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Finally, with (A.20), (A.22), and (A.23), we conclude that
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which, together with (A.15) (for = Psixryr, T = Ps|xy),
Px = Px:, Py = Py/, min, Px(z) > «, and min, Py (y) > 3,
implies
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Arbitrarily Varying Multiple-Access Channels—Part I1:
Correlated Senders’ Side Information, Correlated
Messages, and Ambiguous Transmission

Rudolf Ahlswede and Ning Cai

Abstract—We consider an arbitrarily varying multiple-access channel
(AVMAC) W in which the two senders X and Y observe, respectively,
the components K™ and L™ of a memoryless correlated source (MCS)
{(xm™, L"‘)}% —, with generic rv’s (K, L). In Part I of this work [16],
it has been shown for the AVMAC without the MCS that in order for the
achievable rate region for deterministic codes and the average probability
of error criterion to be nonempty, it was sufficient if the AVC were
X nonsymmetrizable, ) nonsymmetrizable, and XY nonsymmetrizable.
(The necessity of these conditions had been shown earlier by Gubner [7].)

Let Rr(W) denote the random code achievable rate region of the
AVMAC W. In the present paper, the authors, in effect, trade the loss
in achievable rates due to symmetrizability off the gains provided by the
MCS. Let R(W, (K, L)) represent the achievable rate region of the AVC
W with MCS, for deterministic codes and the average probability of error
criterion. There are two main results:

1) if I(K A L) > 0, then R(W, (K, L)) has a nonempty interior iff
R (W) does too and W is XY nonsymmetrizable;

2) if (KAL) > 0,H(K|L) > 0,H(L|K) > 0, then the MCS can
be transmitted over the AVMAC iff Rp(W) has a nonempty
interior and W is XY nonsymmetrizable.

Index Terms— Ahlswede’s dichotomy, correlated messages, Ericson’s
symmetrizability, multiple-access AVC, senders’ side information.

1. INTRODUCTION

In [10], we have shown how a memoryless correlated source
(MCS) helps the transmission over an arbitrarily varying channel
(AVCQ). Precisely, we established the following result.

Theorem AC,: For an AVC W let the sender observe K" =
K,, ---, K, and let the receiver observe L™ = L, ---, L, where
(K™, L™);Z, is a MCS with generic pair of RV’s (K, L) having
mutual information I(K A L) > 0. Then the capacity C(W, (K, L))
for deterministic codes and the average error criterion equals the
random capacity Cr(W).

It serves here as a guide to establish coding theorems for arbitrarily
varying multiple-access channels (MAC).

For an arbitrarily varying MAC, abbreviated as AVMAC and
defined by a set W = {W(:|-, -, s): s € S8} of stochastic (X xY —
Z) matrices, it is natural to investigate the effect of the MCS

(K™, L™);Z; with I(K A L) > 0, )
when the X' -encoder observes K" and the )-encoder observes L™.
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But let us first recall what has been done in Part I (see [16]). Gubner
[7] extended Ericson’s symmetrizability to the following conditions.

1) Wis (X, Y) symmetrizable iff for a stochastic : X xY — 8
Y Wzlz, y, s)o(sle’, ') =Y W(zle', o', s)o(s|z, y)

forallz, ' € X,y,y €Y, and z € Z.
2) W is X symmetrizable iff for a stochastic o1: X — 8

> W(zlz, y, s)oi(slz’) =Y W(zlz', y, s)o1(s|z)

forallz, 2’ € X,y € Y,and z € Z.
3) W is Y symmetrizable iff for a stochastic o5: Y — S

Y Wizlz, y, s)oa(sly’) =Y W(zlz, ', s)oz(sly)

forally,y € Y,z € X,and z € Z.

He showed the necessity for non-i), non-ii), and non-iii) for R(W)
to have nonempty interior. He conjectured also sufficiency, which we
proved in Part I.

Theorem 1: The achievable rate region R(W) of W has
nonempty interior iff none of the conditions 1)-iii) holds.

R(W) is now completely known, because we have also Jahn’s
result [8].

Theorem J: If int(R(W)) # &, then R(W) equals the random
code capacity region (described also in Part I) Rr(W).

We can summarize these two results.

Theorem AC>: For every AVC W int(R(W)) = & if one of the
conditions i)-iii) holds and else R(W) = Rr(W).

Inspection of the proof of Theorem 1, especially Lemma 1(b) in
Part 1, shows that the condition non-iii) is only needed in the decoding
rule (III) to decode the message from the }-decoder. In other words,
with the same sets of codewords and the decoding rules (0), (I), and
(II) as in Theorem 1, the decoder is still able to decode the message
from the & encoder even when only the condition non-i) and non-ii)
hold. It certainly needs the cooperation of the )} encoder. In this case,
the Y-encoder may not or does not want to send any message, and
so he only randomly chooses a codeword from his codebook. (We
must point out that, according to the proof of Theorem 1, Part I, this
random choice plays an important role against “the jammer”.)

Since we shall use this fact in the sequel, we state it as a theorem,

Theorem 1': Suppose that only the X-encoder wants to send his
message and the Y-encoder sends a codeword randomly out of a
codebook, a subset of Y™, which may be undecodable, to help the
transmission between the A encoder and the receiver. Then the X’
encoder can send messages with positive rate and arbitrarily small
average error probability if neither of the conditions 1) and ii) holds.
(One of course can interchange the roles of the two encoders.)

Non-i) and non-ii) are actually necessary for the positivity (cf. the
analogous results Theorem 3.4 and Lemma 3.5 of [7]), but this is
not needed here.

The issue is now to understand what happens in the presence of
(1) if one or more of the conditions 1)-iii) hold. Are here positive
rates possible?

The answer is positive if condition i) does not hold and we have a
complete characterization. But first let us give the formal definition
of the achievable rate region R(W, (K, L)).

The X -encoder (or sender) observes the source output K™ = k™
and the Y-encoder observes L™ = £™. They encode the message
u € U, respectively, v € V into codewords

B, (k™) € X" resp. W, (£™) € V™.

We call ({Qu}ueua {\I’V}UEV» {Duv}ueu, uEV) an (m, n, M,
Mo, X)-code for W [with side information (K™, L™)g0_;], if

U] = My, |V| = Mz, the Duy C 2" are pairwise disjoint, and
for all s € 8"
1 m m m n
T dOPRLET Y YW
km, gm u€U veV
. (D“U|@u(km)’ \Ilv(lm)’ Sn) >1-A (2)

Letting m increase with n proportionally and neglecting the ratio
(cf. the next section), we define R(W, (K, L)) as set of achievable
rate pairs.

Theorem 2: Suppose that I(K A L) > 0, then int(R(W,
(K, L)) # @ iff int(Rr(W)) # & and W is not (X, Y)-
symmetrizable.

Notice that in contrast to Theorem 1 A’ - and Y nonsymmetrizability
are not necessary for a nonempty interior here!

The proof is done in two steps, where in a first step it is shown
that one of the conditions, non-ii) and non-iii), can be dropped.

For people who are not familiar with the elimination technique, to
understand our proofs, we explain its role here.

First, let us recall that in [8] Jahn applied the elimination technique
of [3] to AVMAC and proved the following. For all (R;, R5) €
Rr(W), arbitrarily small A, ¢ > 0, and sufficiently large n', one can
always find sets of codewords ¥ C A" for v € I' and v y""
for v/ € T’ and a family of decoding sets

{D,. ,v:u” €U, v €V, y€T andy €'}
such that || =

{Du7,u‘¢’}u"€u‘r,v",ev"’ are
’
7,’ and s € 8"

IIY| = n? for
pairwise disjoint, for

fixed (v, '),
all 7,

TSV
VY| &M > 27 (R

T Y M g S W
v,

- -7
uv, v’
T o o
.(’Du.,:u.lz|u ,U' .8 >>1—/\.

In fact, one can require the sizes of index sets to be bounded by
a constant depending on the probability of error A (cf. [16]). Let us
call this code an eliminated correlated code.

Thus, whenever the achievable rate region has nonempty interior
the following strategy applies. For a sufficiently large n' the X
encoder and ) encoder first pick a v € I'yY € I randomly and
independently and then send them by a code with length n Lo log n'
(for a suitable constant ). Next they encode the message sets
{1,---, M{} and {1, ---, M}} into the sets of codewords ¢/” and
%4 , respectively, for the chosen v and v’ and send the corresponding
codewords. At the same time the decoder, knowing the indexes
v and 7' (correctly with high probability) uses the decoding sets
{Du+ v turern oot ey 10 decode.

Let us return to R(W(K, L)). If we can show that there exist
positive reals Ry, R» and A such that for all A € (0, 1) and
sufficiently large n, an (m, n, My, M>, \)-code exists with m <
An and % log Mi > Ri(i = 1, 2) [under the conditions of non-
i) and int(R(W(K, L)) # )], then we can use this code to the
indices of the above eliminated correlated code with length n' ~ 2™
(f suitable) and then follow the same procedure as before.

We summarize our discussion as follows.

1) Necessary and sufficient for int(R(W, (K, L))) # & is the

condition (*): There exist positive constants R;, Rz, and A
such that for all A € (0, 1), and all sufficiently large n
(m, n, My, M2, A) codes exist with

> Ri, fori=1,2. 3)
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2)

m < An and %logM.'
int(RW, (K, L))) D int(Rr(W)) under (x). (4)

Moreover, the parameter m (or A) is not essential for obtaining a
nonempty int(R(W(K, L))).

Next, let us consider the transmission of the outputs of a memory-
less source (K™, L™);7=; with generic (K, L) via an AVMAC. Itis
already known from [7] that one can never transmit the given length
outputs of a memoryless source (K™, L™ )pe—; with arbitrarily small
probability of error via an AVMAC no matter how long a channel
code one uses whenever K and L are independent and one of
the conditions i)-iii) holds. In this case, we say that one cannot
transmit the output of the source via the AVMAC or the output is
intransmittable; otherwise we say that it is transmittable. On the other
hand, is well known, e.g., from [11] and [12], that the dependency
structure of a MCS may enlarge the achievable region of a MAC.
It is natural to ask whether the dependency structure can change
the outputs of a MCS from intransmittable to transmittable over an
AVMAC. Our second contribution concerns the question, whether we
can transmit the outputs of a MCS with arbitrarily small probability of
error via some AVMAC satisfying one or two of the symmetrizability
conditions i)-iii). The answer is again positive if condition i) does
not hold and again we have a complete characterization.

Theorem 3: Assume that I(K A L) > 0 and also
H(K|L), H(LIK) > 0. Then (K™, L™)5%~; is transmittable
iff W is not (X, ))-symmetrizable and int(Rr(W)) # <.

The readers should notice that we are concerned here only with
the possibility of the transmission but not with the achievable rates.
The reason is as follows.

Equation (4) shows that Rgr(W) is an inner bound of
R(W(K, L)). In the last section we shall see that R(W(K, L)) is
equal to the achievable rate region of the corresponding compound
channel {W(:|-,-,3) = >, w(s)W(:|-, -, s): @ € P(S)} if
K = L (almost surely [a.s.]), namely, in this case, ROWV(K, L))
may strictly contain Rr(W) if the achievable rate region of the
compound channel is not equal to Rr(W). Again, for an n’-length
code to achieve this region the outputs K™ = k™, L™ = {™
with much smaller length m ~ alog n' are sufficient. However,
in general we do not know R(W(K, L)) and we even do not
know whether the ratio of the lengths of outputs of MCS and the
channel code makes a difference. In this sense, even the notation
R(W(K, L)) is not quite precise. However, it is sufficient for our
goal to determine whether intR(W (K, L)) is empty. The situation
in the model of Theorem 3 is even more complicated. We notice
the achievable region for ordinary MAC is still unknown when it is
connected with an MCS (cf. [11] and [12]). So, in both models, we
keep the problems to determine the achievable region open.

Theorem 2 is proved in Sections II-IV. We first prove the necessity
of int(Rr(W)) # 0 and non-i) in Section II. Then, in Section III,
we show that not both non-X and non-) symmetrizability are
necessary. Finally, we prove that non-(X, V) symmetrizability and
int(Rr(W)) # & are sufficient for int(R(W, (K, L))) # &
in Section IV, which finishes our proof of Theorem 2. Applying
Theorem 2, we show Theorem 3 also and not in Section IV. Section V
contains the discussion about conditions on MCS and the relation

between R(W, (K, L)) and Rr(W).

II. NECESSARY CONDITIONS FOR int(R(W, (K, L))) # &
We show first that

(%) implies int(Rg(W)) # @. )

Indeed, assuming to the opposite that int(Rr(W)) = O, then, by
convexity of Rr(W) the intersection with at least one of the axes,
say the R; axis, equals {0}.

Let P(A) denote the set of probability distributions over a finite
set A.

We choose now any Px € P(X) and any Py € P(Y) with the

properties
Px(x) >0forallz € X and Py(y) >0 forally €Y. (6)

By the previous intersection property and by the definition of Rz (W)
there exists a Ps € P(S) such that

IXAZIY)=0, if Pxysz = Px Py PsW. )

However, this implies that (X, Y, Z) forms a Markov chain or, in
other terms, for some channel V: Y — Z and all z € X, y € ),
and z € Z

Px(x)Py(y) Y Ps(s)W(z|z, y, 5)
sES
= Px () Py x (ylz)V (z]y)
= Px(z)Py (y)V(z]y), ie.,

Y Ps(s)W(zlz, v, 5) = V(zly),
8ES

Let W(-|, -) = ¥, cs Ps(8)W(:|-, -, 5), then W(-|-, -) is in the
convex hull W of W and LHS of (8) is W(z|z, ).

Averaging over 8" with weight P§ we verify that an
(m, n, M1, M2, A) code ({®u}ueu, {¥o}vev, {Duvtueu, vev)
for W satisfies (9), shown at the bottom of the page. Thus, there
exists a pair (™, £™) such that ({®u(k™)}ueu, {¥o(€™)}vev,
{Duv}ueu, vev) is an (n, My, My, A)-code for the MAC W (|-, -).
On the other hand by (8) we have for all Pxyz = PxyW (-], -),
I(X A Z|Y') = 0 and a positive X'-rate would contradict the coding
theorem for the MAC in [1]. We have proved (5).

Next we strengthen (5) as follows.

Lemma 3: Condition (%) implies

a) in(Rr(W)) # @

b) W is not (X, )) symmetrizable.

Proof: Tt suffices to show that b) must hold even if both senders
are combined to one. After this combination we have an ordinary
AVC and know from Theorem 2 in [3] that randomization in the
encoding (especially the one from our correlated source) does not
increase capacity for the average error criterion. In particular it cannot
cause an increase from zero to a positive value. So it must be
positive without randomization and therefore W cannot be (X, Y)-
symmetrizable (by [5]).

for all z, y, z. (8)

III. Not BorH, NON-A- AND NON-) SYMMETRIZABILITY
ARE NECESSARY FOR int(R(W, (K, L))) # &

Our investigation of the side information problem is guided by
Theorem 1, which concerns the case without side information. From
the three conditions non-i) to non-iii) we have to keep—as shown
in Section IT-non-i).

1 m m  m o m m
T 2 PR € S W (Dusl (k™) Ta(€™)) > 1= 2 ©)
ke, gm u v
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We show in this section that at least one of the two others, say
non-ii), can be omitted. The reasoning is this.

We speak of the common randomness A between two persons if
both of them know the outcome of a RV A (with a probability close
to one) [17]. According to the discussion in the previous section, to
transmit messages via an AVMAC with an eliminated correlated code,
one only has to establish (independently) common randomnesses
between the X’ sender and the receiver and between the ) sender
and the receiver, respectively.

We now assume that int(Rr(W)) # & and iii) does not hold,
then by Theorem 1’ with the help of X encoder the ) encoder can
send messages to the receiver. So there is no question to establish
the common randomness between the y encoder and the receiver.
The only thing that we have to face is to establish the other common
randomness. To do this, we can use our AVMAC as an AVC (with
two terminals, the X" encoder, and the receiver). On the other hand,
in this case, the ) encoder can send the source output £™ over the
channel with high probability correctly to the receiver. This brings
us (with high probability) into the situation of side information K™
at the X’ sender and L™ at )Y sender and the receiver. Now we just
apply the following Lemma to obtain int((R(W, (K, L))) # &.

Lemma 4: Suppose that int(Rgr(W)) # @ and that I(KAL) > 0.
Then, for all (R, Rz) € Re(W), 6, XA € (0, 1), A > 0, there exists

for sufficiently large n a code of length n

({®u}uer, {¥o}vev, {DY(f™) bueu, vev, emerm)
such that || = My, |V| = M;

1 1
ElogM1>R1—6,;logM2>R2—6

m < An, DY,(™)N D2, ,(£™) = & for
(u,v) # (v, 0), Bt K™ = X", ¥, LT = YT
and for all 5™ € 8"
MM Y PRL(ET, €M) YW
k™, e u v

(DY, (™) ®u (™), Wu(£7), s7) > 1= A, (10)

By symmetry, the role of the DY,(£™)’s can be played by the
Dy, (k™)s.}

Proof: We now are in the situation where the A-sender observes
an output K™ = k™ and the Y-sender and the receiver observe
another output L™ = £™. This is so, because there exists already
a common randomness between the ) sender and the receiver. To
apply the elimination technique, we only have to establish common
randomness between the A sender and the receiver, which is done
by the communication between them. Thus, the whole procedure of
transmission is divided into two blocks. In the first block, only the X’
sender transmits messages and the transmission of course needs help
from the side information of the MCS and through the cooperation of
the Y sender. Having established the common randomness between
the A’ sender and the receiver, in the second block the communicators
use a much longer eliminated correlated code with average probability
of error close to zero. Here, the Y sender and the receiver partition
the source output space with (nearly) equal probabilities as their
common randomness, which of course is independent of the common

randomness between the X sender and the receiver. So the main
problem is in the first block. The main tool is Theorem AC; [10]
(see also Section I).

The source output of length m is also divided into two blocks with
lengths m1 and m., respectively. (K™, L™!) serves as correlated
source between the X’ sender and the receiver (see Theorem CA) and
L™? serves as common randomness between the ) sender and the
receiver. They are independent, since the source is memoryless.

We now assume that int(Rr(W)) # . Then there are Px €
P(X) and Py € P(Y) such that for all Ps € P(S), Pxysz =
Px Py PsW

I(X AZ|Y) > 0. (11

Since max, minpg I(X A Z|Y = y) may be zero, the ) -receiver
may not always send a fixed codeword. To help the transmission, he
has to send a codeword chosen randomly from a code like in Theorem
1" in Section I. This seemingly draws us back to the decoding against
the average over the messages of the )-sender as in [1] and [7], which
is suboptimal (see the Introduction of Part I and [2]). Consequently,
it may seem that we need minp, I(Y A Z) > 0. However, this is
not necessary for (11)!

Fortunately, we have common randomness between the )-sender
and the receiver. It is the time for it to play its role. Since I(X A
YZ)=I(XAY)+I(X AZ|Y)=I(X AZ|Y), (11) implies that
the random code capacity Cr(Wy) of the AVC Wy: X = Y x Z
is positive, if we define (12), shown at the bottom of the page. By
Theorem AC; there is an m1-length code (&, (k™*), D, ™ Nuen
[for all £™, u # u' Dy(£™) N D,/(€") = ] with positive
rate such that for some 7 > 0 [see (13) at the bottom of the page.
Denote by &, (£™1, y™1) £ {2™1: (y™1, 2™ ) € D, (¢™)} for all
y™! € Y™t Then (12) and (13) imply that

Y0 Y PRERTL M) Y PPy W™
uEL? k™1, L y™L
. (gﬂ(eml ’ yml )|q>“(k"” )5 yml ) Sm])

>1—2"" forall s™ € $™L, (14)

Next, we partition the output space £™?2 of L™2, the second block
of L™, into |Y™| parts L™2(y™) (y™! € Y™') for suitable m,
and mo such that for some positive 7

|PL2(L™2(y™)) = Pyt (y™)] < 2727 P (y™).

For an output L™ = (€™, £™2), the Y-sender sends y™!, if
£m2 € L™2(y™'). At the same time the A" sender, who observes
K™ = (k™ k™2), sends ®,(k™L) for the message u € U.
The receiver knows the output L™ = (™', £™2) and he decodes
accordingly to the decoding sets {€,/ (€™, y™') : u' € U}, when
£m2 g L™2(y™1). Thus, the probability of decoding error is

=™ Y0 > PRi(R™, ™) Y P

uelt k™1, ML YL

(LYYW (EL(ET, g )| Ru(RT), T, 8™

(15)

(16)

which, by (14) and (15), does not exceed 27™1% 4 2727
Wy £ (Wy: Wy (y, zlr, ) = Pr(y)W(zlz, y, 5) fore € X,y €Y, 2 € Z and 5 € S} (12)
(13)

7T YT PR, €W (Du () [Ru (), s™) > 127 for all 5™ € 8™

welt k™1, e
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Thus, we build a code of length m; with side information
(K™, L™) for m = m1 + m2 and positive rate that can be used
to send a w € U from the X encoder to the receiver. Then the
following procedure works. For an n' ~ 2™1# and an eliminated
correlated code of length »' as in the discussion at the beginning

of the previous section:

1) In the first block, the X’ encoder picks up an index v € I'( 2 u)
randomly and sends it to the receiver.

2) In the second block, the ) encoder first sends an index
~' € T, which is randomly chosen, with a code of length
m' ~ o log n'. (This can be done by Theorem 1). After this,
the two encoders know v and ', respectively, and the receiver
knows both. Then an eliminated code (of length n') can be
applied. This finishes our proof.

IV. NEITHER NON-X NOR NON-)Y SYMMETRIZABILITY
Is NECESSARY FOR int(R(W, (K, L))) # &

A. Heuristics

This last reduction is based on an idea, which we find most exciting.
Without side information from the correlated source none of the
senders can transmit messages to the receiver if ii) and iii) hold.
So, how can we get started?

Well, under condition non-i) it can still be arranged with sets of
codewords 4 C A™ and ¥V C Y™ that the receiver knows with
high probability u or v, if (u, v) was sent! It follows from Lemma
1(a) in Part T [16] that for a set of codewords in this lemma the
condition non-i) and decoding rules (0) and (I) (in Part I) imply that
DuvNDyr, =D ifu # u' and v # v,

We speak of ambiguous transmission, It can be explained already
for the standard MAC. For sets of codewords i/ C X™ and ¥V C Y™
we use for the decoding sets below

Duv — {Z": Wn.(zn.|u, U) > Wn.(zn.|ul, 'UI),

forall (u', v') with w' # uw and v' # v} (17
and notice first that
Duw N Dy # & implies either v’ =u or v’ = v. (18)

Therefore, by forming the list of pairs F(z") = {(u,v) €
U x V: z" € Dyy} we realize that for any (u, v), (u', v') € F(z")
either v = u' or v = ',

Set Du, V\{v} = Uv’;ﬁu Duv'a Du\{u}, v = Uu/?fu Du’v-

We can partition Dy, into Duy N Dy, v\ {v}s Duv N Dy {u}, v. and
the rest. In the first set decode for u, in the second decode for v, and
make any decision in the rest. (Could vote for both.)

The senders do not know the decision of the decoder, not even
with high probability (in contrast to transmission).

We now turn to AVMAC and describe the idea of the proof for
Theorem 2. We proceed in two steps.

Step 1: Let the X'-sender observe k™ and the ) sender observe
£™. We first transmit (K™, £™) via W ambiguously, for which
non-i) is sufficient. It can be done for a pair (M1, M2) of sets
of independent messages by Lemma 1(a) in Part I with a set of
codewords (U, V) chosen as in Lemma 2 in Part I and decoding
rules (O) and (I) in Section II of Part I (cf. the proof of Theorem
1). However, here K™ and L™ are dependent. To match the source
with an ambiguous channel code we have to remove the dependency.
That is done in Lemma 5 below.

Step 2: Both senders know that with high probability the receiver
knows one of the two, of course he knows whether it is ™ or
£™ . Therefore the communicators agree on two further blocks of
transmission over W. In the first block the X" sender assumes that his

k™ is known to the receiver. If true the code of Lemma 4 works and
if not we have another chance. In the second block of transmission
the Y encoder operates on the assumption that his £™ is known to the
receiver and uses also a code described in Lemma 4. His assumption
is now correct with high probability and the receiver knows which
of the two codes he should use in his decoding for the messages.

B. Matching the Source

Lemma 5: For any MCS (K™, L™)po—; with I(K A L) > 0
and AVMAC W, which is not (X, )) symmetrizable, there exists a
positive constant ¢ such that for all ¢* > ¢ and sufficiently large m,
cm < ny < ¢*m, one can find a code of length ng

({f &™) emexm, {9(€") bemecm
{D*(k™, £") kmexm, emecm)
with the following properties:

Dy e am

g(f™) e Y™
and D*(k™, £™) C 2™ forall k™ € K™ and £™ € L™
(19)
2) D k™, &™) ND (K™, £™) # & implies
kT =k (20)
or
= @1)

3) for a positive constant # independent of 7

Z PIr(nL(km, Em)pvnl(D*(kma em)lf(km)’ Q(Em), Snl)
k™, em
>1-—2%,

for all s"* € 8™, (22)

Proof: First of all, the assumption in the proof of Theorem
1 in Part I that two message sets have the same size is not
essential. Therefore, following the proof of Theorem 1, especially
the application of Lemma 1(a), we obtain that for a non-(&X, )-
symmetrizable W there exists a R > 0 such that for all 0 < 6 < R,
sufficiently large n; and integers M; and M, with "1—1 log M,
% log M; € [6, R] there is a code (U’, V', {Dluy }ueur, vev) with
[U'| = My, |V'| = M such that

D, NDyry =B, foru#u',v#v (23)
and for some ' > 0 and all s"* € 8™
M7 MG ST WD ey v, s <27 (24)

u, v

Next, we assume that without loss of generality H(K|L) > 0,
because otherwise H(K|L) = H(L|K) = 0, or K = L (a.s.) and
the standard AVC coding theorem in [6] settles our lemma in this
case.

Define now

h=min(H(L), H(K|L)) and H = max (H(L), H(K|L)).

(25)

Then
0<h<H. (26)
By the coding theorem for correlated sources for any

b1, 62, 8, 6" > 0 and a sufficiently large m we can find
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encoding functions a: K™ — {0} UY and b: L™ — {0} UV and
a subset N' C U x V such that

a(k™) =0 iff k™ ¢ T 5,
Pr((a(K™), B(L™) €N) > 1—2"™F

for all (u, v) € A there is a unique (K™, £™) € T2 5, X T{"s, with
a(k™) = u and (™) = v,

@7

Pr((a(K™), (L™) = (u, v)) < 2™ M7 Mz (28)

and
H(K|L) < % log My < H(K|L) + 68" (29)
H(L) < % log Mz < H(L) + 6" (30)

Now we choose 8" < 3,8 < 3 (H + 1/R)y', ma = [(m(H +
1)/R)], 6 < (mh/n1), and sufficiently large m and n;. Then for
M, and M: in (29), (30) we have

% log My, % log M; € [6, R]. (31)
Therefore a code satisfying (23) and (24) exists.
Now we define
u, ifk™ € Tg s,
F(E™) = and a(k™) =u  (32)
any fixed ™1 € A"t, if k™ ¢ Tg's,
v, if £ € T/,
o(t™) = and b(E™) = v (33)
any fixed y"t € Y"1, if £ ¢ T,
Dyy, ifal(k™)=u, (™) =v
D*(k™, £™) = { and (u, v) € N/ (34)
%) otherwise.

Clearly, (19)-(21) hold, where (20), (21) follow from (23).
Finally, by (24), (27), (28), and (32)(34)

> PRL(RT, WD E™, €M) F(R™), g(€7), 5™)
km,em

< ST Pr((a(k™), b(E™) = (w, v)) W™ (Dis Ju, v, 5™)

u, vEN
+ 2—m§ < 2m6,—n1n’ + 2—m§ < 2—(1/2)n1n’ + 2—m§
(35
where the last inequality follows from
8 < l H:l_ln' and n; = "M—‘
2 R R

In conclusion, (35) yields (22).

Proof of Theorem 2

By Lemma 3 in Section II it remains to be shown that for a not
(X, Y)-symmetrizable W under the assumption I(K A L) > 0
int(Rr(W)) # & implies int(R(W, (K, L)) # <. For this we start
with an “ambiguous source matching code” of Lemma 5 (Step 1).

Now we proceed with two codes as in Lemma 4 (Step 2).
Specifically, the codes are

{f (&™) }emexm,{g(f™) emerm {D" (K™, £7) imexm pmecm)
with blocklength n1, and (with message sets U, V)

({21 Yuer (¥ Yoev, (DL, (K™) ueu, vev, ke })

of blocklength no and
({23 Yuew, {¥P oev, {DYo(t™) bueu, vev, emec)

of blocklength n3.

After (™, £™) has been sent in blocklength n; (in Step 1) and
the receiver recovered one of them with probability close to 1, in the
second block of length no the message at hand, say (u, v), is encoded
by our second code and thus transmitted. Finally in the third block
of length ng3, the same pair (u, v) is processed by the third code.
The total block length is » = n1 + n2 + ns and the total average
error probability does not exceed the sum of the error probabilities
for the three codes.

Proof of Theorem 3

Next we show Theorem 3, i.e., we have to prove the following.
Assuming

I(KAL)#0, HK|L)#0, and H(L|K) # 0 (36)

there is a positive 7 such that for all A > 0 there exists a code
{{e(E™) bemexm {UE™) bemec{D(E™ ™) }emexm pmecm)

of length n, for sufficiently large m with n < rm, D(E™, £™) N
Dk'™, £'™) = O for (K™, £€™) # (k'™, £™), and for all s" € 8"

> PRUET, W (DT L™ B(RT),E(ET),5") > 1-A
(37

iff non-i) holds and int(Rr(W)) # .

The “if” part follows from Theorem 2 and the result of elimination
in [8].

Here is our coding procedure.

1) Find an eliminated correlated code with index sets I and I as

at beginning of Section II. Take a small segment (K"‘,, L'"’)
of source output sequence (K", L™) as the correlated senders’
side information in Theorem 2 and apply this theorem to send
v € T and ' € I", the indices which are randomly and
independently chosen by the two encoders.

2) After the receiver learns the indices y and 7', send (K™, L™)
by the (7, 7')th component code of the eliminated correlated
code.

For the “only if” part notice first that by the same reason as
in Lemma 3, the condition non-i) is necessary. Let us assume
int(Rr(W)) = &, and without loss of generality assume that the in-
tersection of Rr (W) with the R; axis is {0}. Let ({®(k™)}xmerm™,
{¥(™) emerm, {D(E™, £™) }emexm emecm) be acode with a A-
probability of error for transmission via W and let W (:|-, -) be the
channel in (8) and (9). Then ({®(k™)}xmexm, {¥(€™)}emerm™,
{D(k™, ™) }km ¢m) is a code with A-probability of error for
W(-|-, +), too. Introduce X" = ®(K™), Y™ = ¥(L™) and let Z"
be the output RV of W"(-|-, -). Then it follows by Fano’s Lemma
and standard calculations that

mH(K|L)=H(K™|L™) < H(K™[Y™)
<[I(K™AZ™Y™) + Alog|L]+1
SIX"AZ*Y™")+Alog L] +1
<D I(Xe A ZiYe) + A log|£] + 1

t=1

which contradicts (36).
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V. DISCUSSION

A. Conditions for the MCS

The problem of correlated side information and correlation in
messages effects on the AVMAC to have positive rates have been
solved except for a complete analysis of the conditions

I(KAL)>0 (38)

and

H(K|L) >0, H(L|K) > 0. (39)

Actually, we used them in order to avoid trivial cases.

Another issue is a comparison of the effects on positivity of rates
due to the dependency in messages and the dependency in source
helpers.

For a classical MAC, we know from [11] and [12] that dependency
of messages enlarges the rate regions and that obviously the side
information even of completely correlated sources at two senders
does not.

Similarly, we encounter that for the AVMAC dependency of
messages gives more help for obtaining regions with nonempty
interior. Here are specific observations.

1) If (38) is violated, then K and L are independent and the
problem addressed in Theorems 2 and 3 reduces to that in
Theorem 1. So the conditions in Theorems 2 and 3 are no
longer sufficient, the additional conditions non-ii) and non-iii)
are needed. Indeed the code in (5) becomes a code for W
with independent randomizations of the encoders, which can
be shown—in the same way as in [3]—not to enlarge the rate
region. Therefore non-ii) and non-iii) are needed.

2) Assume that (39) does not hold. Then Theorem 2 is still true,
but Theorem 3 will change. It can easily be seen that the
MCS (K™, L™)y7—; can be transmitted via W iff i) does
not hold and the intersection of Rr(W) with the Ry axis
(R2 axis) is unequal {0} under the assumption H(K|L) > 0
and H(L|K) = 0 (H(L|K) > 0 and H(K|L) = 0). The
proof of sufficiency follows from the proof of sufficiency for
Theorem 3. Let now the intersection of Rr(W) with the R;
axis be not {0} and H(K|L) > 0, H(L|K) = 0. Then
maxp,, ming I(XY A Z) > 0, maxp, , p, ming I(X A
Z|Y) > 0, and L™ is a function of K™, where the first
maximum is taken over all input distributions, the second one
is taken over all independent distributions and both minima are
taken over the convex hull of W. Now both senders know L™.
They first cooperate to send L™ using W as an AVC with two
terminals. Thus the common randomness (between the senders
and receiver) has been established. So with the help of the
common randomness and the second sender, the first sender
can send K™ with a code like that in Lemma 4.

Finally, when H(K|L) = H(L|K) =0,ie, K™ = L™ (as.) the
two senders “become one,” and the problem in Theorem 3 becomes
a two-terminal AVC problem. Here the condition non-i) is sufficient
and necessary for positive capacity. The following simple example
shows that in this case when Rr(W) = {(0, 0)} even a zero-error
code with “full rate” may exist. This demonstrates that dependency
of messages can be more useful than side information.

Example K =L=X=Y=Z=8={0}: Pr(K = L =
0)=p,Pr(K=L=1)=1-p,p€(0,1), W(z|lz,y,s) =1
ifz=xand s=0or z =y and s = 1. Then Re(W) = {(0, 0)}
but ®(k™) = k™, ¥(£™) = £

m gmy _ JE™, ifET ="
D™, £7) = {® otherwise “0)

is an m-length error-free code.

B. The Rate Region

Assume now int(R(W, (K, L))) # &. By (4) R(OW, (K, L)) C
Rr(W). A natural question is whether they are always equal. The
answer is negative. Let us consider the extremal case that K = L
(a.s.). First we notice that Rr(W) may not be equal to (or be
contained properly by) the rate region R (W) of the corresponding
compound channel (cf. [2] and [8] to see that they are formally
different). This is different from the two-terminal case.

Next, we show that in case int(R(W, (K, L))) # D and K = L
(a.s), we have Rr(W) = Rc(W). By the robustification technique
in [13], one can obtain from a code (U, V, {Duyv }ueu, vev) for the
compound channel a family C = {(U”, V7, {D] ,}uecu,vev): 7 €
I'} of codes for the AVMAC W with the same rate and a relatively
small |T'|, such that for all s"

IO Y > WD e, 07, )
YET uv, v

is close to one, if the error probability of the code

U, V, {Duv}ueu, vev) is close to zero.

This is done by a random permutation. We omit the details because
they are exactly the same as in Section II of [14]. Notice that an
analogous result for random correlated codes was obtained in [15].
Now let us return to our question. The two senders have a common
randomness since K = L (a.s.) and they can send it to the receiver
since int(R(W, (K, L))) # &. Thus, this family C of codes can be
used and we are done.

The opposite containment is obvious.
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Disjointness of Random Sequence Sets with
Respect to Distinct Probability Measures

Te Sun Han, Fellow, IEEE, and Mitsuru Hamada

Abstract—It is shown that the set of deterministic random sequences (of
symbols from a finite alphabet) with respect to a computable probability
measure z, in Martin-Lof’s sense, and the set of deterministic random
sequences with respect to another computable probability measure v are
disjoint if ;& and v are different and the measures are either i.i.d. or
homogeneous finite-order irreducible Markov measures.

Index Terms—Disjointness, Kullback—Leibler information, mth-order
composition (type), probability measure, random sequence, stochastic
typicality.

I. INTRODUCTION

This correspondence shows random sequences possess stochastic
typicality and, as a consequence, that the set of deterministic random
sequences with respect to a computable probability measure g and
the set of deterministic random sequences with respect to another
computable probability measure v are disjoint if 4 and v are distinct
in the sense to be specified below. Here the randomness is defined in
an equivalent way to Martin-L6f’s [1], where he defined it using the
notion of statistical hypothesis testing. As a simple example, consider
sequences from two-symbol alphabet {0, 1} and let P be a probability
distribution on {0,1}. Intuitively, a deterministic random sequence
with respect to P is one that looks as if the symbols in the sequence
were drawn independent and identically distributed (i.i.d.) according
to P. Therefore, random sequences with respect to P should have
stochastic typicality, i.e., the property that the relative frequency of
occurrences of the symbol “0” in the first n symbols approaches
P(0) as n goes to infinity. Consequently, if P and @ are distinct
distributions, the random sequence set with respect to P and that
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with respect to @ ought to be disjoint. Our assertion extends to the
case where the probability measure is “Markov.” In this case, it looks
less apparent that distinctness between two measures results in the
disjointness of the two random sequence sets.

In what follows, we first discuss the i.1.d. case, where the basic idea
we use to derive the typicality is attributed to Cover and Thomas [2,
Theorem 7.5.2]. They defined the randomness (“incompressibility”
in their words) in terms of Kolmogorov complexity and showed
the typicality of random sequences by using the compositions (or
types) of sequences as well as their empirical entropies in order
to estimate Kolmogorov complexity. While they treated only the
uniform distribution case, we generalize their result to the case where
the sequences are random with respect to arbitrary distributions. In
our argument, the Kullback-Leibler information (divergence) plays
an important role. Secondly, we treat the Markov case, where the
first half of the discussion to derive the typicality is parallel to that in
the i.i.d. case. In the Markov case, we use the method for counting the
sequences of a fixed “Markov type” introduced by Davisson, Longo,
and Sgarro [3]. Then, our main assertion, i.e., the disjointness of the
random sequence set with respect to a Markov measure and that with
respect to another Markov measure, follows from the typicality with
a short elementary proof, although not very immediately.

We conventionally denote by N and R the set of natural numbers
and the set of real numbers, respectively. Throughout this correspon-
dence, X is an arbitrary finite set (alphabet) with r elements, r > 2,
and A", X", X’*° are the set of all n-length sequences, the set of all
finite-length sequences of symbols from X', and the set of all one-
way infinite sequences of the form zyz2--- (zi € X,i =1,2,---),
respectively. For a given infinite sequence z € X*° we denote by x;
the ith symbol of z. We use the notation that :L'f =x;xis41---x; for
j > ¢. We fix a sigma-algebra F on X'*° generated by all cylinder
sets of the form

{zr € X*|z] =al} (Val € X",Vn € N).

In our following discussion we are only interested in measures of
cylinder sets of this form so that we write p(al) for

p({z € X7l =ai}), neN
where g is a probability measure on (AX*°, ). This notation suggests
that a measure g can be identified with a function p: A* — [0, 1].
The computability of a measure g is understood as that of the
corresponding function p: X* — [0,1]. A probability distribution
on a finite set A is a function p defined on A such that p(a) > 0
for all a € A and Xees p(a) = 1. We denote by K(z7) the
Kolmogorov complexity of a sequence 7 € A™ with respect to a
universal Turing machine. We restrict ourselves to treating Turing
machines of the following property: the programs that lead to halting
computation when they are fed into a fixed machine form a prefix-
free set (i.e., a set each element of which is not a prefix of another).
Namely, we consider the same machines as described in [2, Sec. 7.1]
except that the alphabet for writing on the input and output tape is
X instead of {0,1}.

Probably the most popular notion of randomness is the one defined
by Martin-Lof [1]. The following definition due to Chaitin [4] is
known to be equivalent to Martin-L6f’s (see, [5, Corollary 4.5]; see
also [6, Ch. 7] for the proof in the case of i.i.d. uniform measures;
in fact, Chaitin’s original definition is for this special case).
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