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1. Introduction

N denotes the set of positive integers. For i,j ∈N, i < j, the set {i, i+ 1, . . . , j} is
abbreviated as [i,j] and we write [n] for [1,n]. For k,n∈N, k≤n, we set

2[n] =
{
F : F ⊂ [n]

}
,

(
[n]
k

)
=
{
F ∈ 2[n] : |F | = k

}
.

A system of sets A⊂2[n] is called t-intersecting, if |A1∩A2|≥ t for all A1,A2∈A
(for t= 1, we call A just intersecting). I(n,t) denotes the set of all such systems
and for the systems restricted to k-element sets we introduce

I(n, k, t) =
{
B ∈ I(n, t) : B ⊂

(
[n]
k

)}
.

We are interested in the functions

M(n, t) = max
A∈I(n,t)

|A| and M(n, k, t) = max
A∈I(n,k,t)

|A|.

For their analysis we introduce the following sets:

(1.1) K(n, t) =
{
A ∈ 2[n] : |A| ≥ n+ t

2

}
=

n⋃
i=n+t

2

(
[n]
i

)
if 2|(n+ t)

and

(1.2) Fi =
{
F ∈

(
[n]
k

)
: |F ∩ [t+ 2i]| ≥ t+ i

}
for 0 ≤ i ≤ k − t.
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There is a well-known result of Katona, which determines the exact value of
M(n,t) for all n,t.

Theorem Ka. [3]

(1.3) M(n, t) =

{
|K(n, t)| if 2 | (n+ t)

2 · |K(n− 1, t)| if 2-(n+ t).

Moreover, in the case 2 |(n+t), t>1, the optimal configuration is unique, while
in the case 2-(n+ t) it is unique up to permutations of the ground set [n].

The proof of this Theorem in [3] is essentially based on a result concerning
shadows of t-intersecting systems.

Recently we proved a long-standing conjecture concerning the function
M(n,k,t).

Theorem AK. [1] For 1≤ t≤k≤n, n>2k− t with

(i)

(1.4) (k−t+1)
(

2 +
t− 1
r + 1

)
< n < (k−t+1)

(
2 +

t− 1
r

)
for some r ∈ N∪{0}

we have

M(n, k, t) = |Fr|

and Fr is—up to permutations—the unique optimum. (By convention t−1
r =∞ for

r=0.)

(ii)

(1.5) (k − t+ 1)
(

2 +
t− 1
r + 1

)
= n for r ∈ N ∪ {0} and t > 1

we have

M(n, k, t) = |Fr| = |Fr+1|
and an optimal system equals—up to permutations—either Fr or Fr+1.

For the proof we introduced the seemingly basic notion of—what we called—
“generating sets”.

In the present paper we provide a new compression method, which leads to
new proofs for both, Theorem Ka and Theorem AK.

The new method, in some sense, can be considered as a “dual” to the method
of “generating sets”.

Independent of the new method, in the last section, we derive Theorem Ka
from Theorem AK by a simple analytical approach.
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2. Left compressed sets and an auxiliary result

We begin with well-known notions.

Definition 2.1. For A1 = {i1, i2, . . . , is} ∈
([n]
s

)
, i1 < i2 < .. . < is, and A2 =

{j1, j2, . . . , js}∈
([n]
s

)
, j1<j2<.. .<js, we write

A1 ≺ A2 if i` ≤ j` for all 1 ≤ ` ≤ s,

that is, A1 can be obtained from A2 by left-pushing. Furthermore, let L(A2) be
the set of all sets obtained this way from A2. Also set

L(A) =
⋃
A∈A

L(A).

Definition 2.2. A⊂2[n] is said to be left compressed if A=L(A).

Definition 2.3. We denote by LI(n,t)⊂ I(n,t), (resp. LI(n,k,t) ⊂ I(n,k,t)) the
set of all left compressed systems belonging to I(n,t) (resp. to I(n,k,t)).

It is well known and it easily follows with the shifting technique of [2] that

M(n, t) = max
A∈I(n,t)

|A| = max
A∈LI(n,t)

|A|

and
M(n, k, t) = max

A∈I(n,k,t)
|A| = max

A∈LI(n,k,t)
|A|.

Definition 2.4. For any B∈2[n] we define the upset U(B)={B′∈2[n] :B⊂B′}.
More generally, for B⊂2[n] we define the upset

U(B) =
⋃
B∈B
U(B).

Clearly, every optimal set A∈L(n,t) is an upset.
The next result shows that in the investigation of the function M(n,t) we can

concentrate on the case 2 |(n+ t).

Lemma 1. Let 2-(n+ t). Then

M(n, t) = 2 ·M(n− 1, t).

Proof. Clearly M(n,t)≥ 2 ·M(n−1, t). Let us prove the opposite direction. Let
A∈LI(n,t), |A|=M(n,t), 2-(n+ t), and let

An =
{
A ∈ A : n ∈ A, but (A \ {n}) /∈ A

}
.
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If An=∅, then obviously |A1∩A2∩ [1,n−1]|≥ t for all A1,A2∈A, and hence
M(n,t)≤2M(n−1, t).

Assuming An 6=∅, consider the following partition:

An=A1
n
.
∪A2

n, where A1
n=
{
A∈An : |A|≥ n+t+1

2

}
andA2

n=
{
A∈An : |A|≤ n+t−1

2

}
.

We observe that for any A1,A2 ∈A1
n |A1∩A2|≥ t+1 holds, and the same is

true for any A3,A4∈A2
n, because A is left-compressed, A∈I(n,t), and n∈A3∩A4.

Therefore, the sets

Bin =
{
B ∈ 2[n] : n /∈ B, but B ∪ {n} ∈ Ain

}
(i = 1, 2)

are t-intersecting. Consequently we have

C1 = (A \ A1
n) ∪ B2

n ∈ I(n, t), C2 = (A \ A2
n) ∪ B1

n ∈ I(n, t).

Since Bin /∈A (i=1,2) by definition of An and |Bin|= |Ain| (i=1,2), clearly

max
i=1,2

|Ci| ≥ |A| = M(n, t).

Moreover, with every element C ∈ C with n ∈ C we have also that C′′ = C \
{n}∈C1. Of course, the same is true for the set C2.

Therefore, for all C1,C2 ∈C1 (similarly for C2) we have |C1∩C2∩ [1,n−1]≥ t
and hence

2 ·M(n− 1, t) ≥ max
i=1,2

|Ci| ≥ |Ai| = M(n, t).

This proves the lemma.

For a set A⊂2[n] and 1≤ i,j≤n we denote by Ai,j the set which is obtained
from the set A by exchanging the coordinates i,j in every A∈A.

Suppose A ∈ LI(n,t), (resp. A ∈ LI(n,k,t)) and A is not right-compressed.
Let `<n be the biggest integer, such that A is invariant under exchange operations
in [1, `], i.e.

(2.1) A = Ai,j for all 1 ≤ i, j ≤ ` but A 6= Ai,`+1 for some 1 ≤ i ≤ `.

Moreover let

(2.2) A′ = {A ∈ A : Ai,`+1 /∈ A for some 1 ≤ i ≤ `}.

We need the following easy, but important

Lemma 2. Let A and A′ be the sets which are defined just above. Then

(i) `+1 /∈A for all A∈A′.
(ii) Let A∈A′ and j∈A, 1≤j≤`, then we have Aj,`+1 /∈A.
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(iii) Let A ∈ A′, A = B ∪C, where B =A∩ [1, `], C = A∩ [`+ 1,n], then we have

B′∪C∈A′ for every B′⊂ [1, `] with |B′|= |B|.
(iv) Let A∈A′ and D∈A\A′, then we have

|Ai,`+1 ∩D| ≥ t for all 1 ≤ i ≤ `.

(v) Let A1,A2 ∈A′, Bi =Ai ∩ [1, `] (i= 1,2) and suppose that |B1|+ |B2| 6= `+ t,
then we have |A1∩A2|≥ t+1.

Proof. The statement immediately follows from the left-compressedness of A, the
definition of A′ and the maximality of `.

We state also the following (almost trivial) fact.

Lemma 3. Let B⊂2[n] be a set system, such that

B ∈ B → B ∈ B, where B = [1, n] \B.

Then every maximal (saturated) intersecting B′⊂B has cardinality
|B|
2 . Here

maximal (saturated) means, that we cannot add another element to the set without
violating the intersecting property.

The following statement is obvious.

Lemma 4. Let 2 |(n+ t), Then (i) and (ii) are equivalent:

(i) The unique optimal set A with |A|=M(n,t) is A=K(n,t).
(ii) Every optimal set is left-compressed and at the same time it is right-

compressed.

3. Proof of Theorem AK

The main auxiliary result, which essentially proves the theorem, is the following.

Lemma 5. Let A⊂LI(n,k,t), |A|=M(n,k,t), n>2k− t and

(3.1) n < (k − t+ 1)
(

2 +
t− 1
r

)
.

Then A is invariant under exchange operations in [1, t+2r], i.e. Ai,j =A for

all 1≤ i,j≤ t+2r. (By convention t−1
0 =∞ for r=0.)

Before we give a proof let us compare this lemma, with its dual, Lemma 6 [1].
In [1] this lemma was stated in the language of generated sets, here we give an
equivalent formulation.
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Lemma 6. [1]Let A⊂LI(n,k,t), |A|=M(n,k,t), n>2k− t, and

(3.2) (k − t+ 1)
(

2 +
t− 1
r + 1

)
< n.

Then |A1∩A2∩ [1, t+2r]|≥ t for all A1,A2∈A or, equivalently, A is invariant
under exchange operations in [t+2r+1,n].

It is easily seen, that the combination of the lemmas immediately proves
Theorem AK, at least the first case (1.4).

Proof of Lemma 5. We can assume that t≥2, because in the case t=1 the conditions
(3.1) and n>2k− t are incompatable. Assume the opposite and let `< (t+2r) be
the biggest integer such that

Ai,j = A for all 1 ≤ i, j ≤ `, but

A′ = {A ∈ A : Ai,`+1 /∈ A, for some 1 ≤ i ≤ `} 6= ∅.

We are going to show that, under assumption (3.1) and `<t+2r, there exists
a B∈I(n,k,t) with |B|> |A|, which is a contradiction.

For this we start with the partition of A′:

A′ =
⋃̀
i=1

A(i), where A(i) =
{
A ∈ A′ : |A ∩ [1, `]| = i

}
.

Of course, some of the A(i)’s can be empty. In fact, it follows from Lemma 2
(v) and the maximality of A that A(i) = ∅ for all 1≤ i < t. We will show that all
the A(i)’s are empty. Suppose A(i) 6=∅ for some i, t≤ i≤`.

From Lemma 2 (iii) we know that

(3.3) |A(i)| =
(
`

i

)
· |A∗(i)|,

where

(3.4) A∗(i) =
{
A ∩ [`+ 2, n] : A ∈ A(i)

}
.

We remind the reader that `+1 /∈A for all A∈A′ (see Lemma 2 (i)).
Let us note that in the case n=`+1 we have A∗(i)={∅}, and |A∗(i)|=1.
Now we consider the set

B(i) =
{
B : |B ∩ [1, `]| = i− 1, `+ 1 ∈ B,

(
B ∩ [`+ 2, n]

)
∈ A∗(i)

}
.
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Clearly

(3.5) |B(i)| =
(

`

i− 1

)
· |A∗(i)| and B(i) ∩ A = ∅ by Lemma 2 (ii).

With A(i) and B(i) we consider also the sets A(`+t−i) and B(`+t−i). Similar
to (3.3), (3.5) we have

(3.6) |A(`+ t− i)| =
(

`

` + t− i

)
· |A∗(` + t− i)|

and

(3.7) |B(`+ t− i)| =
(

`

`+ t− i− 1

)
· |A∗(`+ t− i)|.

We distinguish two cases: a) i 6=`+ t− i, b) i=`+ t− i.
Case a) i 6=`+ t− i:

From Lemma 2 (v) it follows:
For B∈B(i), A∈A(j) with i+ j 6= `+ t we have |B∩A|≥ t. Hence, using this

and Lemma 2 (iv), we have

H1 =
((
A \ A(`+ t− i)

)
∪ B(i)

)
∈ I(n, k, t) and

H2 =
((
A \ A(i)

)
∪ B(`+ t− i)

)
∈ I(n, k, t).

Let us show that

(3.8) max
{
|H1|, |H2|

}
> |A| = M(n, k, t),

which will be a contradiction.
Negation of (3.8) in conjunction with (3.3), (3.5)–(3.7) means that

(3.9)

(
`

i− 1

)
· |A∗(i)| ≤

(
`

`+ t− i

)
· |A∗(` + t− i)|,(

`

`+ t− i− 1

)
· |A∗(`+ t− i)| ≤

(
`

i

)
· |A∗(i)|.

Since we have assumed A(i) 6= ∅, then clearly A(`+ t− i) 6= ∅ as well, because
otherwise the first inequality of (3.9) is false.

However (3.9) implies

i(`+ t− i) ≤ (`− i+ 1)(i+ 1− t),

which is false, because t≥2 and consequently

i > i+ 1− t, `+ t− i > `− i+ 1.
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Hence A(i)=∅ for all i 6=`+ t− i.
Remark. Let us note, that we did not use the condition (3.1) in the Lemma.

Case b) i=`+ t− i or i= `+t
2 :

Here necessarily 2 | (`+ t) and hence `+2≤n. Therefore, if A
(
`+t
2

)
6=∅, then

also A∗
(
`+t
2

)
6=∅.

We have ∣∣∣∣A(`+ t

2

)∣∣∣∣ =
(
`
`+t
2

)
·
∣∣∣∣A∗(`+ t

2

)∣∣∣∣ (see (3.3))

and any A∈A
(
`+t
2

)
can be written in the form A=B

.
∪C, where

B =
(
A ∩ [1, `]

)
∈
(

[`]
`+t
2

)
, C =

(
A ∩ [`+ 2, n]

)
∈ A∗

(
`+ t

2

)
,

and |C|=k− `+t
2 , since A∈

([n]
k

)
and `+1 /∈A.

By the pigeon hole principle, there exists an element d of [`+2,n] and a subset

D⊂A∗
(
`+t
2

)
with d∈D for all D from D and

(3.10) |D| ≥
∣∣∣∣A∗(`+ t

2

)∣∣∣∣ · k − `+t
2

n− `− 1
.

Now let

A
(
`+ t

2

)
= A1

(
`+ t

2

)
.
∪ A2

(
`+ t

2

)
, where

A1

(
`+ t

2

)
=
{
A ∈ A

(
`+ t

2

)
:
(
A ∩ [` + 2, n]

)
∈ D

}
and

A2

(
`+ t

2

)
= A

(
`+ t

2

)
\ A1

(
`+ t

2

)
.

Finally we consider the set

H =
(
A \ A2

(
`+ t

2

))
∪G,

where

G =

{
B ∈

(
[n]
k

)
:
(
B ∩ [1, `]

)
∈
(

[`]
`+t
2 − 1

)
, `+ 1 ∈ B,

(
B ∩ [`+ 2, n]

)
∈ D

}
.
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By Lemma 2 (ii) G∩A=∅, and it is easy to see that H∈I(n,k,t).
Let us show that

(3.11) |H| > |A|

under the conditions (3.1), `<t+2r, and 2 |(`+ t). The last two conditions imply

(3.12) ` ≤ t+ 2r − 2.

|G|=
( `
`+t
2
−1

)
·|D| and

∣∣∣A2

(
t+`
2

)∣∣∣=( `
`+t
2

)
·
(∣∣∣A∗( t+`2

)∣∣∣−|D|), condition (3.11)

is equivalent to (
`

`+t
2 − 1

)
· |D| >

(
`
`+t
2

)
·
(∣∣∣∣A∗ ( t+ `

2

)∣∣∣∣− |D|)
and to

(3.13)
(
`+ 1
`+t
2

)
· |D| >

(
`
`+t
2

)
·
∣∣∣∣A∗( t+ `

2

)∣∣∣∣ .
The inequality

(3.14)
(
`+ 1
`+t
2

)
·
k − `+t

2

n− `− 1
>

(
`
`+t
2

)
is sufficient for (3.13) (see (3.10)).

After simplification (3.14) is equivalent to (k−t+1)
(

2+ 2(t−1)
`−t+2

)
>n, which is

true, because `≤ t+2r−2 (see (3.12)), and consequently

(k − t+ 1)
(

2 +
2(t− 1)
`− t+ 2

)
≥ (k − t+ 1)

(
2 +

t− 1
r

)
> n, which is (3.1).

The lemma is proved.

Proof of Theorem AK.

Case (i):

(3.15) (k − t+ 1)
(

2 +
t− 1
r + 1

)
< n < (k − t+ 1)

(
2 +

t− 1
r

)
.

Let A∈LI(n,k,t) with |A|=M(n,k,t).
We know from Lemma 5 that A is invariant in [1, t+ 2r], hence obviously

k≥ t+r, because otherwise we would have A1,A2∈A with |A1∩A2|<t.
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Let A=
{

[1,n]\A,A∈A
}

be the complemented set of A. Clearly A is right-

compressed, A∈I(n,n−k,n−2k+t), and |A|= |A|=M(n,k,t)=M(n,n−k,n−2k+t).
An easy calculation leads from (3.15) to

(k′ − t′ + 1)
(

2 +
t′ − 1
r′ + 1

)
< n < (k′ − t′ + 1)

(
2 +

t′ − 1
r′

)
for k′=n−k, t′=n−2k+ t, and r′=k− t−r (by convention t′−1

0 =∞ for r′=0).

Using the dual version (with respect to right compressed sets) of Lemma 5 we
get: A is invariant in [n− t′−2r′+1,n]=[t+2r+1,n].

Hence A is also invariant in [t+ 2r+ 1,n]. Equivalently, since A is left com-
pressed, n>2k− t,

(3.16) |A1 ∩A2 ∩ [1, t+ 2r]| ≥ t for all A1, A2 ∈ A.

We know from Lemma 5 that

Ai,j = A for all 1 ≤ i, j ≤ t+ 2r.

Clearly, the unique maximal set A∈LI(n,k,t) is A=Fr.

Case (ii): n=(k− t+1)
(

2+ t−1
r+1

)
.

Again, by considering the complemented set of A, by the same approach we
make the following conclusion, which is slightly different from (3.16):

(3.17) |A1 ∩A2 ∩ [1, t+ 2r + 2]| ≥ t for all A1, A2 ∈ A.

It is easy to verify that combination of (3.17) with Lemma 5 gives exactly two
optimal sets: either A=Fr or A=Fr+1 and

|A| = |Fr| = |Fr+1| for n = (k − t+ 1)
(

2 +
t− 1
r + 1

)
.

4. First proof of Theorem Ka

According to Lemma 1 we assume 2 |(n+t). From Lemma 4 it follows that in case
A∈LI(n,t), |A|=M(n,t), we have to prove: A is also right-compressed. Assume
the opposite, and let ` < n be the biggest integer such that A is invariant under
exchange operations in [1, `] and

A′ = {A ∈ A : Ai,`+1 /∈ A for some 1 ≤ i ≤ `} 6= ∅.

We will show that under this assumption there exists a set B ∈ I(n,t) with
|B|> |A|=M(n,t), which is a contradiction.
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Now we recall the proof of Lemma 5 by starting from the partition of A′ and
by repeating line by line the arguments—including case a). It is easy to verify (see
also the remark after the proof of case a)), that in this case, the same conclusion
holds in the unrestricted case, too. So we have to prove only case b) i=`+t−i, or
i= `+t

2 . Here necessarily 2 | (`+ t) and hence `+2≤n by the assumption 2 | (n+ t)

and `<n. Therefore, if A
(
`+t
2

)
6=∅, then also A∗

(
`+t
2

)
6=∅ (see (3.4)).

We have ∣∣∣∣A(`+ t

2

)∣∣∣∣ =
(
`
`+t
2

)
·
∣∣∣∣A∗(`+ t

2

)∣∣∣∣ (see (3.3))

and any A∈A
(
`+t
2

)
can be written in the form

A = B
.
∪ C,

where

B =
(
A ∩ [1, `]

)
∈
(

[`]
`+t
2

)
, C =

(
A ∩ [`+ 2, n]

)
∈ A∗

(
`+ t

2

)
.

We observe that for every C∈A∗
(
`+t
2

)
there is another element C′∈A∗

(
`+t
2

)
with C∩C′=∅. Indeed, if the element C intersects with all elements of A∗

(
`+t
2

)
,

then any element A1∈2[n] of the form

A1 = B1 ∪ {`+ 1} ∪ C with B1 ∈
(

[`]
`+t
2 − 1

)
,

which is not in the set A, by Lemma 2 (ii), can be added to the set A without
violating the t-intersection property. This contradicts the maximality of A.

Hence, for every C∈A∗
(
`+t
2

)
, there is a C′∈A∗

(
`+t
2

)
with C′⊂ [`+2,n]\C.

Since A is an upset and

(B ∪ C′) ∈ A
(
t+ `

2

)
⊂ A′ ⊂ A for all B ⊂ [1, `], |B| = `+ t

2
,

we have clearly
(
B∪

(
[`+2,n]\C

))
∈A. It is easy to see that

(
B∪

(
[`+2,n]\C

))
∈

A
(
`+t
2

)
as well. Hence

[`+ 2, n] \ C ∈ A∗
(
t+ `

2

)
for all C ∈ A∗

(
t+ `

2

)
.
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Let D ⊂ A∗
(
t+`
2

)
be any maximal (saturated) intersecting system. From

Lemma 3 we have

|D| =
|A∗

(
t+`
2

)
|

2
.

Now consider the partition

A
(
`+ t

2

)
= A1

(
`+ t

2

)
.
∪ A2

(
`+ t

2

)
,

where

A1

(
`+ t

2

)
=
{
A ∈ A

(
`+ t

2

)
:
(
A ∩ [` + 2, n]

)
∈ D

}
.

We have

∣∣∣∣A1

(
`+ t

2

)∣∣∣∣ =
∣∣∣∣A2

(
`+ t

2

)∣∣∣∣ =
|A
(
`+t
2

)
|

2
=
(
`
`+t
2

)
·
|A∗

(
`+t
2

)
|

2
=
(
`
`+t
2

)
· |D|.

Finally, we consider the set

H =
(
A \ A2

(
`+ t

2

))
∪G,

where

G =
{
B ∈ 2[n] : B ∩ [1, `] ∈

(
`

`+t
2 − 1

)
, `+ 1 ∈ B, and (B ∩ [`+ 2, n]) ∈ D

}
.

By Lemma 2 (ii) we have G∩A=∅ and it is easy to see that H∈I(n,t).
However, |H|> |A|, because

|G| =
(

`
`+t
2 − 1

)
· |D| >

(
`
`+t
2

)
· |D| =

∣∣∣∣A2

(
`+ t

2

)∣∣∣∣ (t ≥ 2).

This finishes the proof.
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5. The second proof of Theorem Ka

Here we show how to derive Theorem Ka from Theorem AK. We keep the meaning
of n as in Theorem AK and let m take the role of n in Theorem Ka.

According to Lemma 1, it is sufficient to settle only the case 2 |(m+t), that is
by our assumption m= t+2r for some r∈N. We recall the definitions

K(t + 2r, t) =
{
A ∈ 2[t+2r] : |A| ≥ t+ r

}
and

Fr =
{
B ∈

(
[n]
k

)
: |B ∩ [1, t+ 2r]| ≥ t+ r

}
,

which can be written in the form

Fr =
{
B ∈

(
[n]
k

)
:
(
B ∩ [1, t+ 2r]

)
∈ K(t+ 2r, t)

}
.

We also write their cardinalities as

|K(t+ 2r, t)| =
t+2r∑
i=t+r

(
t+ 2r
i

)

and

|Fr| =
t+2r∑
i=t+r

(
t+ 2r
i

)(
n− t− 2r
k − i

)
.

For a set B⊂2[t+2r] we introduce Bi=B∩
([t+2r]

i

)
.

Here is an immediate consequence of Theorem AK:

Corollary. Let

(5.1) (k − t+ 1)
(

2 +
t− 1
r + 1

)
< n < (k − t+ 1)

(
2 +

t− 1
r

)
,

then

max
B∈I(t+2r,t)

t+2r∑
i=t

|Bi| ·
(
n− t− 2r
k − i

)
= M(n, k, t),

and the maximum is assumed at the unique set B=K(t+2r,t).

The following, rather obvious, “Comparison Lemma” makes it possible to prove
easily Theorem Ka via the above stated Corollary.
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Comparison Lemma. Let αt ≥ αt+1 ≥ . . . ≥ αt+2r ≥ 0, αt 6= 0, be a nonincreasing
sequence of real numbers such that

max
A∈I(t+2r,t)

t+2r∑
i=t

|Ai| · αi

is assumed at A=K(t+2r,t). Then the same holds, if αt=αt+1 = . . .=αt+2r = 1,
i.e.

max
A∈I(t+2r,t)

t+2r∑
i=t

|Ai| · 1 = max
A∈I(t+2r,t)

|A| = M(n, t)

is assumed at A=K(t+2r,t), which is exactly Theorem Ka.

Proof. The result easily follows from the following fact:

If B 6=K(t+2r,t), B∈I(n,t), and
t+2r∑
i=t
|Bi| ·1>

t+2r∑
i=t
|Ki(t+2r,t)|=

t+2r∑
i=t+r

(t+2r
i

)
,

then, since αt≥αt+1≥ . . .≥αt+2r≥0, we would have

t+2r∑
i=t

|Bi| · αi >
t+2r∑
i=t

|Ki(t+ 2r, t)| · αi.

This contradicts the assumption in the Lemma.

Remark. The “Comparison Lemma” can be formulated in a more general form by
assuming weaker conditions on αt,αt+1, . . . ,αt+2r , and the conclusion (even in more
general form) of the Lemma still holds. However, this is not needed here.

Proof of Theorem Ka. According to the corollary and the Comparison Lemma, it
is sufficient to show the existence of integers k,n (for fixed t,r), such that both

(k − t+ 1)
(

2 +
t− 1
r + 1

)
< n < (k − t+ 1)

(
2 +

t− 1
r

)
and(

n− t− 2r
k − t

)
≥
(
n− t− 2r
k − t− 1

)
≥ . . . ≥

(
n− t− 2r
k − t− 2r

)
hold.

A simple calculation shows, that this is the case for any k,k> (t+2r−1)r
t−1 +t, and

n as the biggest integer from the interval given by the first inequality. For these k

and n the second inequality holds. Let us note that for k> (t+2r−1)r
t−1 + t we have

(k − t+ 1)
(

2 +
t− 1
r

)
− (k − t+ 1)

(
2 +

t− 1
r + 1

)
> 1,

which guarantees the existence of an integer n.
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