) + 1.
2) Set
J=f%my)  a=f"(ma) b= £ (m).
3) Construct the vector v(a,b|J) in accordance with (4) and (5).

The enumerative decoding procedure goes in the opposite direction.

1) Find J,a, and b from v. Denote s = |J|.
2) Set

my = (A7) ma=(F)"a) me=(£7)70).
3) Set
m' =K, + (my — DM M + (m, — )M

4+ (mp—1) + 1. (14)

Example 3: Lett = n = 2 (see Example 1). Then
Ky =0

Ki =0+ (ﬁ)(o +1)2°% =4

K:=4+ (3)(1 +1)2°7 =12,

Let m' = 11. Then s = 1 since 11> K; and 11 < K,. Therefore,
m; =11-4-1=6
my=16/(2-2)]+1=2
me =|[A(6,4)/2] +1=2
my =A(A(6,4),2) +1 =1

since M) = MIES) = 2 and

A(6,4) =6—46/4] =2
A(2,2) =2 —2|2/2] = 0.
Suppose that
iV (1,2) = ({1}, {2}
£ (1,2) = ((00),(11))
53 (1,2) = ((01),(10)). (15)
Then we assign
J=1"(2) = {2}
a=£"(2)= 1)
b=f5"(1) = (01)
and construct the codeword using (4)and (5)

v(a, b|lJ) = (01,11).

Let us consider decoding of the message m' when v = (11,10).
We discover that

J={1} a=(11) b=(10).



330 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999

Hence, s = |J| = 1 and

my =(f)7 ({1} =1
ma = (F)71(11) =2
my, = (£57)7((10)) = 2
m=44+(1-1)-2-2+2-1)-24+2-1)+1=8

where (14) and (15) were used.

REFERENCES

[1] R. Ahlswede, “Multi-way communication channels,” in 2nd Int. Symp.
Information Theory (Tsahkadzor, Armenian SSR, 1971). Budapest,
Hungary: Publishing House of the Hungarian Academy of Sciences,
1973, pp. 23-52.

[2] , “The capacity region of a channel with two senders and two
receivers,” Ann. Probab., vol. 2, no. 5, pp. 805-814, 1974.

[3] T. Kasami, S. Lin, V. K, Wei, and S. Yamamura, “Graph theoretic
approaches to the code construction for the two-user multiple-access
binary adder channel,” IEEE Trans. Inform. Theory, vol. IT-29, pp.
114-130, Jan. 1983.

[4] E.J. Weldon, “Coding for a multiple-access channel,” Inform. Contr.,
vol, 36, pp. 256-274, Mar, 1978,

[51 G. G. Khachatrian, “On the construction of codes for noiseless synchro-
nized 2-user channel,” Probl. Contr. Inform. Theory, vol. 11, no. 4, pp.
319-324, 1982.

[6] P. A. B. M. Coebergh van den Braak and H. C. A. van Tilborg, “A
family of good uniquely decodable code pairs for the two-access binary
adder channel,” IEEE Trans. Inform. Theory, vol. IT-31, pp. 3-9, Jan.
1985.

[71 V. F. Babkin, “A universal encoding method with nonexponential work
expediture for a source of independent messages,” Probl. Pered. Inform.,
vol. 7, no. 4, pp. 13-21, Oct.—Dec. 1971. English translation: Probl.
Inform. Transm., pp. 288-294.

[8] J. P. M. Schalkwijk, “An algorithm for source coding,” IEFEE Trans.
Inform. Theory, vol. IT-18, pp. 395-399, May 1972.

[9]1 T.M. Cover, “Enumerative source coding,” IEEE Trans. Inform. Theory,
vol. IT-19, pp. 73-77, Jan. 1973,

Hierarchical Guessing with a Fidelity Criterion

Neri Merhav, Senior Member, IEEE, Ron M. Roth, Senior Member, IEEE,
and Erdal Arikan, Senior Member, IEEE

Abstract—In an earlier paper, we studied the problem of guessing
a random vector X within distortion D, and characterized the best
attainable exponent E(D, p) of the pth moment of the number of
required guesses G(X) until the guessing error falls below D. In this
correspondence, we extend these results to a multistage, hierarchical
guessing model, which allows for a faster search for a codeword vector
at the encoder of a rate-distortion codebook. In the two-stage case of this
model, if the target distortion level is D2, the guesser first makes guesses
with respect to (a higher) distortion level D1, and then, upon his/her first
success, directs the subsequent guesses to distortion D2. As in the above-
mentioned earlier paper, we provide a single-letter characterization of
the best attainable guessing exponent, which relies heavily on well-known
results on the successive refinement problem. We also relate this guessing
exponent function to the source-coding error exponent function of the
two-step coding process.

Index Terms— Guessing, rate-distortion theory, source-coding error
exponent, successive refinement.

1. INTRODUCTION

In [1], we studied the basic problem of guessing a random vector
with respect to (w.r.t.) a fidelity criterion. In particular, for a given
information source, a distortion measure d, and distortion level D, this
problem is defined as follows. The source generates a sample vector
z = (z1, ---, on) of a random N-vector X = (X1, ---, Xn).
Then, the guesser, who does not have access to &, provides a sequence
of N-vectors (guesses) y1, ¥2, - - - until the first success of guessing
z within per-letter distortion D, namely, d(z, y,) < ND for some
positive integer ¢. Clearly, for a given list of guesses, this number
of guesses ¢ is solely a function of #, denoted by Gn(2). The
objective of [1] was to characterize the best achievable asymptotic
performance and to devise good guessing strategies in the sense of
minimizing moments of G (X). It has been shown in [1], that for
a finite-alphabet, memoryless source P and an additive distortion
measure d, the smallest attainable asymptotic exponential growth rate
of B{Gn(X)"} (p > 0) with N, is given by

E(D, p) = max[pR(D, P') — D(P'||P)] (0

where the maximum w.r.t, P’ is over the set of all memoryless
sources with the same alphabet as P, R(D, P') is the rate-distortion
function of P’ w.r.t. distortion measure d at level D, and D(P'||P)
is the relative entropy, or the Kullback—Leibler information diver-
gence, between P’ and P, i.e., the expectation of In [P'(X)/P(X)]
w.rt. P’
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