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Arbitrarily Varying Multiple-Access Channels
Part I—Ericson’s Symmetrizability Is
Adequate, Gubner’s Conjecture Is True

Rudolf Ahlswede and Ning Cai

Abstract—1In 1981 Jahn used the elimination technique of the first
author to determine the average errors capacity region of an arbi-
trarily varying multiple-access channel (AVMAC), when this region has
nonempty interior. Here we remove this restriction. In his thesis (1990),
Gubner missed this result because he used the first author’s first approach
to the MAC, which is based on conditional decoding, and not the
first author’s second approach, which is based on maximum likelihood
decoding. This second approach was originally needed for a kind of
compound MAC. For the AVMAC the difference between the approaches
is naturally even more essential.

Index Terms— Ahlswede’s dichotomy, arbitrarily varying multiple-
access channels, capacity region, jamming.

1. INTRODUCTION

The discovery of [3] was the following dichotomy: the ca-
pacity C(W) of an arbitrarily varying channel (AVC) W =
{W(|-, s): X - Z,s € 8} with input alphabet X’ and output
alphabet Z under the average error criterion equals either zero or
else equals the random code capacity

Cr(W)= max min I(P, W)
PEP(X) wew
where I( P, W) denotes the mutual information for input distribution
P and channel W, W is the convex hull of W, and P(X) is the set
of all probability distributions on X',

The problem of positivity of C'(W) was also addressed in [3]. It
was shown that the separability of two random words is necessary and
sufficient for C'(W) > 0. Moreover, if W equals the row-convex hull

W = {W: W(|z) € W(z) = conv{W(-]) € W}}

then already separability of two random letters, that is, for some
P, P' € P(X)

{Z P(2)W(-|z): W € v:v}
n{z P'(;c)W(-|ac):W€V:V}=® (1

is necessary and sufficient for C(W) > 0. Arbitrarily varying
channels are designed as a robust channel model—in jamming, for
instance. If the jammer can respond to every individual message, then
the communicators are forced to use the maximal error criterion (see
discussion in [3]). Then one readily verifies (see again [3]) that the

coding problems fgr W, W, and V_V are all equivalent; that is, we

can assume YW = W. Using the average error criterion it is of course
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also more realistic to assume that W = V:V and, therefore, to confine
oneself (as in [3]) to the “single letter” condition (1).
Still there remained the mathematical problem of giving a single-

letter characterization for positivity of a general W with W # W.

The key step was made by T. Ericson [5] by introducing an
adequate concept. He called W symmetrizable iff for a stochastic
E: X - 8

Z W(z|z, s)E(s|z")

= Z W(z|z', s)E(s|z, forall z, ' € X and z € Z.

@

After having verified that for positivity of C'(W) it is necessary
that W be nonsymmetrizable Ericson conjectured that this is also
sufficient.

To prove this is by no means easy. However, it was easy for an
expert familiar with the new coding methods of [4] (maximum prob-
ability (not likelihood) decoding in conjunction with large deviational
ideas). The actual results of [4] are for the harder case of maximal
errors. The proof has been recast in another language in [9]. It also
is the germ of the proof of Csiszar/Narayan in [6] where Ericson’s
conjecture has been established. Finally, in the theory of identification
the cycle closes: both, the nonsingle letter separability by random
words and symmetrizability are used and needed!

Another development started with the earlier method of proof in
[3], the so called “elimination technique.” It is a forerunner of what is
called now derandomization in computer science. It converts random
codes into deterministic codes. Jahn [8] used it to extend the results of
[3] to multiuser channels, in particular to the multiple-access channel
(MAC). For an arbitrarily varying MAC (AVMAC), defined by a set
W = {W(-|-, -, s): s € 8} of stochastic (X x Y — Z)-matrices, he
characterized the region of achievable rates R(W) under the average
error criterion as follows.

For a pair of RV’s (X, Y) with joint distribution Pxy = Px - Py
define the set R(X, Y) of pairs (R1, R2) satisfying

0 < Ry < inf I(X A Z|Y),
0 < R < inf I(Y A Z|X)
Ry + Ry < inf I(XY A Z) 3)

where all infima range over the quadruples (X, Y, Z, S) with
Pxyzs(z, y, 2, 8) = Px(z)Py (y)Ps(s)W(z|z, y, 2).

Furthermore, write Rr(W) for the closed convex hull of
U( X,v) R(X,Y) and write “int(A)” for the topological interior
of a set A C IR?.

Theorem (Jahn [8]):

R(W) = Rr(W), when int(R(W)) # &.

After the result of Csiszar/Narayan existed, it was natural to try to
characterize int(R(W)) # & in terms of symmetrizability. This was
the topic of Gubner’s thesis [7], where he introduced (among others)
the following symmetrizability conditions for the AVMAC:
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i) Wis (X, )) symmetrizable iff for a stochastic : X XY — S
Z W(z|z, y, s)o(s|z’, y')

=> Wz, o, s)o(sle, y),

forallz, ' € X, y,y €Y and z € Z.
il) W is X symmetrizable iff for a stochastic o1: X — S

S Wiz, 3, s)o(sle’)
= Z W(Z|£E’, Y, 5)0'1(5|z),

forallz,z' € X,y €Y and z € Z.

iii) W is ) symmetrizable iff for a stochastic g2: Y — 8

> W(zle, y, s)oa(sly’)
=" Wizle, o', 5)oa(sly),

forallz € X, y,y' €Y and z € Z.

Their connections are clearer in light of the following:

Example 1: W can be (X, Y) symmetrizable without being X’
symmetrizable or ) symmetrizable. Choose X =Y = Z2 = § =
{0, 1} and choose as distributions on Z for s = 0

wW(-|0, 0,0) =W(-|1, 1, 0) = (1, 0)
W([0, 1,0) =W (0, 1,0) = (3, 3)
and for s = 1
W(:[0,0, 1) =W (|1, 1,1) = (3, 3)
w0, 1,1) =W (-1, 0, 1) = (0, 1).
Now, W is (X, )) symmetrizable, because for ¢ defined by

_J0, fr=yands=1,orz#yand s=0
”(S|‘”’y)_{1, ifr=yands=0,orz #yands=1,

oy, y

Z W(|CC, Y, S)U’(S|1”, y,) = Z W('|£IZ’, y,7 S)U(Slza y)'

we have for all x,

On the other hand, W is not A symmetrizable (and similarly not
Y symmetrizable). Indeed, fory =0, z =0, 2’ = 1 a o1 satisfying

ZW( 0,0, s)o1(s]1) = ZW(|1 0, s)o1(s/0)

must be of the form o1(0]0) = 1(1|1) = 1. However, for this o1,
fory=1,z=0,2' =1

> W0, 1, s)ai(s|1)
=(0,1) #(1,0) = Z W(-[1, 1, s)o1(s|0).

An example for the opposite relation was given in [7].
Gubner introduces two further concepts.

1) W is called (X, Q) symmetrizable iff for some o{: X — S

> (Z QW (zle, v, s>)ai(s|w')

s

= Z (ZQ(y)W(zW, v, s))o‘i(skc)

for all z, ' and z.

2) W is called (), P) symmetrizable for P € P(X) iff relations
analogous to those in 1) hold.

Following the argument of Ericson he obtains his first result.

Theorem G1: If the AVMAC W is (X, J) symmetrizable or X
symmetrizable or Y symmetrizable, then int(R) =

His second result goes in the other direction.

Theorem G2: If the AVMAC W is not A'-symmetrizable and
for some P € P(X) not (Y, P) symmetrizable [resp. not Y
symmetrizable and for some @ € P(Y) not (X, Q) symmetrizable]
then int(R(W)) # &.

This sufficient condition is different from the necessary condition
in Theorem Gl and Gubner conjectured the condition in Theo-
rem Gl to be exact. Why did he or anybody else not settle the
problem?

After some initial excitement about the concept of symmetrizability
is this a new puzzle?

Fortunately a simple explanation can be given. Gubner extends
the decoding rule of [6] to the multiple-access situation by following
Ahlswede’s [1] approach of “conditional decoding” (one message, say
of the & encoder, is decoded against the average over the messages
of the Y encoder; then the receiver, after knowing this message, uses
this knowledge is in decoding the message of the ) encoder—and
vice versa),

This is a suboptimal decoding rule, but suited for the discovery
of the capacity theorem for the MAC. Its drawback for systems
of channels was soon realized by Ahlswede [2]. For the deriva-
tion of the capacity theorem for the compound MAC he intro-
duced, therefore, maximum likelihood decoding, which also could be
analyzed.

For the AVMAC suboptimality of the conditional decoding rule
becomes even more significant. In fact, Gubner does not even get by
his approach the region established by Jahn if int(R(W)) # &

Here is our new result.

Theorem 1 (Proof of Gubner’s conjecture): For the AVMAC W
int(R(W)) # & iff W is not (X, )) symmetrizable, not X
symmetrizable, and not )} symmetrizable.

Proof: Having read [2] (also a good literature for experts on
“turbo codes™) and understood our previous reasoning, this should be
a good exercise for people in “Shannon Theory.”

Proof: Instead of proving the whole capacity theorem all over
again, we only show how to get positive rates. (Combining this with
Jahn’s result, the capacity theorem follows.)

This makes calculations and formalisms much simpler. We use two
auxiliary results. The Lemma 1 in Section II concerns the coding
rule and the Lemma 2 in Section III large deviational properties to
cope with the |S™|; that is, exponentially many individual channels.
Finally, we prove the Theorem in Section IV.

II. DEecobpING

We begin with the description of a decoding rule for the AV-
MAC W. Fix two RV’s X and Y such that for their distributions
Px € P(n, X) and Py € P(n,)Y); that is, they are n-empirical
distributions. 7% and 7y are the sets of typical sequences with
relative frequencies specified by Py, respectively, Py .

For sets U C T and ¥ C 7y (of codewords) and (small) positive
numbers &, (i, 2, and ¢ we define decoding sets D,,,(u € U, v € V)
as follows: z™ € D,, iff there is an s" € 8™ and a quadruple
(X,Y, S, Z) of RV’s with (u, v, s, 2") € Txysy satisfying
simultaneously the conditions

0)

D(PXYSZ”PX X Py X Ps X W) < £ (4)
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I) If there are u’ # u, v’ # v, s™ € 8", and RV’s X', Y, and
S' such that (u, o', v, V', 87, ™, 2") € T¥ x1yyrgg z and
D(Px/yrsiz||Pxr X Pyr x Psr x W) < € (%)

then
IXYZAX'Y'|S) <. (6)
I) If there are u' # u, s™ € 8", and RV’s X' and S’ such that

(u, v’y v, 8%, 8™, 2") € TR xryssz

and
D(Pxiysz||Px: X Py X Pss x W) < € @)

then
IXYZAX'|S) <G ®)

and [symmetrically to II)]
M) if there are v' # v, s’ € 8", and RV’s Y’ and §' such that

(u, v, v', 5", 8", 2") € TXyyrssiz
and
D(Pxyrsz||Px X Pyr x Psr x W) < § €))
then

I(XYZAY'|S) < Ca. (10)

Of course, we have to ensure that the D, ’s are disjoint. Here

is where the three nonsymmetrizabilities come in.

Lemma 1: We assume that W is not (X, Y), X, and not Y
symmetrizable. For (small) «, # > 0 consider distributions Px €
P(n, X), Py € P(n,Y) with

min Px (z) > a and min Py (y) > 3.
4 Yy
One can choose positive £, (1, (2, and ¢ (depending on «, 3, and

W) such that for any sets of codewords i/ C 7x and V C 7Ty the
decoding sets defined above are disjoint

Dy, N Dy = for (u, v) # (v, ). (11
More specifically,
a) the condition non-i) and rules O) and I) imply
Dy, NDyry =, ifu# u' and v # .
b) the condition non-ii) [resp. non-iii)] and rules O) and II) [resp.
D] imply
Dy, NDy, =, ifu;éu'
(respectively, Dyy N Dy, = &, if v # v').
Proof: See Appendix.

III. LARGE DEVIATIONAL METHODS

We present here our second auxiliary result, Lemma 2 below. It is
analogous in formulation to Lemma 3 of [6] and Theorem C1 of [7].
However, the underlying idea based on large deviations for sums of
RV’sis solely due to [4]. In fact, we derive first from [4, Lemma 1(b)]

Lemma [6,Al]: Let Zi,---,Zn Dbe arbitrary RV’s and
f,'(Zl, ey, Z.;) be arbitra.ry with 0 S f,' S 1 (1 S i S N)
Then the condition

E[fi(Zl, T Zi)|Z1,

implies that

,Zi4]<aas.1<i<N

N
Pr{% ; FiZay ey Z) > t} < exp{—N(t — a log &)}

Lemma [4, 1(b)]: LetTi, --
1 &
Bl ">

Pr{K ;T > a}

K
<e—aK/2b
< ,.1;[1<
if Ty, - --, Ty take values in [0, b]. ,
Let fi(Z, -+, Zi) = Ti. Then E(1 + Ti|T*"') = E(E(1 +
Ti|Z'~1)|T*7"), since T"~! is a function of Z*~'. Therefore,

, EQ+TiTy =t1, -, Ticy =ti—1)

-, Tx be a sequence of RV’s then

max
trydi

)E(1+b_1T.; Ty =t1, -+, Tici=tiq)

max
(t1,,t 1

<  max
(21,721

which with Lemma 1(b) of [4] and the well-known inequality
fn(1 + z) < z together implies that

1 N
Pr{ﬁ ;f,v(zl, e 7)) >t}

< expe{—% + Na}

= exp{—N(log ‘t—a log e)}

under the present assumption. The constant log e/2 obviously makes
no difference. Next we derive from [6, Lemma Al].

) E(1+Ti|Z1 =2z, -+, Zio1 = 2i1)

P~rapo~sirion: fior RV’s Uoy -y Um and functions
9i(Uo, Uh, ---, Ui) with0 < g; < 1 (1 < ¢ < m) the condition
]E(Qi(ffu, Ui, -+, ﬁi)|[}0, Ui, -, [?.'_1)
<a, forl<i<m(as) (12)
implies
Pr{z g.‘(ffo, ffl, SN ff,) > mb}
i=1
e a
< (§> exp{—m(b—aloge)}. (13)
Proof: Take N = m+1, 2 = Uy, i = a, Zi = Ui_1,
fi =giz1 (for2 <i<m)and t = ((mb+a)/(m+ 1)) in Lemma
Al. Then (13) follows. |
For sets of codewords U C Tx and V C 7y of cardinality
U=V =M (14)
the numbers r = % log M, and € > 0 define now for s" € 8"
three sets
As(s") ={(u, v) €U x V: (u, v, 5") € Txys
imp]ies D(nys”PX X Py X Ps) S E}, (15)
B.(s") = {u € U: for some u’ # u, v # '
implies I(X AX'YY'S) < 3r + ¢} (16)
and
C.(s") ={v € V: for some u # u' and v' # v
(u, w', 0,0, 5") € Tixryyrs
implies I(Y A XX'Y'S) < 3r +¢}. (17

Lemma 2: For any 0 < € < 6§ and all = > no(e, 6), suitable for
M = 2"" with r > 6 there exist for Px € P(n, X), Py € P(n, ))
sets of codewords U, V as in (14) such that for all s € 8"

|AS(s™)| < 270/ Mg (18)
and

IBS(s™)], 1C(s™)] <27/ M, (19)
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Proof: Let U;, Vj(1 < 4, j < M) be independent, uniformly
distributed RV’s taking values in 7x and 7y, respectively.
To obtain (19), for any quintuple (XX'YY'S) of RV’s with
I(XAX'YY'S) > 3r + ¢ and s" € 8" define

gi(VMa Ul, T U‘)
1, ifexisti <iandj#j'

with (U!'a Uz'la Vja Vj,a Sn) € T)?X’YY’S
0, otherwise.

(20)

Since P(n, X x X x)Y x Y x 8) grows polynomially in n by the
symmetry in i and ¢’ it suffices to show that the event

M
> (VM Uy, -, U) > 27D g o3}
i=1

has double exponentially small probability.

This follows from the Proposition with the choices Up = VM,
Ui=U,m=M a=M exp{-n(I(XAXYY'S)- %)},
and b = 2-"*/2) Analogously |C.(s")| can be bounded and (19) is
established. To obtain (18), for a fixed s"” € 8" and triple of RV’s
(X,7,S) with

D(Pxys||Px x Py x Ps) > ¢ (22)
we define
) — 1> if (VJ» Sn) € T}?S
F(Vi) = {0, otherwise (23)
and for y* € 7Ty 5(s")
Wy — J L i (Ui, 9", 8") € Txys
f () = {0, otherwise (24)
(1 <i< M.
We observe that the event
" Vi) (U Viy ™) € TRys} > 27 /DM (25)
is contained in the union of the event
" a + € "
S W) >esp {a(lr -1y AS)F +5)} (26)
J=1
and the events
M 7 E
"3 R > exp {n(|r —I(XAYS)T + Z>}” @7)
i=1

(¥" € Ty's(s™)).

Here we use the following facts.

1) Whenr —I(YAS) > 0andr —I(XAYS) > 0,
then the product of the RHS’s in (26) and (27)
is M2 exp{—n(D(PXYSHPX X Py X Ps) -
(g/2))}<2~ (/2 M2 [by (22)], because M = exp{nr} and
D(Pxys||Px x Py xPs) = (H(YS)+H(X)-H(XYS))+
(HY)Y+H(S)—H(YS)=I(XAYS)+I(Y AS).

2) Whenr —I(Y AS) <0 forr —I(X AYS) < 0], then the
RHS in (26) [or in (27)] equals 2**/4). On the other hand the
LHS of (27) [and of (26)] is at most M. Thus, their product
2(ns/4) M < 2—(n5/2) M2.

Thus, to obtain (18) for all (fixed) s” € S™ it suffices to
show that the events (26) and (27) have double exponentially small
probabilities.

The former is done by setting in the Proposition U = constant,
exp{-n(I(Y AS) - £)},

Ui:=Vi,g = fi,m=M,a =

and b = exp{n(r—I(YAS)|T+%—r)}. The latter is
done by setting Up = constant, U; = Ui, gi = fi(y”),
m = M, a = exp{-n(I(XAYS)-£)}, and b =
exp {n(|r —I(X AYS)|" + £ —r)} for y™ € T 5(s").

In both cases, we use the fact that for I = I(Y AS) or (X AY S)
(r=Dt4s—r=lr—It+s—pr—I-I>-I+2>—-(I-%).m

IV. PrROOF OF THEOREM
For fixed positive @ and 8 choose Px € P(n, X) and Py €
P(n, Y) with min, Px (z) > « and miny Py (y) > . Also choose
positive &, (1, (2, and ¢ according to Lemma 1 so small that the
decoder with rules O)-III) is well-defined.
Next let

C* = miﬂ{C, Cl’ <2}

and choose €, 6, 7 and sufficiently large n such that M = 2"" is
an integer and

(28)

g 1 .
= <r<—(.
€<2,0<5<6_r_11§ (29)

Then, by Lemma 2, we get sets of codewords /, ¥V with rate-vector
(r, r) and properties (18) and (19).

The code ¢ x V is decodable by Lemma 1. It remains to be seen
that for every s™ € 8" the average probability of decoding error is
exponentially small.

For this let us first fix s™. It suffices to prove that for A.(s"),
B.(s"), and C.(s") and all (u,v) € A.(s") N [Bc(s") %
Ce(s™)] = D.(s") (say), W"(D;,|u, v, s") is exponentially small,
because by (18) and (19)

1 n c n
W Z w (Duv|u’ v, s )
(u, v)EUXV
1
<iE 2

(u, v)ED:(s™)

W™ (DS u, v, s™) +3 - 27 (/)

So let us fix (u, v) € D.(s") and use the decomposition

D, =EyUE,UEy UEs (30)

where an output sequence z" falls into Ep, E1, E2, or E3, when
for the fixed s"™ and (u, v) the decoding rules O), I), II), or III) are
violated, respectively.

We now upperbound the probabilities of these E;. For this it is
convenient to use the abbreviation

+(n) & (n 4+ 1)APPIISIZ] G1)
Suppose then that
(u, v, s") € Txys, (32)
then by (15) and since (u, v) € D(s")
D(Pxys||Px x Py x Ps) <. (33)

Now, define

Q & {(X,Y, S, Z): D(Pxysz||Px x Py x Ps x W)

> ¢ and (32) holds }. (34
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Then, by (4), (27), (33), and (34)
W"(Eo|u, v, s™)

>

(X,Y,5,2)€Q0

Wn(Tz"p(YS(U, v, 3”)|u, v, Sn)

< —nD(P, P,

< y(n) . exp{—nD(Pz xys||W|Pxvs)}
[by (4.4)]

< (n) exp{—n(D(Pzxys||W|Pxvs)

max
(X,Y,5,2)€Q0

—e+ D(PXYS”PX X Py X Ps))} [by (33)]

= —n(D(P; Px x P,
7(n) (X,Yfrsl%egg exp{—n(D(Pxysz||Px v

X Ps x W) —¢)}
<y(m2 €9

< ()2 e, (35)

To upperbound W" (E\ |u, v, s™) we define

Q1 & {(X,X',Y,Y', S, Z): (32) holds and

I(XYZAX'Y'|S) > ¢} (36)

and
SH(X, X, Y, Y, S)
& {W vYEUXV:u #u
U’#Uand (u$ u,, v, v,asn)eT)r(lX’YY’S}' (37

Thus by the definition of E; and decoding rule I)
E C U
(X, X', Y,Y', S, 2)€EQ1

7 ! 13 n
'TZ|XX’YY’S(ua u,v,v,s )-

(u', v)ETL(X, X!, Y, Y, 5)
(3%)
However, by the definitions of Be(s"), C.(s"), and D.(s") the
existence of (u', v') € J(X, X', Y,Y’, S) implies that I(X A
X'YY'S)<3r+eand I(Y A XX'Y'S) < 3r + £, which yields
IXYAX'Y'|S) = I(XAX'Y'|S)+I(YAX'Y'|XS) < 6r+2¢.
(39
Thus, from (36)—(39), we have

W"(Ey|u, v, s™)

>

(X, X',Y,Y', S, 2)€EQ

2

(v, v)ETI(X, X", Y, Y, S)

'Wn(TZn|XX’YY’S(ua u’”a U’, 5n)|% v, Sn)
< y(r)M? max
(X,X',Y,Y'S, Z)eEQ,
T(X, X', Y, Y'S)#2

-exp{n(H(Z|XX'YY'S) - H(Z|XYS))}

< M? -I(ZAX'Y'|XYS
<(n) x xS peen exp{n(—I( | )

+6r +2 — I(XY AX'Y'|S))} [by 39)]

= M? ~I(XYZAX'Y'
¥(n) L S exp{n(—I( A [S)

+ 67 +2¢)}

< v(n) exp {n(8r + 2= — ()} [by (36)] (40)
which is exponentially small by (28) and (29).
Finally, we upperbound W™"(E:|u, v, s"). By symmetry

W"(E3|u, v, s") can be bounded analogously.

Define now

Q: & {(X,X',Y, S, Z): (32) holds and

IXYZAX'IS) > G} 41)
and
\72(X’ X,’ Y& S)
= {u':4' #u and (u, v, v, s") € Txxrys} 42)
Then, by the definition of E> and decoding rule II)
E> C
(X,X',Y,5,Z)€Qs u/'€J2(X,X',Y,S)
“TZixxrys(u, u'y v, 8"). (43)

Moreover, by (42), J2(X, X', Y, S) # & implies the existence of
RV Y’ and codewords u’ # u, v' # v such that

(u, u', v, 0", s") €ETxxryyrs (44)

because one can pick any u' € J2(X, X', Y, S) and any o' # v
and find the corresponding Y.

In other words J2(X, X', Y, S) # & implies the existence of
a RV Y’ such that J1(X, X', Y,Y', S) [defined in (37)] is not
empty, which by (39) implies that

I(XY A X'|S) < 6r + 2. (45)

From here and from (41)(43), we have

wW"(Ez|u, v, s")
<

(X,X',Y,S,2)eEQ2

W™ (TZ\xxrvs(u, u'v, s")|u-v-s"))
<H(m)M

u'€J2(X, X', Y, S)

max
(X,X',Y, S, 2)€Q2
T (X, X!, Y,8)#@

-exp{n(H(Z|IXX'YS) - H(Z|XYS))}

< M -I(ZAX'|XY
<YM | maxexp{n(~I(Z A X'|XYS)

+6r + 25 — I(XY A X'|S))} [by (45)]

j— _ '
=y(n)M (X,X’,I;I},?Z)EQZ exp{n(—I(XYZ A X'|S)
+6r +2¢)}
<7(n) exp{n(Tr + 2e - (1)}, [by 4D)] (46)
which is exponentially small by (28) and (29). |

APPENDIX

Proof of Lemma 1: 1) Choose £ and £ sufficiently small so
that for all u, v, v' with v # o',

Dy, ND,, =@. (A.1)
It is sufficient to show that in case there is a
2" € Dyo N Dy # 9, (A2)

& + & is bounded from below by a positive number.
By condition non-iii), there exists a positive #2 such that for all

02: Y — 8

max
z,y,y,z

> .

Z o2 (sly )W (z|z, y, s) — Z o2 (s|ly)W(zlz, ¥, )

s s

(A.3)
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Since we can write for all T2, 74: Y — S,

3 (sl )W zle, v, 5)

max
z,y,y’, 2

as

- E ma(sly)W (zz, o', 5)

Zyyv

‘meww%>

— S (sl Wz, o, 5)

just by exchanging the two sums and then y and y' we get

max
z,y, ¥, 2

> n(slyWizle, v, 9)

s

S (sly )W (el g, 5) -

> 200 wape, y, 5

z, v,y 2

- P g,y )

E]

> 2O yape, o, 5)

+ max

z, Y,y z

—Zﬂwwwwm

,y,y,

> Hzmmmwmw

- 2O ey, 5

8

S 2O oy, y, )

8

-3 B e,y

8

+

}

Z w W(z|z, y, s)

> max
z, v,y 2

-y MW(ZM’ y,8). (A

8

Applying (A.3) to (A.4) for oo = ((r3 + 72)/2), we obtain for
all m, ;Y — 8

max
z,y,y’,8

S wh(sly )W (2o, v, 9)

> 6. (A.5)

- S (sl W zle, ¥, 5)

Next, with the RV’s in IIT) of the decoding rule, (A.2) implies, for
(u’ U, 'UI, zn., Sna 5"‘) € T)?YY'SS’Z (4>’ (9>’ (10) and

IXY'ZAY|S') < Ga.

(A.6)
By (4), (10), and the log—sum inequality, we have
€4+ ¢ > D(Pxysz||Px x Py x Ps x W) + I(XYZ AY'|S)
Z Pxysz(z, y, 8, z)

Z: y:S:Z
log Pxysz(z, 9, s, 2)
Px (z)Py (y) Ps(s)W (z|z, y, 5)

+ Z PXYY’SZ(E, Y, yl’ 8, Z)
z,y,y',8,2
PY’|XYSZ(y,|w, Y, s, Z)
Pyis(y'ls)
Z Pxyyisz(z, 9, y', 5, 2)

z,y,y,8, 2

-log

1o og PXYY’SZ(“" y’yﬂs, Z)
Px (z) Py (y)Pyrs(y's s)W(z|z, y, 5)

> ZPXYY’SZ(w, %, Y, 5 2)

z,y,y’, 2

log Pxyyisz(2, v, ¥’ 8, 2)
Px (z) Py (y) Py (y) Ps\y (s, y" )W (zlz, ¥, 5)

Z PXYY’Z(:C, y,y,z)

T, Y,y 2

I\

PXYY’Z('T, Y y 3 Z)
® P (z) Py (y) Py (y' )ZPSWf(SIy W (z|z, y, 5)

(A7)
By Pinsker’s inequality [10] and (A.7),
Z |PXYY’Z(w7 Y, yl’ Z) _PX(w)PY(y)PY’(y)
T, y,y', 2z
> Psiyi(sly )W (zlz, y, 8)| < eV/E+ G (A.8)
Similarly by (9) and (A.6) we have
Z |PXYY’Z(:E, Y, y’, Z) _Px(m)PY’(y,)PY(y)
z,y,y'z
(A9)

. E Psi iy (sl)W (z|z, o', 8)| < eV/€ + Ca.
Equations (A.8) and (A.9) together imply
> &wwmm@nZ&wwwmmyw

z,y,y,z

=" Poy (sly)W(zlz, o', 5)| < 2eVE+ G (A.10)

and, recalling that for all =, y, ¥’ Px(z)
Py/(y') = Pr(y') 2 8

> o, Py(y) 2 f and

Jmax |37 Py (sly )W (zle, v, )
. 2
-3 P GloW ele, o, 9| < 2VEEE
(A.11)

Comparing (A.11) with (A.5) for 75 = Ps|y’ and 72
have £ 4+ (> > 1/4c 2a?(%63.

2) Similarly, one can choose £ and (; sufficiently small so that
for all u, u', v, u # '

= Psr|y, we

DuwNDyry = 3.

3) Choose £ and ( sufficiently small so that for all u, v, u', v/,

u#u,v #v
D,,NDyry =@, (A.12)
As in 1), we shall show that the existence of a
2" € Dy N Dyry # 9 (A.13)
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implies that £ + ¢ is bounded from below by a positive number.
Now by the condition non-i), there is a # > 0 such that for all
oc: A xY —= S

max
z,z',y, v,z

> a(sla’, y")W(zlz, v, 5)

- Z o(slz, YW(zlz', o', )| > 6. (A.14)

Similarly to 1, since we can rewrite

max
z, 2’ y,y’, 2

Z T'(s|2’, vy YW (z|z, y, 5)

- Z T(Slza y)W(Z|IL',, y,, 3)

as

max
z,z/ Y,y =

3 r(sl’, )W (zle, 3, 5)

8

- T(sle, W (zla', 4, 9)

we have forall r, 7" X xY — 8

z,z’, Y,y 7

> max
z,z’, Y,y z

' - [
Z T (3|Z s Y ) -2{—7'(8|.:U y Y ) W(z|.’u, v, S)

~ Z 7' (s|lz, y) + 7(s|z, ¥) W(z|1", Y, s)|>8 (A.15)

2

E]

where the last step uses (A.14) for o = (7' + 7)/2.
Next, (A.13) implies that for (u, w', v, ', s", s'", 2") €
TXxryyrssiz, @), (5), (6), and

IX'Y'ZAXY|S)< ¢ (A.16)
hold. By (4), (6), and the log—sum inequality we get (A.17), shown
at the bottom of the page.

Pinsker’s inequality is shown in (A.18), at the bottom of the page.
Similarly, from (11), (A.16), and Pinsker’s inequality we obtain

>

PXX’YY’Z(:"', :l}’, Y, y,$ Z) - PX’(ZI)PY’(y,)PXY(wa y)

<cVE+C

> Psix, vy (slz, )W (zlz', o, 5) (A.19)

Thus, by (A.18) and (A.19)

>

z,z',y,y, 2

'W(Z|l’, Y, 3) - PX’(x)PY’(y)PXY(wa y)

Px(z)Py(y)Pxy/ (', y') D Psixry(sle', o)

max ' (slz', y¥IYW(z|z, y, s
) SECERDLC
o 2 Psxy (slz, ))W(zla', o', 5)| <2ev/E+( (A20)
- E T(S|;E, y)W(z|zc Y 3) s
y Next, applying the log—sum inequality to (4), we obtain
N (sl ) 4
> max  §y—— (le, y, 5) D(Pxy||Px x Py) <€, (A21)
and then with Pinsker’s inequalit
-2 D ey, ey
. > |Pxy(z, ¥) — Px(z)Pr(y)| <cvVE  (A22)
+ |2 T g, y, 5
s Similarly, it follows from (5) that
!
- S TR D iy, ) } S |Pxyo(a', y') = Pxo (@) P ()] < oV/E. (A23)
s =’y
€+ ¢ >D(Pxyzs|Px x Py x Ps x W)+ I(XYZ AX'Y"|S)
PXYSZ(Z', Y, Z, 8 Z)
= P. T, y, s, z)lo
2 Prrsalen s 8 b R W e 3, )
PX’Y’|XYSZ(£E’, y'|.’l}, Y, 8, Z)
Pxxryy ! ! !
+ L %r . xx'yy'sz(T, 'Y, ¥, 5, z)log Pxryrs(, o']s)
Pxxiyyrsz(z, o'y, ¥', s, 2)
— P ) , .’,E,(L‘,, , ,,S,ZIO XX'YY'SZ\%y > I E)
2 Povvvszla s a)loe g @ s WGl 7,9
Pxx’ AL ﬂ}’, > ’, z
> S Prxxiyyiz(e oy, 2)log vy (@ @ 9,4 2) (A.17)

ENE

Px (z) Py (y) Pxry/ (!, ?J')ZPS|XIY'(S|Z', y )W (z|z, y)

Z PXX’YY’Z(wa m’, Y, y,$ z) - Px(w)PY(y)PX'Y'(w,, y,)ZPS|X’Y'(S|z,y,)W(Z|w’ Y, S) <c f+<

z, 5y, 9,z

(A.18)
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Finally, with (A.20), (A.22), and (A.23), we conclude that
> Px(2)Px/(z')Py(y)Py/(y')

z, 5, y,y, 2

X

D Psixrye (sl y' )W (2|z, y, 5)

- Z Psi|xy (slz, y)W(z|z", ¢', 5)

< > Px(e)Pr(y) (ZP5|X',Y'(5|°U', ¥ )W (2lz, y, 5))

7 ’
T, T, Y,y ,% 8§

- |Px/(2")Pyr(y') = Pxryr(2', y')]

+ >

z,z' Y,y 2

> Poixr, v (sle's y")W(zlz, u, 5)

Px (x) Py (y)Px'y/(z', y')

—PX’(EI)PY'(ZII)PXY(E, y) ZPS’|XY(3|-775 y)W(ZW, yl, 3)

+ Z er(z)Pyr(y) (ZPS’lXY(Slw»y)W(Z|w', yl, S))

z, !y, v,z

- |Px (z)Py (y) — Pxv(z, y)|
< Y IPx(@)Pri(y) - Pxryi (s 9| + 2e/E+C
z,z’ y,y’, 2z
+ >
z,x y,y, 2
+2cVE+ ¢ < 4| X VN Z1VE+C (A24)
which, together with (A.15) (for 7' = Psx/y/, T = Psxvy),
Px = Px:, Py = Py/, min, Px(z) > «, and min, Py (y) > 3,
implies

|Px (z), Py (y) — Pxy (z, y)| < 2¢\/E|X||V]|Z]|

€+¢ 2 (4cX|VIIZ]) "a’pe".
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Arbitrarily Varying Multiple-Access Channels—Part I1:
Correlated Senders’ Side Information, Correlated
Messages, and Ambiguous Transmission

Rudolf Ahlswede and Ning Cai

Abstract—We consider an arbitrarily varying multiple-access channel
(AVMAC) W in which the two senders X and Y observe, respectively,
the components K™ and L™ of a memoryless correlated source (MCS)
{(K™, L™)}0 _, with generic rv’s (K, L). In Part I of this work [16],
it has been shown for the AVMAC without the MCS that in order for the
achievable rate region for deterministic codes and the average probability
of error criterion to be nonempty, it was sufficient if the AVC were
X nonsymmetrizable, ) nonsymmetrizable, and XY nonsymmetrizable.
(The necessity of these conditions had been shown earlier by Gubner [7].)

Let Rr(W) denote the random code achievable rate region of the
AVMAC W. In the present paper, the authors, in effect, trade the loss
in achievable rates due to symmetrizability off the gains provided by the
MCS. Let R(W, (K, L)) represent the achievable rate region of the AVC
W with MCS, for deterministic codes and the average probability of error
criterion. There are two main results:

1) if I(K A L) > 0, then R(W, (K, L)) has a nonempty interior iff
RpR(W) does too and W is XY nonsymmetrizable;

2) if (KAL) > 0,H(K|L) > 0,H(L|K) > 0, then the MCS can
be transmitted over the AVMAC iff Rp(W) has a nonempty
interior and W is XY nonsymmetrizable.

Index Terms— Ahlswede’s dichotomy, correlated messages, Ericson’s
symmetrizability, multiple-access AVC, senders’ side information.

1. INTRODUCTION

In [10], we have shown how a memoryless correlated source
(MCS) helps the transmission over an arbitrarily varying channel
(AVCQ). Precisely, we established the following result.

Theorem ACy1: For an AVC W let the sender observe K" =
K, ---, K, and let the receiver observe L™ = Ly, ---, L, where
(K™, L™)72, is a MCS with generic pair of RV’s (K, L) having
mutual information (K A L) > 0. Then the capacity C'(W, (K, L))
for deterministic codes and the average error criterion equals the
random capacity Cr(W).

It serves here as a guide to establish coding theorems for arbitrarily
varying multiple-access channels (MAC).

For an arbitrarily varying MAC, abbreviated as AVMAC and
defined by a set W = {W (|-, -, s): s € 8} of stochastic (¥ xY —
Z) matrices, it is natural to investigate the effect of the MCS

(K™, L™);2, with I(K AL) >0, €Y}
when the X' -encoder observes K" and the )-encoder observes L™.
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